Development and use of synanthropic phytocenoses with complex invasion in Kaluga region
Development of self-organizing phytocenoses with varying degrees of invasion, their use on lands temporarily withdrawn from active agricultural use. The influence of mineral fertilizers on the increase in the specific productivity of the phytocenosis.
Рубрика | Экология и охрана природы |
Вид | статья |
Язык | английский |
Дата добавления | 17.03.2021 |
Размер файла | 22,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Development and use of synanthropic phytocenoses with complex invasion in Kaluga region
Valeriy A. Burlutskiy1, Vladimir N. Mazurov1, Ivan E. Osokin2, Aleksandr F. Peliy3*, Polina S. Semeshkina1, Ekaterina S. Borodina4, Murat S. Gins5, Aleksey F. Peliy4
'Kaluga Research Institute of Agriculture, Kaluga region, Russian Federation
2Branch of Rosselkhozcenter on Tver Region, Tver, Russian Federation
3Peoples' Friendship University of Russia (RUDN University),
Moscow, Russian Federation
4Russian State Agrarian University -- Moscow Timiryazev Agricultural Academy,
Moscow, Russian Federation
5Federal Scientific Center of Vegetable Growing,
Abstract
Currently, less than 33% of arable land is used in Meshchovskoye Opolye. Optimizing technology elements of resource-saving development of synanthropic fallow phytocenoses with complex invasion is relevant.
The article is devoted to analysis of development of self-organizing phytocenoses with varying invasion degrees and their use on lands temporarily withdrawn from active agricultural use.
Field experiments were carried out on postagrogenic gray forest loamy soils in Kaluga Research Institute of Agriculture in 2006--2018. Influence of mineral fertilizers as an optimization element of technology of fallow development was studied using transects and permanent survey sites on the area of 12.0 ha.
The reasons for change in productivity and its determining elements in hayfields in autogenous -- allogenic phytocenoses were analysed. We established that economic value of plant communities was determined by potential of constituent species and variability of their productivity in years with various environmental conditions. 12 years later phytocenoses become homogeneous and consist of 10--12 main plant species, determining green mass productivity by 75%.
Compared to native species invasive plant species have 1.4--2.0 fold higher productivity which accounts for 60% and more productivity of phytocenoses. Transforming role of Erigeron canadensis L., Lupinus polyphyllus Lindl. and Solidago gigantea Ait. on their expansion into aboriginal herb (share in mowed mass -- 40% or more) communities was shown; their high adaptive potential for ecological-soil conditions of Meshchovskoye Opolye (center of Nonchernozem Zone of Russia) was established. Application of mineral fertilizers (P40K)0) in the secondary Trifolium medium phytocenoses (more than 40%) contributed to 2.4-fold increase in its productivity (from 1.38 to 3.29 kg/m2) and increased productivity stability by 60%, reducing low-value species in crop structure by 1.6 times.
The total area of cenopopulations increased by 10.4--21.5%, yields -- from 2.31 to 4.41 kg/m2.
Keywords: fallow lands, gray forest soils, synanthropic phytocenoses, invasive species, mineral fertilizers, productivity
Аннотация
phytocenosis invasion land agricultural
Особенности развития и использования синатропных фитоценозов с комплексной инвазией в условиях Калужской области
В.А. Бурлуцкий1, В.Н. Мазуров1, И.Е. Осокин2, А.Ф. Пэлий3*, П.С. Семешкина1, Е.С. Бородина4, М.С. Гинс5, А.Ф. Пэлий4
'Калужский научно-исследовательский институт сельского хозяйства,
Калужская область, Российская Федерация
2Филиал ФГБУ «Россельхозцентр» по Тверской области, Тверь, Российская Федерация
3Российский университет дружбы народов, Москва, Российская Федерация
4РГАУ-МСХА имени К.А. Тимирязева, Москва, Российская Федерация
5Федеральный научный центр овощеводства, Московская обл., Российская Федерация
В настоящее время в Мещовском ополье не используется более 33% пашни. Вопрос оптимизации элементов технологии ресурсосберегающего освоения синантропных фитоценозов залежей с комплексной инвазией является открытым. Статья посвящена актуальной научно-производственной задаче -- анализа и динамики развития самоорганизующихся фитоценозов с различной степенью инвазии и их использованию на землях, временно выведенных из активного сельскохозяйственного оборота. В Калужском НИИСХ в полевом опыте на постагрогенных серых лесных среднесуглинистых почвах в 2006--2018 гг. изучали влияние минеральных удобрений как элемента оптимизации технологии освоения разновозрастных залежей методом трансекты и постоянных учетных площадок на площади 12,0 га. Дан анализ причин изменения продуктивности определяющих ее элементов при