Dynamics of radioactive contamination of lingonberry (vaccinium vitis-idaea l.) In the forests of Zhytomyr Polissia (Ukraine) since the chornobyl nuclear accident
Fragmentary studies on the radioactive contamination of wild berry plants, including lingonberry were conducted in Ukraine. In the Ukrainian Carpathian Mountains researchers investigated the 137Cs content in the organs of some berry dwarfshrubs.
Рубрика | Экология и охрана природы |
Вид | статья |
Язык | английский |
Дата добавления | 20.07.2024 |
Размер файла | 169,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Dynamics of radioactive contamination of lingonberry (vaccinium vitis-idaea l.) In the forests of Zhytomyr Polissia (Ukraine) since the chornobyl nuclear accident
O. Zhukovskyi1, V. Krasnov2, T. Kurbet2, 1, O. Orlov3, 1, О. Veselskyi2
1 Поліський філіал Українського науково-дослідного інституту лісового господарства та агролісомеліорації імені Г.М. Висоцького
2 Державний університет «Житомирська політехніка» (м. Житомир, Україна)
3 ДУ «Інститут геохімії навколишнього середовища НАН України» (м. Київ, Україна)
У статті наведені та проаналізовані матеріали вивчення рівнів радіоактивного забруднення ґрунту та питомої активності 137Cs у надземній частині фітомаси та ягодах брусниці на постійних пробних площах у різні роки з часу аварії на Чорнобильській атомній станції. В дослідженнях, які виконані у Поліському філіалі Українського науково-дослідного інституту лісового господарства та агролісомеліорації впродовж 1998--2021 рр., використовувались загальнонаукові та математико-статистичні методи, а також порівняльний аналіз. З метою обґрунтування досліджень використані звітні дані лісогосподарських підприємств Волинської, Рівненської та Житомирської обл. Показано, що відбувається істотне зменшення щільності радіоактивного забруднення ґрунту, а також питомої активності 137Cs у надземній частині фітомаси та ягодах брусниці у лісах регіону дослідження за період спостережень. Виявлено, що нині основна частка сумарної активності радіонукліду знаходиться у верхньому мінеральному 10 см шарі ґрунту -- 74,7%. Встановлено, що у надземній частині фітомаси брусниці зберігається значний вміст радіонукліду навіть при невеликій щільності радіоактивного забруднення ґрунту. З'ясовано, що у 1998р. за мінімальної величини щільності забруднення ґрунту 137Cs (49 ± 5,6 кБк-м-2) питома активність 137Cs у надземній фітомасі брусниці становила 8043 ± 510,9 Бк-кг-1, тоді як у 2021р. (мінімальній величині щільності забруднення ґрунту 137Cs 22 ± 0,3 кБк-м-2) -- 1046 ± 182 Бк-кг-1. Виявлені лінійні залежності між щільністю радіоактивним забрудненням ґрунту та вмістом 137Cs в ягодах і надземній частині фітомаси брусниці, які можна використовувати у практиці їх заготівлі. zhytomyr polissia lingonberry
Ключові слова: щільність забруднення ґрунту 137Cs, питома активність, радіонуклід, ягідні рослини, радіаційна токсикологія, лісові екосистеми.
INTRODUCTION
As a result of the Chornobyl Nuclear Power Plant accident forests experienced significantly high level of radioactive contamination compared to open landscapes. The largest areas and levels of this contamination were observed in the wood areas of Polissia region in our country. This can be explained by the processes which occurred in the destroyed reactor and due to the weather conditions as well in the period of the most intensive release of radionuclides in the environment. In the most forested part of Polissia, including Volyn, Rivne, and Zhytomyr regions the area of forests with a soil contamination density of 137Cs exceeding 37 kBq * m-2 (1 Ci * km-2) in 1991 was 860 000 hectares. Thus, forests accumulated a remarkable amount of radionuclides and they became a source of radiation hazard for the local population [1].
At the same time the forested areas of the marked regions are rich for berry plants, which have been long used by the local population for personal consumption and for sale. In the beginning of the first months since the Chornobyl Nuclear Power Plant accident, the harvesting of wild berries in Ukrainian forests were prohibited [2]. Over time, after surveying forests for radioactive contamination and obtaining the results of initial studies on the content of radionuclides in wild berry plants, regulated in accordance with the established limitation at that time [3]. Further this regulation was actualized in connection with the receipt of new materials on the radiation situation in forests and the migration of radionuclides to different species of berry plants based on forest-typological approach.
Over the past 20 years, studies on the migration of radioactive elements in forest ecosystems and their entry into various components, including berry plants, have highly decreased and had a fragmentary character. Meanwhile, with the purpose of conducting radiation toxicology dose calculations, define potential areas for wild berry harvesting, forecasting levels of their radioactive contamination and rehabilitating forest plantations, data on the accumulation of 137Cs in different types of forest ecological conditions are necessary. Hereby remarked limitations, these studies remain relevant.
