Ряды динамики

Основные статистические методы в анализе динамических рядов. Исследование временных рядов и их прогнозирование. Метод усреднения по левой и правой половине, а так же метод простой скользящей средней. Задача и цель аналитического выравнивания рядов.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 22.12.2010
Размер файла 24,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МОСКОВСКИЙ БАНКОВСКИЙ ИНСТИТУТ

СПЕЦИАЛЬНОСТЬ «ФИНАНСЫ И КРЕДИТ»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Статистика»

на тему «РЯДЫ ДИНАМИКИ»

Выполнила студентка 4 курса

Группы ЗУБФ 47-1

Деменкова Т. П.

Москва 2010

СТАТИСТИКА - это наука о сборе, классификации и количественной оценке фактов как основы для выводов; наука, которая изучает количественную сторону массовых социально-экономических явлений и процессов, их структуру и распределения, размещение в пространстве, движение во времени, выявляет действующие количественные зависимости, тенденции и закономерности в конкретных условиях места и времени. Статистика имеет свой предмет исследования. Она изучает с количественной стороны массовые социально-экономические явления. Статистика также изучает влияние природных и технических факторов на изменение количественных характеристик социально-экономических явлений.

Статистическая грамотность является неотъемлемой составной частью профессиональной подготовки каждого экономиста, финансиста, социолога, политолога, а также любого специалиста, имеющего дело с анализом массовых явлений, будь то социально-общественные, экономические, технические, научные и другие. Работа этих групп специалистов неизбежно связана со сбором, разработкой и анализом данных статистического (массового) характера. Нередко им самим приходится проводить статистический анализ различных типов и направленности либо знакомиться с результатами статанализа, выполненного другими.

Объектом статистического исследования является статистическая совокупность - множество единиц, обладающих массовостью, однородностью, определенной целостностью, взаимозависимостью состояний отдельных единиц и наличием вариации.

Изменение социально-экономических явлений во времени изучается статистикой методом построения и анализа динамических рядов.

Ряды динамики - это значения статистических показателей, которые представлены в определенной хронологической последовательности.

Каждый динамический ряд содержит две составляющие:

1) показатели периодов времени (годы, кварталы, месяцы, дни или даты); динамика ряд статистика

2) показатели, характеризующие исследуемый объект за временные периоды или на соответствующие даты, которые называют уровнями ряда.

В статистике в анализе динамических рядов важное значение имеют статистические методы проявления общей тенденции развития явлений. К таким методам относится выравнивание, сглаживание, смыкание и сопоставление рядов динамики и укрупнение периодов. Эти статистические методы находят всё более широкое применение в деятельности оценщиков недвижимости и бизнеса разных стран. Само определение рыночной стоимости, принятое в нормативных документах некоторых стран (например, в Единых Стандартах профессиональной оценочной деятельности США USPAP) и проекте украинских Стандартов по оценке недвижимости как «наиболее вероятной цены, за которую имущество было бы продано на конкурентном и открытом рынке…», предопределяет вероятностную природу самого процесса оценки и делает возможным и необходимым применение оценочных процедур, основанных на принципах вероятностного статистического анализа. Исследование временных рядов и их прогнозирование не ограничились сферой оценки недвижимости. При оценке пакета акций одной из крупнейших ТЭС Украины с применением методологии доходного подхода был использован инструментарий анализа временных рядов для изучения динамики объёмов производства электро- и теплоэнергии. Предварительный графический анализ исходных данных производства энергоресурсов показал наличие их значительной вариации, что, естественно, усложнило задачу установления тренда и определение его типа. Поэтому было проведено сглаживание временных рядов производства энергоресурсов, для чего были применены два метода -- скользящей средней и экспоненциального При анализе используется константа сглаживания a, величина которой определяет степень влияния на прогнозы погрешностей в предыдущем прогнозе. сглаживания. В связи с тем, что исследовались относительно короткие ряды (с незначительным периодом предыстории), предпочтение было отдано методу экспоненциального сглаживания с параметром сглаживания (константой) б = 0,2 ? 0,3. Дальнейший анализ состоял в выявлении сезонной компоненты при производстве теплоэнергии. При этом применялись два подхода, определялась сезонная компонента, аддитивная тренду, и сезонная компонента, мультипликативная тренду. Сравнивая результаты применения двух моделей, статисты пришли к выводу о предпочтительности мультипликативной модели, так как она не потребовала предварительного удаления тренда.

