Статистическое изучение взаимосвязи между явлениями
Методы изучения взаимосвязей экономических явлений: метод параллельных рядов, аналитических группировок. Сущность, задачи и понятия дисперсионного и корреляционно-регрессионного анализа. Измерение взаимосвязей между социально-экономическими явлениями.
Рубрика | Экономика и экономическая теория |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 12.10.2010 |
Размер файла | 25,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Челябинский Юридический Колледж
Кафедра Менеджмента и Маркетинга
КОНТРОЛЬНАЯ РАБОТА
По дисциплине: «Статистика»
«Статистическое изучение взаимосвязи между явлениями»
Студент
Гр. МЗ-01-1-08
Преподаватель Яганов С.П.
Челябинск
2010
Содержание:
1. Статистическое изучение взаимосвязи между явлениями
1.1 Дисперсионный анализ
1.2 Методы изучения взаимосвязей экономических явлений. Метод аналитических группировок
1.3 Корреляционно-регрессионный анализ
1.4 Выбор формы связи
2. Измерение взаимосвязей между социально-экономическими явлениями - важнейшая задача статистической науки
3. Статистические методы изучения связей: метод параллельных рядов, метод аналитических группировок, графический метод, балансовый метод
3.1 Основные понятия корреляционно-регрессионного анализа
Список литературы
1. Статистическое изучение взаимосвязи между явлениями
1.1 Дисперсионный анализ
Аналитические группировки при всей своей значимости не дают количественного выражения тесноты связи между признаками. Эта задача решается с помощью дисперсионного и корреляционного анализа.
Дисперсионный анализ - статистический метод, позволяющий оценить влияние одного или нескольких факторов на результатирующий признак. Дисперсионный анализ дает прежде всего возможность определить значение систематической и случайной вариаций в общей вариации, а также установить роль интересующего нас фактора в изменении результативного признака. Наиболее простой, часто встречающейся на практике является ситуация, когда можно указать один фактор, влияющий на конечный результат, и этот фактор принимает конечное число значений. Следует определить, существенно ли это влияние. Именно такая ситуация может быть проанализирована при помощи однофакторного дисперсионного анализа.
Сущность применяемой методики в следующем: проводится комбинированная группировка по результатирующему и факторному признакам. Она обеспечивает разложение общей дисперсии на межгрупповую (факторную) и остаточную. Межгрупповая дисперсия отражает вариацию признака, которая возникает под воздействием признака-фактора, положенного в основу группировки.
Остаточная дисперсия характеризует случайную вариацию в каждой отдельной группе. Эта вариация возникает под влиянием других факторов и не зависит от факторного признака, положенного в основу группировки.
Общая дисперсия характеризует вариацию признака, обусловленную влиянием всех факторов.
Для оценки существенности различий между группами по величине какого-либо признака рекомендуется использовать критерий Фишера (F), фактическое значение которого определяется как отношение межфакторной дисперсии к остаточной по формуле:
Где:- межгрупповая дисперсия;-остаточная дисперсия.
Фактическое значение критерия Фишера сравнивают с табличным, которое определяется при заданном уровне значимости и числе степеней свободы для межгрупповой и остаточной дисперсии:
Если , утверждают о значительном различии между группами то есть влияние факторного (группировочного) признака на результативный существенно.
Если влияние факторного признака существенно, то следует определить корреляционное отношение, как отношение межгрупповой (факторной) дисперсии к общей.
Корреляционное отношение по своему абсолютному значению колеблется в пределах от 0 до 1. Чем ближе корреляционное отношение к 1, тем больше влияние оказывает факторный признак на результативный.
Для изучения взаимосвязи между производительностью труда и заработной платой проведем дисперсионный анализ на основе результатов проведенной аналитической группировки (смотри таблицу 1)
Средний уровень производительности труда по 30 предприятиям составляет 247,43 тыс. рублей (7423 / 30 = 247,43)
Вычислим общую дисперсию, характеризующую общую вариацию под влиянием всех факторов (приложение 1):
Межгрупповая дисперсия, характеризующая различия в уровне заработной платы, обусловленные неодинаковой производительностью труда:
Рассчитаем корреляционное отношение:
0,924
Следовательно, 92,4% всей вариации заработной платы объясняется различиями в уровне производительности труда. Результат действия других факторов на уровень заработной платы составляет всего 7,6%
Остаточная дисперсия:
Критерий Фишера:
Табличное значение: 4,2
Фактическое значение критерия в несколько раз превышает табличное, значит, влияние производительности труда на уровень заработной платы является очень существенным.