The purpose of the research was determination of the current levels of radioactive contamination of the common forest berry plant -- lingonberry (Vaccinium vitis-idaea L.), which are wide-spread in Ukrainian forests of Polissia, in different types of forest ecological conditions and in stands of different tree species composition.
ANALYSIS OF RECENT RESEARCH
Fragmentary studies on the radioactive contamination of wild berry plants, including lingonberry were conducted in Ukraine and some other European countries in the 1960s-1980s. In the Ukrainian Carpathian Mountains researchers investigated the 137Cs content in the organs of some berry dwarfshrubs, such as lingonberry, bilberry (Vac- cinium myrtillus L.) and blueberry (Vaccinium uliginosum L.) [4]. They found that 137Cs activity concentration in lingonberry organs was higher than in bilberry and blueberry. In all studied species this indicator was the highest in the plant shoots and the lowest -- in the berries. Somewhat different results were obtained later by German researchers who ranked the organs of berry plants in terms of their 137Cs content as follows: flowers > leaves > berries > roots > shoots [5]. Similar results were obtained in 2015 by researchers in Volyn Polissia where lingonberry organs, according to 137Cs content, were ranked as follows: berries > leaves > roots > shoots [6].
In post-Chornobyl period a remarkable number of publications in scientific literature emerged, dedicated to study peculiarities of 137Cs accumulation in various plants of forest ecosystems, including berries. This was prompted by the wide use of these plants' berries for consumption and the production of medicinal preparations in many European countries. Researchers in several European countries classified lingonberry as a plant with significant accumulation of 137Cs in berries [7-11]. Lingonberry, unlike bilberry, belongs to plants in which the absorption capacity of 137Cs does not change depending on the levels' industrial pollution of the environment [12], and later observations by other researchers showed opposite results [13]. With increasing of anthropogenic pollution, the 137Cs content in lingonberry decreased. The reduction of 137Cs in lingonberry was also supported by active experiments on the application of various amounts of wood ash
Extensive and multi-faceted radioecological studies of lingonberry were conducted in Finland [15]. Scientists found that lingonberry has significantly higher 137Cs content in various parts and organs compared to other species growing in the same ecological conditions. They observed an increase in the intensity of radionuclide influx in this berry plant over three years since radioactive fallouts on Finnish forest ecosystems. Researchers concluded that lingonberry berries could play a significant role in the accumulation of 137Cs in the human body, and the consumption of wild berries in substantial quantities could have a certain toxic effect on the human body. Somewhat different results were obtained by Swedish scientists who studied the 137Cs content in various plant species over a much longer period -- from 1986 to 1994 [16]. They concluded that all plants, including lingon- berry, showed the gradual decrease in 137Cs activity concentration in the aboveground parts of the plants.
Comparing the indicators which characterize the intensity of 137Cs influx into berries and the vegetative mass of lingonberry shown by different authors demonstrates significant differences. This can be explained by various factors such as different years of research, variations in the ecological conditions of plant growth, the tree species composition of the forest stands in the study area, methodological differences, etc. However, studies conducted in European forests allowed researchers to generalize that the part of forest food products (edible mushrooms, wild berries) in internal radiation exposure dose on the local population can reach 80% of the total dose obtained from all food products [17; 18].
Broader research on study the radioactive contamination of wild berry plants in general, and lingonberry in particular, was conducted in Ukraine. Researchers studying interspecies peculiarities in the accumulation of 137Cs by berry plants classified lin- gonberry as an intensive radionuclide accumulator [19]. Studies conducted in various types of forest ecological conditions allowed researchers to conclude that the intensity of 137Cs influx into different parts and organs of lingonberry was the lowest in fairly fertile site type and the highest -- in infertile pine site type [20]. Scientists concluded that this is explained by the non-exchangeable fixation of the radionuclide in the soil in more favorable growth conditions. Researchers also identified the accumulation of 137Cs by lingonberry dwarf-shrubs of different ages [21] and the peculiarities of radionuclide influx during the vegetative period [22]. It was found that the maximum values of the activity concentration of 137Cs in lingonberry phytomass was observed in May-June, in the further periods of the growing season, its gradual decrease is observed. Ukrainian scientists also investigated the changing in the levels' radioactive contamination of lingonberry berries during short observation periods and noted some reduction in the levels' radioactive contamination of lingonberries in the 1990s [17]. Results from more extended studies on the levels of radioactive contamination of lingonberry are currently unavailable.
