Водные ресурсы

Водные ресурсы и их роль в жизни общества. Особенности распределения воды в России. Охрана вод от загрязнения, современное состояние качества воды в водных объектах. Регулирование стока рек водохранилищами. Использование и восполнение подземных вод.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык русский
Дата добавления 19.11.2017
Размер файла 160,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В сточных водах химических предприятий находится много фенолов, которые придают воде резкий, неприятный запах, нарушают биологические процессы. Стоки многих предприятий, а также шахтные и рудничные воды содержат значительное количество цинка и меди. В последние десятилетия появившиеся в сточных водах синтетические поверхностно-активные вещества (СПАВ) резко ухудшают биохимическую очистительную способность воды. Даже относительно небольшие концентрации СПАВ ведут к прекращению роста водной растительности, усилению неприятного запаха, нередко образуют стойкие скопления пены.

Тепловые и атомные электростанции, потребляющие огромные количества воды и сбрасывающие в водоемы подогретые воды, ведут к тепловому загрязнению водоемов, что нарушает термический, гидрохимический и гидробиологический режимы водных объектов.

Существенный источник загрязнения воды - коммунальное хозяйство населенных пунктов. В составе коммунальных стоков наряду с фекальными водами, которые содержат особо опасные для здоровья человека яйца гельминтов, а также болезнетворные микробы и вирусы, имеется много вредных соединений, сбрасываемых предприятиями пищевой промышленности, автомобильного транспорта, общественного питания, торговли. Причем, если в настоящее время по количеству отводимых в водные объекты стоков на первом месте стоит промышленность, то в перспективе, при повышении культуры производства и по мере роста благоустройства населенных пунктов и их числа, это соотношение будет изменяться и количество бытовых сточных вод возрастет. Ливневые стоки с городских территорий, общая площадь которых составляет многие десятки тысяч квадратных километров, включают значительное количество нефти, органических продуктов. В отличие от бытовых и промышленных они большей частью не подвергаются очистке. Эти стоки поступают в водоемы в период весеннего снеготаяния и интенсивных и продолжительных дождей.

Одним из источников загрязнения вод является сельское хозяйство. Основными загрязняющими ингредиентами в поверхностном стоке с сельскохозяйственных угодий выступают частицы почвы, органическое вещество (гумус), удобрения и пестициды, вредные микроорганизмы. Из внесенных на склоновые земли удобрений вымывается до 20% азота, 2-5% фосфора и 10-70% калия. Вынос пестицидов с богарных земель достигает 1%, с орошаемых - до 4% от внесенного количества. Поскольку стоки с полей невозможно пропустить через очистные сооружения, опасность загрязнения вод удобрениями и пестицидами трудно переоценить. Биогенные вещества способствуют интенсивному «цветению» воды, вызывают прогрессирующую эвтрофикацию водных объектов и приводят к нарушению процессов самоочищения.

Животноводческие комплексы и фермы, как правило, располагаются на берегах водоемов и рек. При отсутствии жижесборников и навозохранилищ их отходы смываются ливневыми стоками или спускаются в водные объекты. Эти отходы содержат яйца гельминтов и патогенные микроорганизмы. В России в год животноводческими комплексами и фермами спускается в водоемы более 1 млрд м3 отходов, что соответствует по степени загрязнения биогенными элементами количеству бытовых вод от городов с суммарной численностью населения около 300 млн. человек. Общий годовой сток крупных птицефабрик в 1,5 раза превышает объем сточных вод животноводства.

Водный транспорт представляет угрозу для чистоты водоемов и водотоков в случае прямого сброса в них отходов, особенно подсланевых вод, сильно загрязненных нефтепродуктами. Значительное количество нефти попадает в водные объекты при перевозке ее танкерами, сливании балластной воды, которой заполняются танкеры для придания им устойчивости во время холостых ходов и которую нередко сбрасывают в водоемы, чтобы не терять время на станциях промывки. Аварии же танкеров приводят к неисчислимым бедствиям, губят флору и фауну, нарушая условия водоснабжения населенных пунктов и выводя из строя пляжи.