одноукосном сенокосном использовании в ряду: автогенные -- аллогенные фитоценозы. Установлено, что хозяйственная ценность ценозов определяется потенциалом составляющих видовой вариабельностью их продуктивности в различные по степени напряженности экологических условий годы. Фитоценозы на 12-й год развития являются гомогенными и состоят из 10--12 основных видов, которые на 75% формируют укосную массу. Уровень продуктивности инвазионных видов в 1,4--2,0 раза превышает уровень аборигенных и обусловливает на 60% и более продуктивность фитоценозов. Показана трансформирующая роль Erigeron canadensis L., Lupinus polyphyllus Lindl. и Solidago giganteaпри их экспансии в аборигенные разнотравные (доля в укосной массе -- 40% и более) сообщества, и установлен их высокий адаптивный потенциал к эколого-почвенным условиям Мещовского ополья Центра Нечерноземной зоны России. Площадь наиболее ценных в кормовом отношении группировок Trifolium medium L. изменялась в пределах от 7,6 до 17,5% и в среднем составила 11,0% на 1 га залежи. Таким образом, внесение минеральных удобрений (Р40К90) во вторичных фитоценозах с преимущественным участием T. medium(более 40%) способствовало повышению его удельной продуктивности в 2,4 раза (с 1,38 до 3,29 кг/м2) и уровня стабильности продуктивности на 60%, а также снижению доли участия малоценных видов в структуре урожая в 1,6 раза. Общая площадь ценопопуляций возросла на 10,4-21,5 %, урожайность с 2,31 до 4,41 кг/м2.
Ключевые слова: залежные земли, серые лесные почвы, синантропные фитоценозы, инвазионные виды, минеральные удобрения, продуктивность
Introduction
Opolye is one of the most fertile type of lands in the central region of Russia, 85% of which was used for agriculture in the second half of the 20th century. Currently, less than 33% of arable land is used in Meshchovskoye Opolye. The regional government together with the Ministry of Agriculture of the Russian Federation pays special attention to the solution of this issue; however, the efficiency remains low. Some features of development of secondary meadow phytocenoses and their cultivation have been revealed [1--7]. There is an insufficient amount of research on optimization of technology for resource-saving development of synanthropic phytocenoses with complex invasion in Kaluga region.
Materials and methods
Experiments were conducted on derelict lands with gray forest loamy soils in 2006--2018. Evolution of secondary phytocenoses and developing alternative technologies for accelerated cultivation of fallow lands in Kaluga Research Institute of Agriculture were studied. The monitoring site was located on a gently sloping gulch of floodplain terrace of the Vyssa river within the moderately eroded slope of the southeast exposure. 2 parallel transects were laid at a distance of 50 m from each other on the area of more than 12.0 ha to study allogeneic series. Each transect had 10 permanent plots with 250 m2 in area which were at a distance of 100 m from each other. Effect of mineral fertilizers in doses of P40K60 andon productivity and structure of synanthropic phytocenoses was studied.
Results and discussion
By 2018 phytocenoses had been formed with varying weed invasion level. Initial stages (up to 2--3 years of development) were classified as Stellarietea mediaeTx. et al. Ex von Rochow 1951, and later ones -- Artemisietea vulgarisLohmeyer et al. Ex von Ro- chow 1951 [8]. The series developed in reserve mode from the bank of diasporas after turf development had a common floristic core with previous phytocenoses and were represented mainly by agrobiological group of motley grasses (55%). The most common groups consisted of aboriginal and adventitious species in varying quantities. Such transformers as E. canadensis, L. polyphyllusand S. giganteadeveloped successfully spreading freely throughout the Kaluga region [9]. 12 years later the phytocenoses became homogeneous and consisted of 10--12 main plant species, determining green mass productivity by 75%, and adventitious species -- by 35% (Table 1).
The phytocenoses of Indemutatios quaroliswere determined by potential of individual plant species during their full vegetative development, and by variability of productivity in years with different environmental conditions. The communities of L. polyphyllusand S. giganteawere less dependent on such influences, while agrio- phyte E. canadensiscontributed to the formation of their expansion boundaries. The highest variability of productivity was observed for indigenous species (average 35.99%), ranging from 18.66% for C. epigeiosto 56.31% for H. perforatum. Productivity of adventitious species was characterized by lower variation -- from 19.83% in E. canadensisto 22.72% in S. gigantea. Yields of invasive species significantly exceeded yields of native plant species.