MATERIALS AND METHODS OF RESEARCH
Lingonberry is widespread in coniferous, mixed and deciduous forests, as well as in open areas (clearings, forest glades) in types of forest conditions, ranging from fresh to wet infertile pine, fairly infertile pine and fairly fertile site type. Depending on the of forest site type, rhizomes of lingonberry are located between the mineral part of the soil and the forest litter, or in the upper part of the peat. The depth of penetration of additional roots into the soil in autotrophic conditions is 310 cm, and under hydromorphic ones, can reach up to 25 cm
Research was conducted on permanent experimental plots on the territory of the branch «Luhynske Forest Enterprise» of the State Enterprise «Forests of Ukraine» (Zhytomyr region) in pine plantations with sufficiently close forestry and ecological characteristics in moist fairly infertile pine site type (B3). Now they presented by pure pine stands aged 65-75 years with a relative completeness of 0.8-0.9, a stand quality class -- I. Undergrowth consisted of individual specimens of Pinus sylvestris L. and Betula pendula Roth. The understory consisted of Sorbus aucuparia L. and Frangula alnus Mill. The herbaceous-dwarf-shrub layer was dense and consisted on Vaccinium myrtillus with a projected coverage of 50-60%, V. vitis-idaea -- 10-15%, Pteridium aquilinum (L.) Kuhn. -- 1-5%, Molinia caerulea (L.) Moench -- 1-3% and Lycopodium clavatum L. Moss layer was well-developed and consisted on Pleurozium schreberi (Wild. ex Brid.) Mitt. -- 45-55% and Dicranumpolysetum Sw.) -- 40-50%. The soil is soddy-middle podzol, sandy-loam. The association on all experimental plots was Pin- etum myrtilloso-hylocomiosum.
On each experimental plot during the berry ripening period 5 accounting plots with an area of 1 m2 (1 x 1 m) were established, from which soil samples (using the coring method) were collected to determine the density of 137Cs soil contamination (As). Additionally, samples of berries and aboveground biomass of lingonberry were collected to measure the activity concentration of 137Cs (Am). In laboratory conditions samples of soil and aboveground biomass were dried to an air-dry state at temperature of 80°C during 72 hours, then ground and homogenized. Berries were analyzed in fresh state. The activity concentration of 137Cs was measured using the LP-4900B «AFORA» spectrum analyzer with GeLi-detector DGDK-100B3 and also spectrum analyzers SEG-001 «AKP-C»-63 and SEG-001 «AKP-C»-150. The measurement error of 137Cs activity concentration was less than 15% (confidence level -- 0.95). The statistical processing of research results was carried out using standard software packages such as Database DB2, «Statgrafics», «Statis- tica» and «Microsoft Office Excel».
RESULTS AND DISCUSSION
Forest enterprises in the research region, which were subordinated to the Ministry of Forestry of Ukraine, before Chernobyl disaster, non-wood forest resources were extensively harvested, including wild berry plants, for their own processing as well as for selling to other enterprises (Table 1).
Forest enterprises gained significant profits from this activity. The radioactive contamination of the forests in 1986 led to the necessity of prohibiting or tightly regulating a certain part of the forestry activities of the region's enterprises, and the harvesting of wild berries fell under a complete ban.
The initial research on the scientific justification of using lingonberry in forests contaminated with radionuclides was conducted by us in 1998 with the aim of establishing dependencies between the density of radioactive soil contamination of 137Cs and the activity concentration of the radionuclide in the berries and aboveground vegetative phytomass of lingonberry (widely used for food, and the latter -- in official and folk medicine). It was found that 137Cs enters its aboveground phytomass quite intensively, and even at small values of the first indicator -- 49 ± 5.6 kBq-m-2, 137Cs activity concentration was high -- 8043 ± 511 Bq-kg-1.
The values of radionuclide transfer coefficients were quite noticeable and varied within pretty wide ranges: in the air-dry aboveground phytomass, from 33.4 to
164.1 m2 * kg-1 * 10-3, and in the fresh berries -- from 9.5 to 26.0 m2 * kg-1 * 10-3. The obtained data allowed to categorize lingonberry as species that actively accumulates radionuclides. This may be explained by some biological characteristics of the species and, to some extent, by the ecological conditions of growth (weak non-exchangeable fixation of 137Cs in sandy-loam soils of fairly infertile pine site type).
It was established that with the increase in radioactive soil contamination, the activity concentration of the radionuclide increases both in lingonberry berries and in the aboveground phytomass (Fig. 1). The content of 137Cs in lingonberry berries and the aboveground phytomass depending on the density of radioactive soil contamination on permanent experimental plots in 1998 was described by the following equations: for the air-dry aboveground phytomass of lingonberries: Am = 12.902 * A, - 10.658 (R2 = 0.93); for fresh berries: Am = 1.555 * As - 0.907 (R2 = 0.92).