Многие реки нашей страны, преимущественно на севере и в горных районах, загрязняются при сплаве леса, прежде всего на тех участках, где имеется молевой сплав. До 10% бревен тонут и остаются лежать на дне; на дно же оседает и кора. Затонувшая древесина, медленно разлагаясь, поглощает кислород и отравляет воду фенолами и др. вредными веществами. Особенно большой ущерб молевой лесосплав наносит рыбному хозяйству, разрушая нерестилища, травмируя рыбу и кормовые организмы.

Такой источник загрязнения водных объектов, как атмосферные осадки, содержит промышленные выбросы. Ежегодно в атмосферу Земли поступает более 53 млн. т оксидов азота, 200 млн. т оксида углерода, около 150 млн. т диоксида серы, 200-250 млн. т пыли и 120 млн. т золы. Твердые частицы перемещаются воздушными потоками на большие или меньшие расстояния и нередко выпадают непосредственно на водную поверхность. Газообразные выбросы, растворяясь в атмосферной влаге, выпадают на поверхность Земли в виде «кислотных» дождей иногда на расстоянии многих сотен километров от мест их зарождения. От «кислотных» дождей особенно сильно страдают озера и леса.

В ряде районов водные объекты загрязняются при добыче полезных ископаемых, торфоразработках. За последние десятилетия существенным источником загрязнения рек и водоемов стала рекреация, особенно такие ее виды, как массовое купание и маломерный флот. Все большую роль в загрязнении водоемов и водотоков играет гидротехническое строительство. Зарегулирование стока рек и создание водохранилищ привело к значительному замедлению водообмена, в частности в Волге примерно в 10 раз. Уменьшение скорости водообмена явилось одной из причин массового развития синезеленых водорослей, «цветения» воды.

Среди подземных вод в наибольшей степени от загрязнения страдают грунтовые, поскольку артезианские водные горизонты, перекрытые водоупорными породами, находятся в более благоприятных условиях.

Отмечается как бактериальное, так и химическое загрязнение подземных вод. Основными источниками бактериального загрязнения подземных вод служат поля ассенизации и фильтрации, скотные дворы, разного рода выгребные ямы, неисправные канализационные сети. В случае перекрытия источника загрязнения самоочищение бактериально загрязненных вод происходит очень быстро.

Химическому загрязнению подземные воды подвергаются вследствие воздействие воздействия сточных вод промышленных предприятий, которые фильтруются в подземные горизонты из разного рода прудов-отстойников, прудов-накопителей, прудов-испарителей, шламовых прудов, а также из хвостохранилищ, золоотвалов и т. п. Немало загрязняющих веществ поступает в подземные воды с атмосферными осадками, выпадающими на территории, на которых находятся хранилища отходов химических предприятий, склады сырья и готовой химической продукции, на загрязненные территории различных промышленных предприятий или сельскохозяйственные поля, где широко применяются удобрения и ядохимикаты. Нередко поставщиком загрязняющих веществ могут явиться минерализованные подземные воды. Загрязнение подземных вод также происходит в районах добычи полезных ископаемых.

Проникновение и распространение химического загрязнения в меньшей степени, чем бактериального, определяется свойствами горных пород, через которые фильтруются загрязненные растворы. Самоочищение подземных вод от химических загрязнений происходит очень медленно, особенно от нефтепродуктов и детергентов, и загрязняющие вещества перемещаются по водоносным пластам на большие расстояния.

Итак, деятельность человека существенно изменила объем и скорость массоэнергетических потоков, в результате чего водные объекты теряют возможность самоочищения и в некоторых случаях превращаются в мертвые. (5)

3.3 Требования к качеству воды

Обеспечение безопасного водопользования, охрана водных объектов от загрязнения немыслимы без регламентирования качества водной среды. В конце 30-х гг. нынешнего столетия завершился переход к регламентации спуска сточных вод в водоемы и водотоки исходя из видов водопользования и предельно допустимых концентраций загрязняющих веществ (ПДК). Разработка ПДК шла весьма энергично. В наше время число гигиенических ПДК для водных объектов приближается к 1000, а рыбохозяйственных - к 300. Ежегодно разрабатываются десятки новых нормативов.