Table 1 Cenopopulation structure and characteristics of invasive secondary meadow phytocenosis, June 2014--2018
Species / group |
Productivity, kg/m2 |
W, % |
||||
M ± m |
max |
min |
Cv, % |
|||
Phytocenosis |
2.08 ± 0.36 |
2.39 |
1.68 |
34.32 |
100.00 |
|
Main components: |
1.74 ± 0.25 |
2.01 |
1.42 |
28.81 |
83.84 |
|
Calamagrostis epigeios (L.) Roth |
0.39 ± 0.07 |
0.43 |
0.33 |
18.66 |
18.54 |
|
Erigeron canadensis L. AiN. S-2 |
0.32 ± 0.03 |
0.37 |
0.25 |
19.83 |
15.30 |
|
Lupinus polyphyllus Lindl. CiN. S-1 |
0.21 ± 0.02 |
0.25 |
0.18 |
21.50 |
10.23 |
|
Solidago gigantean Ait. ACiN. S-1 |
0.16 ± 0.02 |
0.19 |
0.14 |
20.31 |
7.91 |
|
Tanacetum vulgareL. |
0.15 ± 0.02 |
0.17 |
0.12 |
22.72 |
7.01 |
|
Artemisia vulgaris L. |
0.13 ± 0.02 |
0.15 |
0.11 |
33.46 |
6.09 |
|
Vicia sepium L. |
0.12 ± 0.02 |
0.14 |
0.09 |
34.77 |
5.71 |
|
Chamerionangustifolium (L.) Holub |
0.11 ± 0.02 |
0.13 |
0.08 |
40.87 |
5.08 |
|
Hypericum perforatum L. |
0.07 ± 0.02 |
0.10 |
0.05 |
56.31 |
3.58 |
|
Equisetum arvense L. |
0.06 ± 0.10 |
0.07 |
0.04 |
44.65 |
2.70 |
|
Potentilla anserine L. |
0.04 ± 0.01 |
0.04 |
0.03 |
37.70 |
1.67 |
Note: A-CiN -- Accidental & Cultivated alien Invasive Naturalization plants; Aliens. str. -- invasive naturalized unintentionally and intentionally introduced species, S-1 -- invasive status of transformer; S-2 -- invasive status of agrio- phyte, according to Richardson et al. [11]; W, % -- mass fraction in crop structure.
Close dependencies were observed between yields of phytocenoses and productivity of the group with dominant adventitious species (r = 79.54 ± 0.21), area of subpopulations (r = 91.21 ± 0.18), occurrence (r = 87.47 ± 0.19) and stand height (r = 85.15 ± 0.19). Introduction of the advents contributed to the rapid transformation of phytocenoses -- reducing species diversity and simplifying phyto- cenose structure. Higher levels of specific productivity and stability of adventitious species can be considered as a manifestation of their adaptive potential to the ecological and soil conditions of Meshchovskoye Opolye.
The area of the most valuable feed groups of Trifolium medium in the composition of autogenous phytocenoses varied from 7.6 to 17.5% and averaged 11.0% per 1 ha of fallow lands in 2015-2018. Top mineral fertilizing contributed to the redistribution of quantitative and qualitative links between the phytocenosis elements [11--16]. Increase in fertilizer rates increased stability of their productivity. Application of (P40K90) resulted in increase in the total area of T. medium cenopopulations by 10.4--21.5% and yield increased from 2.31 to 4.41 kg/m2. The specific productivity increased more than 2 times (Table 2).
Using phytocenoses as hayfields in their allogeneic series resulted in significant increase in phytocenotic stability of T. medium. The ratio of T. medium mass fraction to secondary species in structure of mowed mass increased from 1.5 to 3.0, and coefficient of T. medium productivity variation decreased from 61.84 to 38.45%. A close relationship was found between phytocenoses yields and T. medium specific productivity (r = 0.82 ± 0.18), its share in the crop structure (r = 0.94 ± 0.08) and stand height (r = 0.57 ± 0.20). Productivity variability of secondary species was not significantly changed.