Беря во внимание все вышесказанное, смело можно считаем, что корректное применение в оценочной деятельности статистических методов в конечном итоге приводит к более доказательным результатам (в том числе и для различных проверяющих органов), нежели в случае применения неформализованного подхода, формируемого на субъективно-интуитивном уровне.

Итак, возвращаясь к рассмотрению основных статистических методов в анализе динамических рядов, начнем их изучение.

Выравнивание - метод, при помощи которого получают аналитическое и графическое выражение статистической закономерности, лежащей в основе заданного эмпирического ряда статистических данных. Путём выравнивания ломаную линию уровней эмпирического ряда заменяют плавной «выравнивающей» кривой (в частном случае - прямой) и вычисляют уравнение этой кривой. При выравнивании последовательно решают три задачи:

1. выбирают тип уравнения (форму плавной кривой);

2. вычисляют параметры (коэффициенты) этого уравнения;

3. вычисляют (на основании уравнения) или измеряют (по графику кривой) уровни полученного «теоретического» статистического ряда.

Тип уравнения и, соответственно, форму плавной кривой выбирают на основании общих сведений о сущности явления, о закономерностях его структуры и развития, о зависимости между его признаками и т.д. (так называемое «аналитическое выравнивание»). При отсутствии таких предварительных сведений тип уравнения (форму кривой) часто может подсказать графическая форма ломаной.

К выравниванию рядов динамики прибегают, чтобы получить уравнение (и плавную линию), выражающее тенденцию развития процесса во времени (t).

Исключение случайных колебаний значений уровней ряда осуществляется с помощью нахождения «усредненных» значений. А способы устранения случайных факторов делятся на две больше группы:

1. Способы «механического» сглаживания колебаний путем усреднения значений ряда относительно других, расположенных рядом, уровней ряда.

2. Способы «аналитического» выравнивания, т. е. определения сначала функционального выражения тенденции ряда, а затем новых, расчетных значений ряда.

К методам сглаживания относятся:

· Метод усреднения по левой и правой половине - Разделяют ряд динамики на две части, находят для каждой из них среднее арифметическое значение и проводят через полученные точки линию тренда Тренд - основная тенденция развития динамического ряда. на графике.

· Метод простой скользящей средней - Заключается в том, что вычисляется средний уровень из определенного числа первых по порядку уровней ряда, затем -- средний уровень из такого же числа уровней, начиная со второго, далее -- начиная с третьего, и т.д. Таким образом, при расчетах среднего уровня как бы скользят по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий. Отсюда название -- скользящая средняя.

· Метод взвешенной скользящей средней - Основное отличие от предыдущего метода состоит в том, что уровни, входящие в интервал усреднения, суммируются с различными весами, т.к. аппроксимация в пределах интервала сглаживания осуществляется с использованием уровней, рассчитанных по полиному n-го порядка:

где i -- порядковый номер уровня интервала сглаживания.

Более совершенным приемом изучения общей тенденции в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями.

Задачей аналитического выравнивания является определение не только общей тенденции развития явления, но и некоторых недостающих значений как внутри периода, так и за его пределами. Способ определения неизвестных значений внутри динамического ряда называют интерполяцией. Эти неизвестные значения можно определить:

1)используя полусумму уровней, расположенных рядом с интерполируемыми;

2) по среднему абсолютному приросту;

3) по темпу роста.

Вид уравнения определяется характером динамики развития конкретного явления. Логический анализ при выборе вида уравнения может быть основан на рассчитанных показателях динамики, а именно:

· если относительно стабильны абсолютные приросты (первые разности уровней приблизительно равны), сглаживание может быть выполнено по прямой;

· если абсолютные приросты равномерно увеличиваются (вторые разности уровней приблизительно равны), можно принять параболу второго порядка;

· при ускоренно возрастающих или замедляющихся абсолютных приростах - параболу третьего порядка;

· при относительно стабильных темпах роста показательную функцию.

Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей: прямая (линейная), парабола второго порядка, показательная (логарифмическая) кривая, гиперболическая.

Целью аналитического выравнивания является - определение аналитической или графической зависимости. На практике, по имеющемуся временному ряду, задают вид и находят параметры функции, а затем анализируют поведение отклонений от тенденции. Не следует смешивать выравнивание статистических рядов динамики со сглаживанием статистических рядов.