Понятие о ПДК базируется на концепции пороговости действия химических веществ. Установлено, что для каждого вещества, вызывающие те или иные неблагоприятные последствия в организме, существуют и могут быть определены дозы, при которых изменения функций организма минимальны (пороговые). При более низких концентрациях вещество не оказывает вредного действия и его наличие рассматривается как безопасное для жизни настоящего и последующего поколений людей.

В водном законодательстве нашей страны в основе гигиенических критериев качества воды лежат следующие требования. Вода, используемая населением для питьевых и других целей, должна соответствовать физиологическим потребностям человека по органолептическим свойствам (запах, привкус. Окраска) и солевому составу, быть безвредной и безопасной. Действующие гигиенические нормативы играют большую организующую роль при проектировании новых и реконструкции старых промышленных предприятий. Они выступают научно обоснованным критерием оценки качества воды в водоемах и водотоках, позволяют контролирующим организациям объективно оценить их состояние, в ряде случаев способствуют совершенствованию методов очистки сточных вод многих промышленных и коммунально-бытовых предприятий.

Требования к качеству вод, используемых для хозяйственно-питьевых и культурно-бытовых нужд, изложены в специальном документе «Правила охраны поверхностных вод от загрязнения сточными водами».

Основные требования, предъявляемые к качеству воды, заключаются в следующем:

на поверхности воды не должно быть плавающих примесей;

вода не должна приобретать запахи и привкусы интенсивностью более 2 баллов, обнаруживаемые непосредственно или при последующем хлорировании;

полная биохимическая потребность 1 л воды в кислороде при температуре 20°С не должна превышать 30 мг;

с целью устранения нежелательных вкусовых качеств воды и возможных последствий для состояния человека общая минерализация не должна превышать 1000 мг/л (по сухому остатку), в том числе содержание хлоридов - 350, сульфатов - 500 мг/л;

для безопасности воды в эпидемиологическом отношении в ней должны отсутствовать возбудители кишечных заболеваний, а число кишечных палочек в 1 л воды (коли-индекс) не должно превышать 10 000;

содержание взвешенных веществ в воде после спуска стоков не должно увеличиваться более чем на 0,25 мг/л для водных объектов, используемых для пищевого водоснабжения, и 0,75 мг/л для водоемов, предназначенных для купания, спорта и отдыха населения;

повышение температуры в водных объектах при спуске в них различных стоков допускается не более чем на 3°С по сравнению с максимальной температурой воды в летний период;

окраска не должна обнаруживаться в столбике высотой 20 см;

показатель рН должен составлять 6,5 - 8,5;

не допускается содержание ядовитых веществ в концентрациях, могущих оказать вредное воздействие на людей и животных. (12)

3.4 Самоочищение природных вод

Одним из наиболее ценных свойств природных вод является их способность к самоочищению. Самоочищение вод - это восстановление их природных свойств в реках, озерах и других водных объектах, происходящее естественным путем в результате протекания взаимосвязанных физико-химических, биохимических и других процессов (турбулентная диффузия, окисление, сорбция, адсорбция и т. д.) способность рек и озер к самоочищению находится в тесной зависимости от многих других природных факторов, в частности физико-географических условий, солнечной радиации, деятельности микроорганизмов в воде, влияния водной растительности и особенно гидрометеорологического режима. Наиболее интенсивно самоочищение воды в водоемах и водотоках осуществляется в теплый период года, когда биологическая активность в водных экосистемах наибольшая. Быстрее оно протекает на реках с быстрым течением и густыми зарослями тростника, камыша и рогоза вдоль их берегов, особенно в лесостепной и степной зонах страны. Полная смена воды в реках занимает в среднем 16 сут, болотах - 5, озерах - 17 лет. Такая разница во времени связана с разными сроками полного водообмена в разных водотоках и водоемах.