Table 1. Dynamics of harvesting volumes of wild berries by forestry enterprises in the forests of Volyn' and Zhytomyr Polissia
Region |
Harvest volumes by years, tons |
||||
1973 |
1978 |
1983 |
1987 |
||
Volyn' |
244 |
997 |
1934 |
1689 |
|
Zhytomyr |
229 |
157 |
602 |
1059 |
|
Rivne |
1289 |
1456 |
4345 |
2734 |
|
Total |
1762 |
2610 |
6881 |
5482 |
Fig. 1. Dynamics of 137Cs activity concentration in fresh lingonberry berries and air-dry aboveground phytomass depending on the density of radioactive soil contamination on permanent experimental plots in 1998
Over time, there was a redistribution of 137Cs in forest ecosystems among their components: migration to greater depths in the soil with some fixation; influx into perennial plants, primarily tree species and concentration in them; a constant flow within a small biological cycle, ensuring the inflow and outflow of radionuclides to various components (including lingonberry). Additionally, there was a physical decay of the radioactive element both in the soil and in the biomass.
The materials obtained from the experimental plots in 2021 indicate that 137Cs gradually migrates to the lower soil layers (Table 2). It was found that the major part of the total radionuclide activity is found in the mineral part of the soil -- 86.3%, with 74.7% in the upper (10 cm) layers. It should be noted that the root system of lingonberry is located in this soil layer. It was shown that a part of the total activity of 137Cs in the forest litter is quite substantial -- 13.7%, which in turn, creates conditions for the accumulation of a certain amount of radionuclide in the upper, root-populated layer of the mineral part of the soil in order for the intensive influx to lingonberry.
Table 2. The distribution of total activity of 137Cs in the soil layers of moist fairly infertile pine site type (B3) in 2021
The soil layers |
Total activity of 137Cs |
||
Bk * 500 cm-2 |
% |
||
Forest litter |
|||
Ol (undecomposed) |
15 |
0.15 |
|
Of (semi-decomposed) |
554 |
5.53 |
|
Oh (decomposed) |
801 |
8.00 |
|
Mineral soil layers |
|||
0-2 cm |
3281 |
32.76 |
|
2-4 cm |
2182 |
21.79 |
|
4-6 cm |
984 |
9.83 |
|
6-8 cm |
656 |
6.55 |
|
8-10 cm |
378 |
3.77 |
|
10-12 cm |
286 |
2.85 |
|
12-14 cm |
215 |
2.14 |
|
14-16 cm |
137 |
1.37 |
|
16-18 cm |
95 |
0.95 |
|
18-20 cm |
90 |
0.90 |
|
20-22 cm |
80 |
0.80 |
|
22-24 cm |
61 |
0.61 |
|
24-26 cm |
46 |
0.46 |
|
26-28 cm |
35 |
0.35 |
|
28-30 cm |
39 |
0.39 |
|
30-32 cm |
20 |
0.20 |
|
32-34 cm |
19 |
0.19 |
|
34-36 cm |
20 |
0.20 |
|
36-38 cm |
12 |
0.12 |
|
38-40 cm |
9 |
0.09 |
|
Total |
10016 |
100.0 |
The significant migration capacity of 137Cs in the soddy-podzolic sandy-loam soils of the Polissia forests, and the possibility of its intensive entry into lingonberry are confirmed by the results of the study of radioactive contamination of lingonberry on experimental plots in 2021 (Fig. 2).
For instance, the activity concentration of the radionuclide in the aboveground phytomass on the experimental plot with the minimum density of radioactive soil contamination -- 22.2 ± 0.25 kBq * m-2 reach in air-dry phytomass of 1046 ± 182 Bq * kg-1, and in the fresh berries -- 301 ± 27 Bq * kg-1. The 137Cs content in lingonberry berries indicates that at the low density of radioactive soil contamination it can be used as food, as it does not exceed the values of the «Permissible levels of radionuclide content of 137Cs and 90Sr in food and drinking water» -- 500 Bq * kg-1 [23].
At the same time, the value of this indicator in the aboveground part of the designated sample area significantly exceeds the «Hygienic norm of 137Cs and 90Sr activity concentration in medicinal plant raw materials (substances) used for the production of medicinal products» -- 500 Bq * kg-1 [24]. This allows us to conclude that at the present time, even with low values of the density of radioactive contamination of the soil there is an intensive accumulation of 137Cs in the lingonberry phytomass in the moist fairly infertile pine site type (B3).
The content of 137Cs in the lingonberry depending on the density of radioactive soil contamination on permanent experimental plots in 2021 was described by the following equations: for the air-dry aboveground part of lingonberry phytomass: Am = 2.205 * A5 - 2.515 (R = 0.80), and for fresh lingonberry berries: Am = 0.588 * As - 0.628 (R2 = 0.85).
Density of soil contamination with 137Cs, kBq-m-2
Fig. 2. Dynamics of 137Cs activity concentration in lingonberry fresh berries and air-dry aboveground phytomass depending on the density of 137Cs soil contamination on permanent experimental plots in 2021
CONCLUSIONS
During the studied period (1998-2021), a decrease in the density of radioactive soil contamination (2.4-3.1 times) is observed in the forest plantations of Polissia region of Ukraine. This can be explained by the decay
of radionuclide and its migration into the components of forest ecosystems. The major part of 137Cs total activity is found in the upper (10 cm) layer of the soil's mineral part -- 74.7%, where the root systems of herbaceous and dwarf-shrub plants are concentrated in forest ecosystems.