Подобный дисперсионный анализ может проводиться при группировке по одному факторному признаку или при комбинационной группировке по двум и более факторам. Сам принцип дисперсионного анализа, основанный на сопоставлении факторной дисперсии со случайной для оценки достоверности результатов статистической группировки, остается применим независимо от числа признаков группировки
1.2 Методы изучения взаимосвязей экономических явлений. Метод аналитических группировок
Для изучения, измерения и количественного выражения взаимосвязей между явлениями статистикой применяются различные методы, такие как: метод сопоставления параллельных рядов, балансовый, графический, методы аналитических группировок, дисперсионного и корреляционного анализа.
Метод параллельных рядов заключается в том, что полученные в результате сводки и обработки материалы располагают в виде параллельных рядов и сопоставляют их между собой для установления характера и тесноты связи.
Метод аналитических группировок. Сущность метода аналитических группировок состоит в том, что единицы статистической совокупности группируются, как правило, по факторному признаку и для каждой группы рассчитывается средняя или относительная величина по результативному признаку. Затем изменения средних или относительных значений результативного признака сопоставляются с изменениями факторного признака для выявления характера связи между ними. Результаты аналитической группировки представляют в виде итоговой статистической таблицы. В расчетной части по данным 30 предприятий выполнена аналитическая группировка, результаты которой представлены в итоговой таблице.
Таблица 1.
Результаты аналитической группировки
№ |
Группы предприятий по уровню производительности труда, тыс. руб./чел |
Число предприятий |
Уровень производительности, тыс. руб./чел |
Средняя заработная плата. тыс. руб. |
|||
всего |
среднее |
всего |
среднее |
||||
1 |
120 - 168 |
3 |
410 |
136,67 |
133 |
44,33 |
|
2 |
168 - 216 |
4 |
740 |
185 |
232 |
58 |
|
3 |
216 - 264 |
12 |
2911 |
242,58 |
907 |
75,58 |
|
4 |
264 - 312 |
7 |
2012 |
287,43 |
631 |
90,14 |
|
5 |
312 - 360 |
4 |
1350 |
337,5 |
447 |
111,8 |
|
всего |
30 |
7423 |
247,43 |
2350 |
78,33 |
Таким образом, гипотеза о наличии прямой зависимости между производительностью труда и заработной платой подтверждается. В группе с самой низкой производительностью труда - 136,67 тыс. руб./чел. заработная плата так же самая низкая и составляет 44,33 тыс. руб./чел. В группе с самой высокой производительностью труда - 337,5 тыс. руб./чел. наблюдается и самый высокий уровень заработной платы - 11,8 тыс. руб. Таким образом рост производительности труда в 337,5 / 136,67 = 2,47 раз приводит к увеличению заработной платы в 111,8 / 44,33 = 2,52 раза. Следовательно, можно сделать предположение о пропорциональном увеличении заработной платы в зависимости от роста производительности труда. Другим словами, можно предположить, что взаимосвязь между факторами может быть выражена линейной зависимостью.
1.3 Корреляционно-регрессионный анализ
Изучение взаимосвязи между признаками заключается в определнии формы и количественной характеристики связи, а также степени тесноты связи.
Основная задача корреляционного анализа - ответить на вопрос - существует ли между признаками зависимость. В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления (прямая или обратная связь), а также характеристике силы (слабая, средняя или тесная связь) и формы влияния одних факторов на другие.
Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.
По существу, и корреляционная таблица, и корреляционное поле, и эмпирическая линия регрессии предварительно уже характеризуют взаимосвязь, когда выбраны факторный и результативный признаки и требуется сформулировать предположения о форме и направленности связи. В то же время количественная оценка тесноты связи требует дополнительных расчетов.