Table 2
Structure and properties of T. medium phytocenoses, 2015--2018
Species / group |
Productivity, kg/m2 |
W, % |
||||
M ± m |
max |
min |
Cv, % |
|||
Natural soil fertility |
||||||
T. medium L. phytocenosis |
2.31 ± 0.88 |
2.46 |
0.60 |
76.42 |
100.00 |
|
T. medium L. |
1.38 ± 0.43 |
2.33 |
0.58 |
61.84 |
59.65 |
|
Secondary species |
0.93 ± 0.37 |
2.67 |
0.31 |
79.20 |
40.35 |
|
P,-K- fertilization |
||||||
T. medium L. phytocenosis |
3.23 ± 0.96 |
4.75 |
0.77 |
59.45 |
100.00 |
|
T. medium L. |
2.17 ± 0.60 |
3.42 |
0.65 |
57.28 |
67.18 |
|
Secondary species |
1.06 ± 0.45 |
1.33 |
0.21 |
84.33 |
32.82 |
|
P,-K„- fertilization |
||||||
T. medium L. phytocenosis |
4.41 ± 1.01 |
7.13 |
1.22 |
45.76 |
100.00 |
|
T. medium L. |
3.29 ± 0.63 |
6.45 |
1.17 |
38.45 |
74.59 |
|
Secondary species |
1.12 ± 0.45 |
2.69 |
0.38 |
81.06 |
25.41 |
Conclusions
Autogenous phytocenoses were established to be developed from a soil bank of diasporas formed by previous communities; therefore, they had a common floristic core and potential feeding value. Hay productivity was extremely low without the use of elements of surface improvement technology.
It has been revealed that invasive species: Erigeron canadensisL., Lupinus poly- phyllusLindl. andSolidago giganteaAit. got advantage during grass restoring process under conditions of Meshchovskoye Opolye. The plants gave the impression of being aboriginal and constituted more than 1/3 of mowed mass.
Application of mineral fertilizers (P40K90) in secondary Trifolium mediumphytocenoses resulted in 1.9-fold increase in vegetative mass, 2-fold increase in T. medium specific productivity and 1.6-fold reduction of low-value species in crop structure.
References
1. Akhromeev LM. Nature, Genesis, Development History and Landscape Structure of the Opolees in Central Russia. Bryansk: Bryansk State University Publ.; 2008. (In Russ).
2. Savich VI, Sychev VG, Zamaraev AG, Syunyaev NK, Nikolskii YN. Energy assessment of soil fertility. Moscow: VNIIA Publ.; 2007. (In Russ).
3. Mazurov VN, Burlutsky V., Semeshkina PS, Zavalin AA. The phytocenoses productivity and stability on the temporary withdrawal land from agriculture. Vestnik of the Russian agricultural science. 2017; (2):9--11. (In Russ).
4. Baranov SG, Bibik TS, Vinokurov IY. Testing stability of wheat development in agrophytocenoses of Vladimirsky Opolye. Advances in current natural sciences. 2018; (12-2):272--276. (In Russ).
5. Ustyuzhanina OA, Sokolova LA, Golofteeva AS, Burlutskiy VA. The effect of different mineral backgrounds on the crop yield and the coefficient of fluctuating asymmetry for the winter and spring wheat. Regional Environmental Issues. 2017; (3):99--102. (In Russ).
6. Kutuzova AA, Privalova KN, Teberdiev DM, Semenov NA, Raev AP, Lebedev DN. Method of effective development of multi-age deposits based on multivariate technologies for pastures and hayfields and sequence of their return to arable land in the Non-Black Earth Zone of the Russian Federation. Moscow: Ugreshskaya tipografiya Publ.; 2017. (In Russ).
7. Dorogova YA, Zhukova LA, Turmuhametova NV, Polyanskaya TA, Notov AA, Dementyeva SM. Methods of Analysis of Environmental Diversity of Plants. Biology and Medicine. 2016; 8(7):354. Available from: doi: 10.4172/0974-8369.1000354.
8. Ermakov NB. Prodromus of higher vegetation units in Russia. In: Mirkin BM, Naumova LG. (eds.) The current state of the basic vegetation science concepts. Ufa: AN RB Gilem Publ.; 2012. p. 377--483. (In Russ).
9. Reshetnikova NM, Maiorov SR, Skvortsov AK, Krylov AV, Voronkina NV, Popchenko MI, et al. Kaluga flora: an annotated list of vascular plants of the Kaluga region. Moscow: KMK Publ.; 2010. (In Russ).
10. Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ. Naturalization and invasion of alien plants: concepts and definitions. Diversity and distributions. 2000; 6(2):93--107. Available from: doi: 10.1046/j.1472-4642.2000.00083.x.
11. Mazurov VN, Semeshkina PS, Filonenko VA, Lukashov VN. Spring field practices in Kaluga region in 2019 (guide). Kaluga: Kaluga Research Institute of Agriculture Publ.; 2019. (In Russ).