It was found that lingonberry belongs to the group of plants characterized by a high content of 137Cs in the aboveground vegetative phytomass. Harvesting it for the production of medicinal products should be restricted in all areas contaminated with radionuclides. Lingonberry fresh berries can be harvested in areas with a radioactive soil contamination density up to 74 kBq * m-2.
ЛІТЕРАТУРА
3. Краснов В.П., Орлов А.А., Ирклиенко С.П. и др. Рекомендации по ведению лесного хозяйства в условиях радиоактивного загрязнения. Киев: Аграрна наука, 1995. 64 с.
4. Демків О.Т. Деякі закономірності розподілу радіоактивних ізотопів в органах високогірних рослин Карпат. Український ботанічний журнал. 1967. № 6. С. 50-54.
5. Bunzl K. and Kracke W. Accumulation of fallout Cs-137 in some plants and berries of the family Ericaceae. Health Physics. 1986. Vol. 50. P. 540-542.
6. Грабовський В.А., Дзендзелюк О.С., Трофі- мук А.В. Динаміка забруднення деяких компонент екосистем Шацького національного природного парку. Науковий вісник Ужгородського університету. Сер.: Фізика. 2015. № 37. С. 146--153.
7. Strandberg M. Radiocesium in a Danish pine forest ecosystem. Science of The Total Environment. Special issue: Forests and radioactivity. 1994. Vol. 157. P. 125-132. DOI: https://doi.org/10.1016/0048- 9697(94)90571-1.
8. Fawaris B.H. and Johanson K.J. Radiocesium in soil and plants in a forest in central Sweden. Science of The Total Environment. Special issue: Forests and radioactivity. 1994. Vol. 157. P. 133-138. DOI: https:// doi.org/10.1016/0048-9697(94)90572-X.
9. Klemt E., Drissner J., Flugel V. et al. Bioavailability of cesium radionuclides in prealpine forests and lakes. In: Ten years terrestrial radioecological research following the Chernobyl accident: proceedings of the International Symposium on Radioecology 1996 (22-24-th April, 1996, Vienna). Vienna, 1996. P. 267-274.
10. Heinrich G. and Remele K. 137Cs, 90Sr, K+ and Ca++ in lichens, mosses and vascular plants of a mountain area Styria, Austria. In: Ten years terrestrial radioecological research following the Chernobyl accident: proceedings of the International Symposium on Radioecology 1996 (22-24-th April, 1996, Vienna). Vienna, 1996. P. 243-250.
11. Fawaris B.H. and Johanson K.J. A comparative study on radiocaesium (137Cs) uptake from coniferous forest soil. Journal of Environmental Radioactivity. 1995. Vol. 28(3). P. 313-326. DOI: https://doi.org/10.1016/ 0265-931X(95)97302-S.
12. Bunzl K., Albers B.P., Shimmack W. et al. Soil to plant uptake of fallout 137Cs by plants from boreal areas polluted by industrial emissions from smelters. Science of The Total Environment. 1999. Vol. 234 (1-3). Р. 213-221. DOI: https://doi.org/10.1016/ S0048-9697(99)00265-X.
13. Outola I., Pehrman R. and Jaakkola T. Effect of industrial pollution on the distribution of 137Cs in soil and the soil-to-plant transfer in a pine forest in SW Finland. Science of The Total Environment. 2003. Vol. 303 (3). P. 221-230. DOI: https://doi.org/10.1016/ S0048-9697(02)00402-3.
14. Levula T., Saarsalmi A. and Rantavaara A. Effects of ash fertilization and prescribed burning on macronutrient, heavy metal, sulphur and 137Cs concentrations in lin- gonberries (Vaccinium vitis-idaea). Forest Ecology and Management. 2000. Vol. 126 (2). P. 269-279. DOI: https://doi.org/10.1016/S0378-1127(99)00110-3.
15. Rantavaara A.H. Transfer of radiocesium through natural ecosystems to foodstuffs of terrestrial origin in Finland. In: Transfer of radionuclides in natural and semi-natural environment / G. Desmet, P. Nas- simbeni, M. Belli (Eds.). London: Elsevier Applied Science, 1990. P. 202-209.
16. El-Fawaris B.H. and Johanson K.J. Monitoring of Chernobyl fallout 137Cs in semi-natural coniferous forest of central Sweden. In: Ten years terrestrial radioecological research following the Chernobyl accident: proceedings of the International Symposium on Radioecology 1996 (22-24-th April, 1996, Vienna). Vienna, 1996. P. 275-283.