При исследовании корреляционных зависимостей между признаками решению подлежит широкий круг вопросов, к которым следует отнести:
· предварительный анализ свойств моделируемой совокупности единиц;
· установление факта наличия связи, определение ее направления и формы;
· измерение степени тесноты связи между признаками;
· построение регрессионной модели, т.е. нахождение аналитического выражения связи;
· оценка адекватности модели, ее экономическая интерпретация и практическое использование.
Для того чтобы результаты корреляционного анализа нашли практическое применение и дали желаемый результат, должны выполняться определенные требования в отношении отбора объекта исследования и признаков-факторов. Одним из важнейших условий правильного применения методов корреляционного анализа является требование однородности тех единиц, которые подвергаются изучению методами корреляционного анализа. Например, при корреляционном анализе зависимостей тех или иных технико-экономических показателей работы предприятий от определенных факторов должны быть отобраны предприятия, выпускающие однотипную продукцию, имеющие одинаковый характер технологического процесса и тип используемого оборудования, для предприятий добывающей промышленности определенную роль играет и географическое размещение предприятий.
При выполнении указанных общих требований далее необходима количественная оценка однородности исследуемой совокупности по комплексу признаков. Одним из возможных вариантов такой оценки является расчет относительных показателей вариации. Традиционно широкое распространение для этих целей получил коэффициент вариации (усли коэффициент вариации менее 33%, то исследуемую совокупность можно считать однородной и пригодной для исследования). Если совокупность неоднородна, то следует откинуть аномальные значения, то есть значения с максимальными и минимальными значениями признака.
Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.
Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.
Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.
Другим важным требованием, обеспечивающим надежность выводов корреляционного анализа, является требование достаточного числа наблюдений. Как уже указывалось, влияние существенных причин может быть затушевано действием случайных факторов, "взаимопогашение" влияния которых на результативный показатель в известной мере происходит при выведении средней результативного показателя для массы случаев.
Определенные требования существуют и в отношении факторов, вводимых в исследование. Все множество факторов, оказывающих влияние на величину результативного показателя, к действительности не может быть введено в рассмотрение, да практически в этом и нет необходимости, так как их роль и значение в формировании величины результативного показателя могут иметь существенные различия. Поэтому при ограничении числа факторов, включаемых в изучение, наряду с качественным анализом целесообразно использовать и определенные количественные оценки, позволяющие конкретно охарактеризовать влияние факторов на результативный показатель (к оценкам можно отнести парные коэффициенты корреляции, ранговые коэффициенты при экспертной оценке влияния факторов и др.). Включаемые в исследование факторы должны быть независимыми друг от друга, так как наличие тесной связи между ними свидетельствует о том, что они характеризуют одни и те же стороны изучаемого явления и в значительной мере дублируют друг друга.
1.4 Выбор формы связи
Определяющая роль в выборе формы связи между явлениями принадлежит теоретическому анализу. Так, например, чем больше размер основного капитала предприятия (факторный признак), тем больше при прочих равных условиях оно выпускает продукции (результативный признак).
С ростом факторного признака здесь, как правило, равномерно растет и результативный, поэтому зависимость между ними может быть выражена уравнением прямой Y=a+b*x, которое называется линейным уравнением регрессии.
Параметр b называется коэффициентом регрессии и показывает, насколько в среднем отклоняется величина результативного признака у при отклонении величины факторного признаках на одну единицу. При x = 0 a = Y. Увеличение количества внесенных удобрений приводит, при прочих равных условиях, к росту урожайности, но чрезмерное внесение их без изменения других элементов к дальнейшему повышению урожайности не приводит, а, наоборот, снижает ее.
Такая зависимость может быть выражена уравнением параболы
Y=a+b*x+c*x2.
Параметр c характеризует степень ускорения или замедления кривизны параболы, и при c>0 парабола имеет минимум, а при c<0 - максимум. Параметр b, характеризует угол наклона кривой, а параметр a - начало кривой.
Однако с помощью теоретического анализа не всегда удается установить форму связи. В таких случаях приходится только предполагать о наличии определенной формы связи. Проверить эти предположения можно при помощи графического анализа, который используется для выбора формы связи между явлениями, хотя графический метод изучения связи применяется и самостоятельно.
Применение методов корреляционного анализа дает возможность выражать связь между признаками аналитически - в виде уравнения - и придавать ей количественное выражение. Чтобы измерить тесноту прямолинейной связи между двумя признаками, пользуются парным коэффициентом корреляции, который обозначается r.