Уменьшение концентрации загрязняющих водные объекты неорганических веществ происходит путем нейтрализации кислот и щелочей за счет естественной буферности природных вод, образования труднорастворимых соединений, гидролиза, сорбции и осаждения. Концентрация органических веществ и их токсичность снижаются вследствие химического и биохимического окисления. Эти природные способы самоочищения нашли отражение в принятых методах очистки загрязненных вод в промышленности и сельском хозяйстве.

Для поддержания в водоемах и водотоках необходимого природного качества вод большое значение имеет распространение водной растительности, которая выполняет в них роль своеобразного биофильтра. Высокую очищающую способность водных растений широко используют на многих промышленных предприятиях как в нашей стране, так и за рубежом. Для этого создают разнообразные искусственные отстойники, в которых сажают озерную и болотную растительность, хорошо очищающую загрязненные воды.

В последние годы получила распространение искусственная аэрация - один из эффективных способов очищения загрязненных вод, когда процесс самоочищения резко сокращается при дефиците растворенного в воде кислорода. Для этого специальные аэраторы устанавливают в водоемах и водотоках или ан станциях аэрации перед сбросом загрязненных вод. (2)

3.5 Охрана водных ресурсов от загрязнения

Охрана водных ресурсов заключается в запрещении сброса в водоемы и водотоки неочищенных вод, создании водоохранных зон, содействии процессам самоочищения в водных объектах, сохранении и улучшении условий формирования поверхностного и подземного стока на водосборах.

Вопросами охраны вод в нашей стране длительное время занималось Министерство мелиорации и водного хозяйства СССР, в состав которого входили Государственная инспекция по охране водных источников и Главное управление комплексного использования водных ресурсов. В настоящее время эти функции выполняют Комитет по водному хозяйству, Государственный комитет по стандартизации, метрологии и сертификации, Федеральная служба по мониторингу окружающей среды. Главным аналитическим и координирующим центром природоохранной деятельности является Министерство охраны окружающей среды и природных ресурсов Российской Федерации.

Несколько десятилетий назад реки благодаря самоочищающей функции справлялись с очищением вод. Теперь же в наиболее обжитых районах страны в результате строительства новых городов и промышленных предприятий створы водопользования расположены столь плотно, что нередко места сброса сточных вод и водозаборы находятся практически рядом, Поэтому разработке и внедрению эффективных методов очистки и доочистки сточных вод, очистки и обезвреживания водопроводной воды уделяется все больше внимания. На некоторых предприятиях операции, связанные с водным хозяйством, играют все большую роль. Особенно высоки затраты на водоснабжение, очистку и отведение стоков в целлюлозно-бумажной, горнодобывающей и нефтехимической промышленности.

Последовательная очистка сточных вод на современных предприятиях предполагает проведение первичной, механической очистки (удаляются легко осаждающиеся и всплывающие вещества) и вторичной, биологической (удаляются биологически разрушающиеся органические вещества). При этом осуществляются коагуляция - для осаждения взвешенных и коллоидных веществ, а также фосфора, адсорбция - с целью удаления растворенных органических веществ и электролиз - для снижения содержания растворенных веществ органического и минерального происхождения. Обеззараживание сточных вод проводится посредством их хлорирования и озонирования. Важный элемент технологического процесса очистки - удаление и обеззараживание образующегося осадка. В некоторых случаях заключительной операцией является дистилляция воды.

Наиболее совершенные современные очистные сооружения обеспечивают освобождение сточных вод от органических загрязнений только на 85-90% и лишь в отдельных случаях - на 95%. Поэтому и после очистки необходимо 6 -12-кратное, а часто и большее разбавление их чистой водой для сохранения нормальной жизнедеятельности водных экосистем. Дело в том, что естественная самоочищающая способность водоемов и водотоков очень незначительна. Самоочищение наступает только в том случае, если сбрасываемые воды прошли полную очистку, а в водном объекте они были разбавлены водой в соотношении 1 : 12-15. Если же в водоемы и водотоки сточные воды поступают в большом объеме, а тем более и неочищенными, постепенно теряется устойчивое природное равновесие водных экосистем, нарушается их нормальное функционирование.