17. Strand P., Howard B. and Averin V. Intake of radionuclides to man. In: Transfer of radionuclides to animals, their comparative importance under different agricultural ecosystems and appropriate countermeasures: Final Report of ECP-9. Luxembourg, 1996. P. 157-193.
18. Jacob P. and Likhtarev I. Transfer factors for mushrooms. In: Pathway analysis and dose distributions: Final Report of JSP-5 for the contracts COSU-CT93-0053 and COSU-CT94-0091 of the European Commission. Luxembourg, 1996. P. 63-74.
19. Краснов В.П. Радіоекологія лісів Полісся України. Житомир: Волинь, 1998. 112 с.
20. Орлов А.А., Краснов В.П. Интенсивность накопления Cs-137 видами живого напочвенного покрова дубовых и сосново-дубовых лесов в су- грудках Украинского Полесья: классификация, ординация, закономерности. Проблеми екології лісів і лісокористування на Поліссі України. 1996. Вип. 4. С. 25-30.
21. Короткова О.З., Орлов О.О. Перерозподіл 137Cs по органах ягідних рослин родини Vacciniaceae
S.F. Gray в залежності від віку. Проблеми екології лісів і лісокористування на Поліссі України. 1999. Вип. 6. С. 62-64.
22. Короткова О.З., Орлов О.О. Накопичення 137Cs фітомасою ягідних рослин при різній щільності радіоактивного забруднення ґрунту. Лісівництво і агролісомеліорація. Здоров'я лісу. 1999. Вип. 95. С. 16-23.
23. Допустимих рівнів вмісту радіонуклідів 137Cs та 90Sr у продуктах харчування та питній воді: Наказ МОЗ України від 03.05.2006 р. Офіційний вісник України. 2006. № 29. 142 с. URL: https://zakon. rada.gov.ua/laws/show/z0845-06#Text.
24. Гігієнічний норматив питомої активності 137Cs та 90Sr у рослинній лікарській сировині (субстанції), що використовується для виготовлення лікарських засобів: Наказ МОЗ України від 08.05.2008 р. Офіційний вісник України. 2008. № 51.
112 с. URL: https://zakon.rada.gov.ua/laws/show/ z0590-08#Text.
REFERENCES
1. Kaletnyk, M.M., Landin, V.P. & Krasnov, V.P. (1990). Problemy orhanizatsiyi vedennya lisovoho hospodarstva v umovakh radiatsiynoho zabrudnennya [Problems of organization of forest management in conditions of radiation pollution]. Lisove hospodarst- vo, lisova, paperova i derevoobrobna promyslovist -- Forestry, Forest, Paper and Woodworking Industry, 2, 4-7 [in Ukrainian].
2. Kaletnik, N.N., Krasnov, V.P., Landin, V.P. & Matukhno, Yu.D. (1986). Temporary Recommendations for Conducting Harvesting of Food Forest Products and Medicinal Raw Materials in the Territories of Forest Enterprises of the Ukrainian SSR Affected by Radioactive Contamination [Vremennyye rekomendatsii po vedeniyu zagotovok pishchevykh produktov lesa i lekarstvennogo syrya na territorii leskhozzagov USSR, podvergshikhsya radioaktivv- nomu zagryazneniyu]. Sbornik normativnykh doku- mentovpo vedeniyu lesokhozyaystvennogo proizvodstva na 9 territoriyakh, podvergshikhsya radioaktivnomu zagryazneniyu [Collection of Regulatory Documents on Forest Management in 9 Territories Affected by Radioactive Contamination]. (рр. 49-52). Kyiv: Minleskhoz USSR [in Russian].
3. Krasnov, V.P., Orlov, A.A., Irkliyenko, S.P. et al. (1995). Rekomendatsiipo vedeniyu lesnogo khozyaystva v usloviyakh radioaktivnogo zagryazneniya [Recommendations for Forest Management in Conditions of Radioactive Contamination]. Kyiv: Agrarna nauka [in Russian].
4. Demkiv, O.T. (1967). Some Regularities of the Distribution of Radioactive Isotopes in the Organs of High-Mountain Plants in the Carpathians [Deyaki zakonomirnosti rozpodilu radioaktyvnykh izotopiv v orhanakh vysokohirnykh roslyn Karpat]. Ukrayins'kyy botanichnyy zhurnal -- Ukrainian Botanical Journal, 6, 50-54 [in Ukrainian].
5. Bunzl, K. & Kracke, W. (1986). Accumulation of fallout Cs-137 in some plants and berries of the family Ericaceae. Health Physics, 50, 540-542 [in English].
6. Hrabovskyi, V.A., Dzendzelyuk, O.S. & Trofimuk, A.V. (2015). Dynamika zabrudnennya deyakykh kom- ponent ekosystem Shatskoho natsionalnoho pryrod- noho parku [Dynamics of 137Cs contamination in some components of ecosystems of Shatsk national nature park]. Naukovyy visnyk Uzhhorodskoho uni- versytetu. Seriya: Fizyka -- Uzhhorod University Scientific Herald. Series: Physics, 37, 146-153 [in Ukrainian].