Коэффициент корреляции r применяется только в тех случаях, когда между явлениями существует прямолинейная связь. Если же связь криволинейная, то пользуются индексом корреляции, который рассчитывается по формуле:
Коэффициент корреляции является мерой тесноты связи только для линейной формы связи, а индекс корреляции - и для линейной, и для криволинейной. При прямолинейной связи коэффициент корреляции по своей абсолютной величине равен индексу корреляции:
|r|=R.
Если индекс корреляции возвести в квадрат, то получим коэффициент детерминации. Коэффициент детерминации является наиболее конкретным показателем, так как он отвечает на вопрос о том, какая доля в общем результате зависит от фактора, положенного в основание группировки.
Индекс корреляции принимает значения в интервале от -1 до + 1. Принято считать, что если |r| < 0,30, то связь слабая; при |r| = (0,3?0,7) - средняя; при |r| > 0,70 - сильная, или тесная. Когда |r| = 1 - связь функциональная. Если же r принимает значение около 0, то это дает основание говорить об отсутствии связи между У и X.
В аналитической части курсовой работы с помощью компьютерной программы для данных 30 предприятий построим различные модели зависимости уровня заработной платы от производительности труда.
2. Измерение взаимосвязей между социально-экономическими явлениями - важнейшая задача статистической науки
Исследование объективно существующих связей между явлениями - важнейшая задача общей теории статистики.
В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки) оказывающие существенное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения - это связь явлений и процессов, когда изменение одного из них - причины - ведет к изменению другого - следствия.
Правильно вскрытые причинно-следственные связи позволяют установить силу воздействия отдельных факторов на результаты хозяйственной деятельности. Социально-экономические явления представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих явлений необходимо выявлять главные, основные причины, абстрагируясь от второстепенных.
В основе первого этапа статистического изучения связи лежит качественный анализ изучаемого явления, связанный с анализом природы социального или экономического явления методами экономической теории, социологии, конкретной экономики. Второй этап - построение модели связи. Он базируется на методах статистики: группировках, средних величинах, таблицах и т. д. Третий, последний этап - интерпретация результатов - вновь связан с качественными особенностями изучаемого явления.
Статистика разработала множество методов изучения связей, выбор которых зависит от целей исследования и от поставленных задач. С вязи между признаками и явлениями, ввиду их большого разнообразия, классифицируются по ряду оснований.
Признаки по их значению для изучения взаимосвязи делятся на два класса:
1)признаки, обуславливающие изменение других, связанных с ними признаков, называются факторными, или просто факторами;
2)признаки, изменяющиеся под действием факторных признаков, называются результативными.
Связи между явлениями и их признаками классифицируются по степени тесноты связи, направлению и аналитическому выражению.
В статистике различают функциональную связь, при которой определенному значению факторного признак соответствует одно и только одно значение результативного признак; и стохастическую связь, при которой причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений. Частным случаем стохастической связи является корреляционная связь.
По направлению выделяют связь прямую и обратную.
При прямой связи с увеличением или уменьшением значений факторного признака происходит увеличение или уменьшение результативного (н-р, рост производительности труда способствует увеличению уровня рентабельности производства).
В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака. (н-р, с увеличением уровня фондоотдачи снижается себестоимость единицы произведенной продукции).
По аналитическому выражению выделяют связи прямолинейные (линейные) и нелинейные (криволинейные). Если статистическая связь между явлениями может приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы и др.), то такую связь называют нелинейной.
3. Статистические методы изучения связей: метод параллельных рядов, метод аналитических группировок, графический метод, балансовый метод
В статистике не всегда требуются количественные оценки связи. Часто важно определить лишь ее направление и характер, выявить форму воздействия одних факторов на другие. Для выявления наличия связи. Ее характера и направления в статистике используются методы: приведения параллельных данных; балансовый метод; метод аналитических группировок; графический; корреляции.
Метод приведения параллельных данных заключается в том, что полученные в результате сводки и обработки материалы располагают в виде параллельных рядов и сопоставляют их между собой для установления характера и тесноты связи.