В последнее время разрабатываются и внедряются все более эффективные методы очистки и доочистки сточных вод после их биологической очистки с применением новейших способов обработки стоков: радиационных, электрохимических, сорбционных, магнитных и др. совершенствование технологии очистки сточных вод, дальнейшее повышение степени очистки - важнейшие задачи в области охраны вод от загрязнения.

Значительно шире следует применять доочистку очищенных сточных вод на земледельческих полях орошения (ЗПО). При доочистке сточных вод на ЗПО не затрачиваются средства на их индустриальную доочистку, создается возможность получать дополнительную сельскохозяйственную продукцию, значительно экономится вода, так как уменьшается забор свежей воды для орошения и отпадает необходимость в расходовании воды для разбавления сточных вод. При использовании на ЗПО городских сточных вод содержащиеся в них питательные вещества и микроэлементы усваиваются растениями быстрее и полнее, чем искусственные минеральные удобрения.

К числу важных задач относится также предотвращение загрязнения водоемов пестицидами и ядохимикатами. Для этого требуется ускорить проведение противоэрозионных мероприятий, создать пестициды, которые разлагались бы в течение 1-3 недель без сохранения ядовитых остатков в культуре. До решения же этих вопросов необходимо ограничить сельскохозяйственное использование прибрежных зон вдоль водотоков или не применять в них пестициды. Большего внимание требует и создание водоохранных зон.

В защите водных источников от загрязнения важное значение имеет введение платы за сброс сточных вод, создание комплексных районных схем водопотребления, водоотведения и очистки сточных вод, автоматизация контроля за качеством воды в водоисточниках и разработка методов управления качеством. Следует отметить, что комплексные районные схемы позволяют перейти к повторному и многократному использованию воды, эксплуатации общих для района очистных сооружений, а также автоматизировать процессы управления работой водопровода и канализации.

В предотвращении загрязнения природных вод велика роль охраны гидросферы, поскольку приобретенные гидросферой отрицательные свойства не только видоизменяют водную экосистему и угнетающе действуют на ее гидробиологические ресурсы, но и разрушают экосистемы суши, ее биологические системы, а также литосферу.

Необходимо подчеркнуть, что одной из радикальных мер борьбы с загрязнением служит преодоление укоренившейся традиции рассматривать водные объекты в качестве приемников сточных вод. Там, где это возможно, следует исключить в одних и тех же водотоках и водоемах либо забор воды, либо сброс сточных вод. (13)

4. Проблемы рационального использования водных ресурсов и пути их решения

4.1 Регулирование стока рек водохранилищами

Одно из наиболее существенных водохозяйственных мероприятий по преобразованию гидрологического режима рек с целью выравнивания естественной неравномерности стока во времени - создание искусственных водоемов. Влияние этих водоемов на сток рек проявляется во внутригодовом и многолетнем перераспределении водности, смене русловых процессов, изменении особенностей затопления русл и пойм рек, режима наносов, теплового стока рек и ледовых условий, а также характера и интенсивности испарения с водной поверхности, водного режима рек ниже плотины, жидкого и твердого стока.

Наиболее распространено сезонное регулирование, основанное на задержании в водохранилище и использовании в первую очередь весенних расходов. Оно необходимо в случаях несоответствия между режимом водопотребления и годовым распределением стока. Когда приходится распределять и межгодовой сток, регулирование носит многолетний характер. Для этого требуются довольно крупные водохранилища, что ведет к дополнительным затоплениям земель при их создании. Суточное и недельное регулирование стока реки заключается в его перераспределении в течение суток (обычно между дневными и ночными часами) и недели (с уменьшением стока воды в нижний бьеф в выходные и праздничные дни). Кроме того, регулирование стока может быть раздельным и совместным. При раздельном регулировании режим эксплуатации водохранилищ в бассейне автономен, при совместном - режимы на всех ГЭС бассейна взаимоувязываются. Причем во втором случае крупные ГЭС с энергетически более емкими водохранилищами компенсируют колебания отдачи энергии менее емкими.