7. Strandberg, M. (1994). Radiocesium in a Danish pine forest ecosystem. Science of The Total Environment. Special issue: Forests and radioactivity, 157, 125-132. DOI: https://doi.org/10.1016/0048-9697(94)90571-1 [in English].
8. Fawaris, B.H. & Johanson, K.J. (1994). Radiocesium in soil and plants in a forest in central Sweden. Science of The Total Environment. Special issue: Forests and radioactivity, 157, 133-138. DOI: https://doi.org/ 10.1016/0048-9697(94)90572-X [in English].
9. Klemt, E., Drissner, J., Flugel, V. et al. (1996). Bioavailability of cesium radionuclides in prealpine forests and lakes. Ten years terrestrial radioecological research following the Chernobyl accident: proceedings of the International Symposium on Radioecology 1996. (pp. 267-274). Vienna [in English].
10. Heinrich, G. & Remele, K. (1996). 137Cs, 90Sr, K+ and Ca++ in lichens, mosses and vascular plants of a mountain area Styria, Austria. Ten years terrestrial radioecological research following the Chernobyl accident: proceedings of the International Symposium on Radioecology 1996. (рр. 243-250). Vienna [in English].
11. Fawaris, B.H. & Johanson, K.J. (1995). A comparative study on radiocaesium (137Cs) uptake from coniferous forest soil. Journal of Environmental Radioactivity, 28 (3), 313-326. DOI: https://doi.org/10.1016/0265- 931X(95)97302-S [in English].
12. Bunzl, K., Albers, B.P., Shimmack, W. et al. (1999). Soil to plant uptake of fallout 137Cs by plants from boreal areas polluted by industrial emissions from smelters. Science of The Total Environment, 234 (1--3), 213-221. DOI: https://doi.org/10.1016/S0048-9697- (99)00265-X [in English].
13. Outola, I., Pehrman, R. & Jaakkola, T. (2003). Effect of industrial pollution on the distribution of 137Cs in soil and the soil-to-plant transfer in a pine forest in SW Finland. Science of The Total Environment, 303 (3), 221-230. DOI: https://doi.org/10.1016/S0048- 9697(02)00402-3 [in English].
14. Levula, T., Saarsalmi, A. & Rantavaara, A. (2000). Effects of ash fertilization and prescribed burning on macronutrient, heavy metal, sulphur and 137Cs concentrations in lingonberries (Vaccinium vitis-idaea). Forest Ecology and Management, 126 (2), 269-279. DOI: https://doi.org/10.1016/S0378-1127(99)00110-3 [in English].
15. Rantavaara, A.H., Desmet, G., Nassimbeni, P. & Belli, M. (Eds.). (1990). Transfer of radiocesium through natural ecosystems to foodstuffs of terrestrial origin in Finland. Transfer of radionuclides in natural and semi-natural environment. (pp. 103-108). London: Elsevier Applied Science [in English].
16. El-Fawaris, B.H. & Johanson, K.J. (1996). Monitoring of Chernobyl fallout 137Cs in semi-natural coniferous forest of central Sweden. Ten years terrestrial radioecological research following the Chernobyl accident: proceedings of the International Symposium on Radioecology 1996. (рр. 275-283). Vienna [in English].
17. Strand, P., Howard, B. & Averin, V. (1996). Intake of radionuclides to man. Transfer of radionuclides to animals, their comparative importance under different agricultural ecosystems and appropriate countermeasures: Final Report of ECP-9. (рр. 157-193). Luxembourg [in English].
18. Jacob, P. & Likhtarev, I. (1996). Transfer factors for mushrooms. Pathway analysis and dose distributions: Final Report of JSP-5 for the contracts COSU-CT93- 0053 and COSU-CT94-0091 of the European Commission. (рр. 63-74). Luxembourg [in English].
19. Krasnov, V.P. (1998). Radioekolohiya lisiv Polis- sya Ukrayiny [Radioecology of forests of Polissya of Ukraine]. Zhytomyr: Volyn [in Ukrainian].
20. Orlov, O.O. & Krasnov, V.P. (1996). Intensity of accumulation of Cs-137 by species of living ground cover of oak and pine-oak forests in the swamps of Ukrainian Polesie: classification, ordination, patterns [Intensivnost nakopleniya Cs-137 vidami zhivogo na- pochvennogo pokrova dubovykh i sosnovo-dubovykh lesov v sugrudkakh Ukrainskogo Polesya: klassifika- tsiya, ordinatsiya, zakonomernosti]. Problemy ekolo- hiyi lisiv i lisokorystuvannya na Polissi Ukrayini -- Problems of ecology offorests andforest use on Polissya Ukraine, 4, 25-30 [in Russian].