Графически взаимосвязь двух признаков изображается с помощью поля корреляции. В системе координат на оси абсцисс откладываются значения факторного признака, а на оси ординат - результативного. Каждое пересечение линий, проводимых через эти оси, обозначается точкой. При отсутствии тесных связей имеет место беспорядочное расположение точек на графике. Чем сильнее связь между признаками, тем теснее будут группироваться точки вокруг определенной линии, выражающей форму связи.
Балансовый метод состоит в том, что данные взаимосвязанных показателей изображаются в виде таблицы и располагаются таким образом, чтобы итоги между отдельными ее частями были равны, т. е. чтобы был баланс. Балансовый метод используется для характеристики взаимосвязи между производством и распределением продуктов, денежными доходами и расходами населения и т. д. Почти все внутренние и внешние хозяйственные связи выражаются в виде балансов.
Метод аналитических группировок состоит в том, что единицы статистической совокупности группируются, как правило, по факторному признаку и для каждой группы рассчитывается средняя или относительная величина по результативному признаку. Затем изменения средних или относительных значений результативного признака сопоставляются с изменениями факторного признака для выявления характера связи между ними.
Роль корреляцонно-регрессионного анализа в обработке экономических данных
Корреляционный анализ и регрессионный анализ являются смежными разделами математической статистики, и предназначаются для изучения по выборочным данным статистической зависимости ряда величин; некоторые из которых являются случайными. При статистической зависимости величины не связаны функционально, но как случайные величины заданы совместным распределением вероятностей. Исследование взаимосвязи случайных величин биржевых ставок приводит к теории корреляции, как разделу теории вероятностей и корреляционному анализу, как разделу математической статистики. Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных. Теория вероятностей и математическая статистика представляют лишь инструмент для изучения статистической зависимости, но не ставят своей целью установление причинной связи. Представления и гипотезы о причинной связи должны быть привнесены из некоторой другой теории, которая позволяет содержательно объяснить изучаемое явление.
Методика корреляционно-регрессионного анализа
Исследование начинается с построения матрицы парных коэффициентов корреляции. Анализ этой матрицы позволит получить начальное представление об исследуемых взаимозависимостях между показателями (теснота и направление связи). Оценить значимость можно как по самим значениям коэффициентов корреляции, так и по соответствующим значениям t-статистики.
Чтобы оценить дублирование информации необходимо построить матрицу частных коэффициентов корреляции порядка (L-2), где L-число исходных переменных, включая результативный признак.
Исследование парных и частных коэффициентов корреляции должно помочь в выборе регрессоров для выполнения следующего этапа. Здесь следует учитывать возможность появления мультиколлинеарности. Явные признаки этого коэффициенты корреляции между потенциальными регрессорами, по модулю большие, чем 0,8.
После составления набора объясняющих показателей, которые могут быть включены в модель, исследование продолжается с помощью регрессионного анализа. Рекомендуется использовать пошаговый регрессионный анализ по схеме последовательного включения в уравнение наиболее информативных объясняющих признаков. По матрице R по строке, соответствующей результативному признаку, выбирается наиболее коррелируемый с y-ом регрессор и строится МНК-уравнение на него. Проверяется его значимость.
Далее возвращаемся в корреляционный анализ и рассчитываем матрицу частных коэффициентов корреляции при фиксировании включенного в уравнение признака. И в этой матрице по строке, соответствующей результативному признаку, выбирается наиболее коррелированный показатель. Этот регрессор и вводится в модель. проверяется значимость уравнения и отдельных коэффициентов. Процесс прекращается, если введен незначимый регрессор.