Одним из наиболее элементарных способов изучения общей тенденции в ряду динамики является укрупнение интервалов. При использовании этого метода ряд динамики, состоящий из мелких интервалов, заменяется рядом, состоящим из более крупных интервалов (например, преобразование месячных периодов в квартальные, квартальных в годовые и т.д.). Или уровни исходного динамического ряда объединяются по более крупным периодам. Например, сравнивают уровни урожайности не за отдельные годы, а в среднем по пятилетиям. Особое внимание при этом следует обращать на обоснование периодов укрупнения. Например, поскольку плодоношение садов в ряде случаев подвержено периодическим колебаниям, нельзя брать период с нечетным числом лет. При подобных циклических колебаниях в большинстве случаев интервал берут равным продолжительности цикла. В общем укрупненный интервал должен обеспечивать взаимное погашение случайных отклонений уровней.

Так как на каждый уровень исходного ряда влияют факторы, вызывающие их разнонаправленное изменение, то это мешает видеть основную тенденцию. При укрупнении интервалов влияние факторов нивелируется, и основная тенденция проявляется более отчетливо. Расчет среднего значения уровня по укрупненному интервалу осуществляется по формуле простой средней арифметической. Недостаток этого способа заключается в том, что сокращается число уровней ряда, а это не позволяет учитывать изменения внутри укрупненного интервала. Но преимущество в том, что сохраняется природа явления.

По интервальным рядам итоги исчисляются путем простого суммирования уровней первоначальных рядов. Для других случаев рассчитывают средние величины укрупненных рядов (переменная средняя). Переменная средняя рассчитывается по формулам простой средней арифметической.

Размещено на Allbest.ru


Подобные документы

  • Объекты статистического исследования. Необходимость и сущность выравнивания (сглаживания) рядов динамики. Методы выравнивания (укрупнение интервалов). Метод сменного среднего, аналитического выравнивания. Сравнительная характеристика и сфера применения.

    контрольная работа [62,1 K], добавлен 30.04.2009

  • Методика проведения анализа динамических рядов социально-экономических явлений. Компоненты, формирующие уровни при анализе рядов динамики. Порядок составления модели экспорта и импорта Нидерландов. Уровни автокорреляции. Корреляция рядов динамики.

    курсовая работа [583,6 K], добавлен 13.05.2010

  • Ряды динамки: тренд, методы выравнивания рядов динамики. Приведение рядов динамики в сопоставимый вид. Разно великие интервалы времени, изменение даты, методологии или расчета показателя, единицы измерения. Длительность интервала времени между уровнями.

    реферат [24,1 K], добавлен 08.03.2009

  • Понятие и значение временного ряда в статистике, его структура и основные элементы, значение. Классификация и разновидности временных рядов, особенности сферы их применения, отличительные характеристики и порядок определения в них динамики, стадии, ряды.

    контрольная работа [30,9 K], добавлен 13.03.2010

  • Анализ динамических рядов и выбор исходных данных. Графическое представление динамического ряда, расчет показателей изменения уровней динамических рядов и средних показателей. Периодизация динамических рядов и анализ основной тенденции динамики ряда.

    курсовая работа [2,8 M], добавлен 16.09.2010

  • Проведение расчета абсолютных, относительных, средних величин, коэффициентов регрессии и эластичности, показателей вариации, дисперсии, построение и анализ рядов распределения. Характеристика аналитического выравнивания цепных и базисных рядов динамики.

    курсовая работа [351,2 K], добавлен 20.05.2010

  • Статистический анализ рядов динамики. Показатели изменения уровней ряда динамики. Связный анализ рядов динамики. Корреляционный анализ рядов динамики. Элементы интерполяции и экстраполяции. Встроенные функции MS Excel для анализа рядов динамики.

    курсовая работа [1,0 M], добавлен 17.12.2015

  • Статистические ряды распределения, их значение в статистике. Подразделение вариационных рядов на дискретные и интервальные, особенности их применения. Практическое задание: использование статистических рядов для оценки состояния предприятия и отрасли.

    контрольная работа [134,2 K], добавлен 17.11.2009

  • Система производственных показателей выпуска продукции. Ряды динамики: общее понятие и значение. Теория определения и построения тренда. Использование метода сглаживания временных рядов в изучении динамики выпуска продукции на примере ООО "Прогресс".

    курсовая работа [1,8 M], добавлен 23.12.2013

  • Определение и классификация спроса. Статистические методы анализа спроса. Краткая экономическая характеристика деятельности ООО "Интеграл" и продукции ТМ "Новотроицкая". Анализ статистических показателей рядов динамики и метод скользящей средней.

    курсовая работа [209,6 K], добавлен 20.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.