21. Korotkova, O.Z. & Orlov, O.O. (1999). Pererozpodil 137Cs po orhanakh yahidnykh roslyn rodyny Vaccini- aceae S.F. Gray v zalezhnosti vid viku [Redistribution of 137Cs on organs of berry plants of the family Vacciniaceae S. F. Gray in dependence of their age]. Problemy ekolohiyi lisiv i lisokorystuvannya na Polissi Ukrayini -- Problems of ecology offorests andforest use on Polissya Ukraine, 6, 62-64 [in Ukrainian].
22. Korotkova, O.Z. & Orlov, O.O. (1999). Nakopychen- nya 137Cs fitomasoyu yahidnykh roslyn pry rizniy shchilnosti radioaktyvnoho zabrudnennya gruntu [137Cs accumulation by the berries plants at different density of radioactive contamination of soil]. Lisivny- tstvo i ahrolisomelioratsiya. Zdorovya lisu -- Forestry & Forest Melioration. Forest health, 95, 16-23 [in Ukrainian].
23. Dopustymykh rivniv vmistu radionuklidiv 137Cs ta 90Sr u produktakh kharchuvannya ta pytniy vodi: Nakaz vid 03.05.2006 r. [Permissible levels of radionuclides 137Cs and 90Sr in food and drinking water: Order of 3.05.2006]. (2006). Ofitsiynyy visnyk Ukrayiny -- Official Gazette of Ukraine, 9, 142. URL: https://zakon. rada.gov.ua/laws/show/z0845-06#Text [in Ukrainian].
24. Hihiyenichnyy normatyv pytomoyi aktyvnosti 137Cs ta 90Sr u roslynniy likars'kiy syrovyni (substantsi- yi), shcho vykorystovuyet'sya dlya vyhotovlennya likars'kykh zasobiv: Nakaz vid 08.05.2008 r. [Hygienic standard of specific activity of 137Cs and 90Sr in herbal medicinal raw materials (substances) used for the manufacture of medicinal products: Order of 08.05.2008]. (2008). Ofitsiynyy visnyk Ukrayiny -- Official Gazette of Ukraine, 51, 112. URL: https://zakon. rada.gov.ua/laws/show/z0590-08#Text [in Ukrainian].
Размещено на Allbest.ru
Подобные документы
Tragedy of Chernobyl. The explosive nature of destruction. Quantity of the radioactive substances which have been let out in environment. A modular condition of radioactive substances and their distribution on an earth surface. The harm caused to people.
презентация [749,5 K], добавлен 21.02.2012History of oil industry. "Ukrnafta" and the drilling of new wells. The environmental problems of the oil industry. Problems and prospects of development of the oil industry of Ukraine. Development and reform of the oil industry of Ukraine is required.
презентация [2,9 M], добавлен 22.04.2014The Nature is our sister. Result of games with nature is suffering of the Nature. The earthquake in Crimea in 1927. The tornado in 1934. The flood in the July in 2008. During May and June of 2007 the terrible drought in South and South-Eastern Ukraine.
презентация [361,7 K], добавлен 20.12.2010Problem of contamination of nature in connection with activity of man. Air's and water's pollution. Garbage as the main reason of pollution of cities. Influence of radiating radiations on people and animals. Value of preservation of the environment.
презентация [1,4 M], добавлен 13.12.2011People have always polluted their surroundings. Automobiles and other new inventions make pollution steadily worse. Scientists and engineers can find the ways to reduce pollution from automobiles and factories. Factories pollute the air and the water.
презентация [1,0 M], добавлен 25.01.2012Nuclear tragedy of Kazakhstan. Emergence and development of the ecological tragedy of Aral sea. The history of Semipalatinsk test polygon. Impact of nuclear tests for environment. Economic solution of public health care and victim of nuclear tests.
реферат [19,6 M], добавлен 12.05.2012The geographic characteristics of the Novaya Zemlya archipelago in the Arctic Ocean. The history of the test site at Novaya Zemlya. Learning the facts about the nuclear test site. Description of the scope and consequences of the explosion of King-bomb.
презентация [1,2 M], добавлен 18.10.2015Water - the beauty of nature. Description of several ways to determine if good water you drink or not. The study of the quality of bottled water producing in Ukraine. The definition of bottled water given by the International Bottled Water Association.
презентация [2,0 M], добавлен 21.05.2013The global ecological problems and the environmental protection. Some problems of "Greenhouse effect". Explanation how ecological problems influence on our life. Ecological situation nowadays. Climate and weather. Environmental protection in Ukraine.
курсовая работа [898,6 K], добавлен 13.02.2011Description the introductions between man and nature, polluting of the air, oceans. Analyzes problems of cities: the wastes from factories, chemical plants, electric and atomic power stations. Studying the antipollution campaigns of car corporation’s.
эссе [10,1 K], добавлен 21.03.2012