При проведении интерпретации оценивается не только содержательный смысл модели, но и информативность, например, с помощью множественного коэффициента корреляции (детерминации) этого окончательного уравнения по сравнению с аналогичным, построенным по полному набору исходных объясняющих показателей. Потери информации ( (R2) могут быть достаточно большими и тогда целесообразно перейти к регрессии на главные компоненты и общие факторы методика факторного и компонентного анализов
Компонентный и факторный анализы проводятся с несколькими частными целями. Как методы снижения размерности они позволяют выявить закономерности, которые непосредственно не наблюдаются. Эта задача решается по матрице нагрузок, как и классификация признаков в пространстве главных компонент (или общих факторов). А индивидуальные значения используются для классификации объектов (не по исходным признакам, а по главным компонентам или общим факторам) и для построения уравнения регрессии на эти обобщенные показатели. Кроме того, диаграмма рассеяния объектов, построенная в плоскости, образованной двумя первыми, наиболее весомыми, главными компонентами (или общими факторами) может косвенно подтвердить или опровергнуть предположение о том, что исследуемые данные подчиняются многомерному нормальному закону. Форма облака должна напоминать эллипс, более густо объекты расположены в его центре и разреженно по мере удаления от него интерпретируются главные компоненты и общие факторы, которым соответствуют дисперсии больше 1, и которые имеют хотя бы одну весомую нагрузку. Выбор критической величины, при превышении которой элемент матрицы нагрузок признается весовым и оказывает влияние на интерпретацию главной компоненты или общего фактора, определяется по смыслу решаемой задачи и может варьировать в пределах от 0,5 до 0,9 в зависимости от получаемых промежуточных результатов. Формальные результаты должны хорошо интерпретироваться.
Факторный анализ - более мощный и сложный аппарат, чем метод главных компонент, поэтому он применяется в том случае, если результаты компонентного анализа не вполне устраивают. Но поскольку эти два метода решают одинаковые задачи, необходимо сравнить результаты компонентного и факторного анализов, т.е. матрицы нагрузок, а также уравнения регрессии на главные компоненты и общие факторы, прокомментировать сходство и различия результатов.
Далее необходимо объединить результаты, полученные в орреляционном, регрессионном анализе, методе главных компонент и факторном анализе и сформулировать общие выводы и рекомендации.
Эконометрия - наука, изучающая количественные взаимосвязи экономических объектов и процессов при помощи математических и статистических методов и моделей. Основная задача эконометрии - построение количественно определенных экономико-математических моделей, разработка методов определения их параметров по статистическим данным и анализ их свойств. Наиболее часто используемым математическим аппаратом решения задач данного класса служат методы корреляционно-регрессионного анализа.
3.1 Основные понятия корреляционно-регрессионного анализа
Понятие корреляции появилось в середине XIX века в работах английских статистиков Ф. Гальтона и К. Пирсона. Этот термин произошел от латинского "correlatio" - соотношение, взаимосвязь. Понятие регрессии (латинское "regressio" - движение назад) также введено Ф. Гальтоном, который, изучая связь между ростом родителей и их детей, обнаружил явление "регрессии к среднему" - рост детей очень высоких родителей имел тенденцию быть ближе к средней величине.
Теория и методы корреляционного анализа используются для выявления связи между случайными переменными и оценки ее тесноты.
Основной задачей регрессионного анализа является установление формы и изучение зависимости между переменными.
В общем случае две величины могут быть связаны функциональной зависимостью, либо зависимостью другого рода, называемой статистической, либо быть независимыми.
Статистической называется зависимость, при которой изменение одной из величин влечет изменение распределения другой.
Статистическая зависимость, при которой изменение одной из величин влечет изменение среднего значения другой, называется корреляционной.
Корреляционные зависимости занимают промежуточное положение между функциональной зависимостью и полной независимостью переменных.
Между величинами, характеризующими экономические явления, в большинстве случаев существуют зависимости, отличные от функциональных. Действительно, в экономике закономерности не проявляются также точно и неизменно, как, например, в физике, химии или астрономии.
Пусть, например, мы рассматриваем зависимость величины Y от величины x - y(x).
Невозможность выявления строгой связи между двумя переменными объясняется тем, что значение зависимой переменной Y определяется не только значением переменной x, но и другими (неконтролируемыми или неучтенными) факторами, а также тем, что измерение значений переменных неизбежно сопровождается некоторыми случайными ошибками.
Вследствие этого корреляционный анализ широко используется при установлении взаимосвязи экономических показателей.
Итак, если с увеличением x значение зависимой переменной Y в среднем увеличивается, то такая зависимость называется прямой или положительной.
Если среднее значение Y при увеличении x уменьшается, имеет место отрицательная или обратная корреляция.
Если с изменением x значения Y в среднем не изменяются, то говорят, что корреляция - нулевая.