12. Platonova SY, Peliy AF, Gins EM, Sobolev RV, Vvedensky VV. The study of morphological and biochemical parametres of Amaranthus tricolor L. Valentina variety. RUDN Journal of Agronomy and Animal Industries. 2018; 13(1):7--13. (In Russ). Available from: doi: 10.22363/2312-797X-2018-13-1-7-13.
13. Peliy AF, Diop A, Borodina ES, Burlutskiy VA, Vvedenskaya AV, Vvedenskiy VV, et al. Use of Amazone precision sprayer in rape seed cultivation technology. In: Plyushchikov VG, Dokukin PA. (eds.) Innovation in Agriculture. Conference Papers of the X international Scientific and Practical Conference, 26-28 April 2018, Moscow, Russia. Moscow: RUDN Publ.; 2018.
p. 18--21.
14. Vvedenskaya AV, Vvedenskiy VV, Khorokhorov AM, Gins MS. Nondestructive methods of diagnostics of nitrogen provision of plants by optoelectronic system of plants monitoring. RUDN Journal of Agronomy and Animal Industries. 2017; 12(1):7--16. (In Russ). Available from: doi: 10.22363/2312-797X-2017-12-1-7-16.
15. Garnier E, Navas ML, Grigulis K. Plant Functional Diversity: Organism traits, community structure, and ecosystem properties. Oxford: Oxford University Press; 2016.
16. Barthйlйmy D, Caraglio Y. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of botany. 2007; 99(3):375--407. Available from: doi: org/10.1093/aob/mcl260.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Ахромеев Л.М. Природа, генезис, история развития и ландшафтная структура ополий Центральной России. Брянск: РИО Брянского государственного университета, 2008. 182 с.
2. Савич В.И., Сычев В.Г., Замараев А.Г., Сюняев Н.К., Никольский Ю.Н. Энергетическая оценка плодородия почв. М.: ВНИИА, 2007. 520 с.
3. Мазуров В.Н., Бурлуцкий В.А., Семешкина П.С., Завалин А.А. Продуктивность и устойчивость фитоценозов на временно выбывших из оборота землях // Вестник Российской сельскохозяйственной науки. 2017. № 2. С. 9--11.
4. Баранов С.Г., Бибик Т.С., Винокуров И.Ю. Опыт тестирования стабильности развития пшеницы в агрофитоценозах Владимирского ополья // Успехи современного естествознания. 2018. № 12-2. С. 272--276.
5. Устюжанина О.А., Соколова Л.А., Голофтеева А.С., Бурлуцкий В.А. Влияние разных минеральных фонов на урожайность и коэффициент флуктуирующей асимметрии для озимой и яровой пшениц // Проблемы региональной экологии. 2017. № 3. С. 99--102.
6. Кутузова А.А., Привалова К.Н., Тебердиев Д.М., Семенов Н.А., Раев А.П., Лебедев Д.Н. и др. Методика эффективного освоения разновозрастных залежей на основе многовариантных технологий под пастбища и сенокосы и очередности возврата их в пашню в Нечерноземной зоне РФ / ФГБНУ «ВНИИ кормов им. В.Р. Вильямса». М.: ООО «Угрешская типография», 2017. 64 с.
7. Dorogova Y.A., Zhukova L.A., Turmuhametova N.V., Polyanskaya T.A., Notov A.A., Dementyeva S.M. Methods of Analysis of Environmental Diversity of Plants // Biology and Medicine. 2016. Vol. 8. № 7. P. 354. doi: 10.4172/0974-8369.1000354.
8. Ермаков Н.Б., Миркин Б.М., Наумова Л.Г. Продромус высших единиц растительности России // Современное состояние основных концепций науки о растительности. УФА: АН РБ Гилем, 2012. С. 377--483.
9. Решетникова Н.М., Майоров С.Р., Скворцов А.К. Крылов А.В., Воронкина Н.В., Попченко М.И. и др. Калужская флора: аннотированный список сосудистых растений Калужской области. М.: Т-во научных изданий КМК, 2010. 548 с.
10. Richardson D.M., Pysek P., Rejmanek M., Barbour M.G., Panetta F.D., West C.J. Naturalization and invasion of alien plants: concepts and definitions // Diversity and distributions. 2000. Vol. 6. № 2. P. 93--107. doi: 10.1046/j.1472-4642.2000.00083.x.
11. Мазуров В.Н., Семешкина П.С., Филоненко В.А., Лукашов В.Н. и др. Особенности проведения весенне-полевых работ в Калужской области в 2019 году (руководство). Калуга: Калужский научно-исследовательский институт сельского хозяйства, 2019. 36 с.
12. Платонова С.Ю., Пэлий А.Ф., Гинс Е.М., Соболев Р.В., Введенский В.В. Изучение морфологических и биохимических показателей растений AmaranthustricolorL. сорта Валентина // Вестник Российского университета дружбы народов. Серия: Агрономия и животноводство. 2018. Т. 13. № 1. С. 7--13. doi 10.22363/2312-797X-2018-13-1-7-13.
13. Peliy A.F., Diop A., Borodina E.S., Burlutskiy V.A., Vvedenskaya A.V., Vvedenskiy V.V., et al. UseofAmazone precisionsprayerinrapeseedcultivationtechnology// Инновационные процессы в сельском хозяйстве : сборник статей Х Международной научно-практической конференции / под ред. В.Г. Плющикова, П.А. Докукина. М.: Российский университет дружбы народов, 2018. С. 18--21.
14. Введенская А.В., Введенский В.В., Гинс М.С., Хорохоров А.М. Недеструктивный метод диагностики азотообеспеченности растений оптико-электронной системой мониторинга растений // Вестник Российского университета дружбы народов. Серия: Агрономия и животноводство. 2017. Т. 12. № 1. C. 7--16. doi: 10.22363/2312-797Х-2017-12-1-7-16.
15. Garnier E., Navas M.L., Grigulis K. Plant Functional Diversity: Organism traits, community structure, and ecosystem properties. Oxford: Oxford University Press, 2016. 231 p.
16. Barthйlйmy D., Caraglio Y. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny // Annals of botany. 2007. Vol. 99. № 3. P. 375--407.
Размещено на Allbest.ru
Подобные документы
History of oil industry. "Ukrnafta" and the drilling of new wells. The environmental problems of the oil industry. Problems and prospects of development of the oil industry of Ukraine. Development and reform of the oil industry of Ukraine is required.
презентация [2,9 M], добавлен 22.04.2014Ecology as the scientific study of the relation of living organisms to each other and their surroundings. Overuse of pesticides. Climate change. Urban development. Scale rise in the average temperature of the Earth's climate. Genetically modified foods.
презентация [3,3 M], добавлен 17.03.2017Nuclear tragedy of Kazakhstan. Emergence and development of the ecological tragedy of Aral sea. The history of Semipalatinsk test polygon. Impact of nuclear tests for environment. Economic solution of public health care and victim of nuclear tests.
реферат [19,6 M], добавлен 12.05.2012Air pollution. Deforestation. Acid rain. The "Green House Effect". Water pollution. Toxic waste pollution. Environmental movements. Rates of deforestation. Carbon Dioxide Emissions per Units of Economic Output. Increase of global surface temperature.
курсовая работа [51,8 K], добавлен 13.05.2005Характеристика показателей экологического аудита и механизмов принятия эффективного управленческого решения. Анализ приоритетных отраслей развития территориально-хозяйственных систем на основе пакета программ "Statistica" и экспертной системы "Region".
контрольная работа [777,6 K], добавлен 29.01.2010Problem of contamination of nature in connection with activity of man. Air's and water's pollution. Garbage as the main reason of pollution of cities. Influence of radiating radiations on people and animals. Value of preservation of the environment.
презентация [1,4 M], добавлен 13.12.2011The global ecological problems and the environmental protection. Some problems of "Greenhouse effect". Explanation how ecological problems influence on our life. Ecological situation nowadays. Climate and weather. Environmental protection in Ukraine.
курсовая работа [898,6 K], добавлен 13.02.2011Productivity Growth in Agriculture: Sources and Constraints. Agriculture in Development Thought. Transition to Sustainability. Economic understanding of process of agricultural development. Technical changes and improvement of efficiency of agriculture.
контрольная работа [31,5 K], добавлен 18.07.2009Asian Development Fund. Poverty reduction in Asia and the Pacific. Promotion of pro poor, sustainable economic growth. Supporting social development. Facilitating good governance. Long-term Strategic Framework. Private, financial sector development.
презентация [298,7 K], добавлен 08.07.2013The pillars of any degree of comparison. Morphological composition of the adjectives. An introduction on degrees of comparison. Development and stylistic potential of degrees of comparison. General notes on comparative analysis. Contrastive linguistics.
курсовая работа [182,5 K], добавлен 23.12.2014