Часто при исследовании взаимосвязи между какими-либо показателями, представляют изучаемый объект в виде так называемого "черного (кибернетического) ящика".
Самый простой случай - изучение связи между одной переменной x, которую называют фактором (входной переменной, независимой переменной), и переменной Y, которую называют откликом (реакцией, зависимой переменной).
Список литературы:
1. Ефимова М.Р. Общая теория статистики. Учебник для ВУЗов.-М.:Инфра-М, 1996.
2. Елисеева И.И. Юзбашев М.М. Общая теория статистики. Учебник - М: Финансы и статистика, 2000
3. Курс социально-экономической статистики: Учебник для вузов. (Под ред. Назарова. - М. Финстатинформ, ЮНИТИ, 2000
4. Практикум по статистике. Учебное пособие для вузов./Под ред.В.М. Симчеры/ВЗВЭИ,1999г.
5. Теория статистики: учебное пособие для ВУЗов. / под ред. Р.А. Шмойловой.-М:Финансы и статистика, 1998.-576с.
6. Экономическая статистика. Учебник/ Под ред. Ю.Н. Иванова. М.: Инфра - М, 1998г
Подобные документы
Виды и формы связей между явлениями. Методы изучения взаимосвязи экономических явлений. Статистические методы изучения взаимосвязи. Метод аналитических группировок. Дисперсионный и корреляционно-регрессионный анализ. Непараметрические методы оценки связи.
курсовая работа [235,9 K], добавлен 10.12.2008Основные понятия корреляционно-регрессионного анализа. Вычисление показателей силы и тесноты связи между явлениями и процессами, специфика их интерпретации. Оценка результатов линейного регрессионного анализа. Коэффициент множественной детерминации.
контрольная работа [228,2 K], добавлен 02.04.2013Виды и методы взаимосвязи. Виды взаимосвязи. Методы взаимосвязи. Аналитические группировки. Метод параллельных рядов. Балансовый метод. Корреляционно-регрессионный анализ. Графики, характеризующие связь социальных явлений.
курсовая работа [141,7 K], добавлен 26.03.2007Особенности построения статистических сводок и рядов распределения в экономическом исследовании. Практическое применение метода группировок при анализе кадрового состава современной организации. Этапы изучения взаимосвязей социально-экономических явлений.
курсовая работа [240,4 K], добавлен 20.01.2015Статистические показатели производительности труда и заработной платы, характеристика ее динамики. Виды взаимосвязей между явлениями. Статистический анализ использования трудовых ресурсов, производительности и оплаты труда и факторов, на них влияющих.
курсовая работа [181,7 K], добавлен 18.03.2015Динамика объема реализации продукции и расчет среднего уровня ряда динамики. Отображение динамики явлений с помощью знаков Вазара. Корреляционно-регрессионного анализ методом количественной оценки взаимосвязи и взаимозависимости между двумя явлениями.
контрольная работа [389,5 K], добавлен 26.01.2009Основные черты, задачи и предпосылки применения корреляционно-регрессионного метода. Методы корреляционного и регрессионного анализа. Коэффициент ранговой корреляции Кендалла, Спирмена, Фехнера. Определение тесноты взаимосвязи между показателями.
контрольная работа [558,5 K], добавлен 08.04.2013Сущность и назначение корреляционного метода изучения взаимосвязей между явлениями. Зависимость чистых процентных доходов от выданных кредитов, активов банка от величины вкладов частных лиц, стоимости акции на ММВБ от величины операционных доходов.
курсовая работа [2,1 M], добавлен 07.03.2011Задачи корреляционного анализа. Статистическое изучение взаимосвязей. Коэффициенты ассоциации и контингенции, коэффициенты Пирсона и Чупрова. Связи между дихотомическими переменными. Применение статистического анализа для хозяйственных субъектов.
контрольная работа [246,2 K], добавлен 14.01.2015- Использование корреляционно-регрессионного анализа для обработки экономических статистических данных
Роль корреляцонно-регрессионного анализа в обработке экономических данных. Корреляционно-регрессионный анализ и его возможности. Предпосылки корреляционного и регрессионного анализа. Пакет анализа Microsoft Excel.
курсовая работа [68,4 K], добавлен 11.06.2002