Чтобы учесть все особенности регулирования речного стока для каждой конкретной ГЭС и ее водохранилища, составляются основные правила использования водных ресурсов этих объектов. Правила определяют режим эксплуатации прежде всего крупных водохранилищ.

В результате регулирования речного стока меженный сток увеличивается на 25%, что существенно улучшает обеспечение народного хозяйства водой.

С развитием работ по регулированию стока рек появляется необходимость в специализированных попусках из водохранилищ в нижний бьеф для дополнительного обводнения, а часто и для создания искусственных паводков на нижележащих участках. Они выполняются по разным причинам: в интересах рыбного хозяйства в низовьях реки, для ликвидации иссушения и остепнения поймы, поддержания хорошего санитарно-экологического состояния воды в нижнем бьефе. Если раньше эта мера считалась временной, связанной с крайним маловодьем года или другими подобными обстоятельствами, то теперь такие попуски стали регулярными, хорошо улучшающими природно-экологические условия в нижнем бьефе. Например, управляемый весенний паводок, который осуществляется ежегодно из Волгоградского водохранилища, имеет место на нижней Волге.

В последние годы создано множество малых и средних водохранилищ, отличающихся по ряду показателей от крупных. Поэтому особое значение приобретает оценка влияния таких водохранилищ на зарегулированный ими сток рек.

Воздействие водохранилищ на потери речного стока во времени можно оценивать в виде суммы одноразовых и постоянных затрат воды. К одноразовым потерям относятся затраты воды на заполнение водохранилищ, пополнение запасов подземных вод за счет поверхностного стока до момента наступления установившегося режима. Постоянные потери воды определяются испарением с дополнительной водной поверхности и безвозвратным водопотреблением на хозяйственные нужды (орошение, водоснабжение и др.)

Значительная часть малых и средних водохранилищ предназначается для суточного или недельно-суточного регулирования стока, т.е. достаточно плавный ход суточных и недельных колебаний расходов воды в реке необходимо перераспределить в соответствии с хозяйственными нуждами. Преобразование гидрологического режима реки при наличии водохранилища суточного регулирования наиболее ярко проявляется в увеличении суточной амплитуды колебания расходов воды. Для количественной оценки этих изменений в гидрологическом режиме реки рекомендуется построение гистограмм распределения суточных амплитуд расходов воды по пунктам в верхнем и нижнем бьефе водохранилища, так и за время его эксплуатации. Подобные построения дают четкое количественное представление о происшедших изменениях в режиме зарегулированной реки.

Наиболее отчетливо результат зарегулирования обнаруживается в снижении относительной доли стока за тот месяц, на который приходится основная доля стока при естественном режиме. Для рассмотренной территории максимальная доля стока отмечается в основном в марте-апреле. Повышение же доли стока за летний период незначительно, так как сработка водохранилища осуществляется обычно в течение 5-6 месяцев, а иногда и более.

При малых долях полезного объема водохранилища от годового объема стока изменение внутригодового распределения стока происходит в пределах естественной изменчивости исследуемого процесса, которая для рассмотренных районов велика. В случаях наиболее значительного внутригодового распределения стока изменение доли стока, приходящейся на месяц с максимальными значениями, достигает 20-25%. (11)

4.2 Территориальное перераспределение стока рек

Многие ученые и проектные организации страны ведут исследования по освоению земель, рассуждают о мерах по дальнейшему развитию мелиорации земель и их сельскохозяйственному использованию с целью наращивания производства сельскохозяйственной продукции. В ряде районов, особенно южных, для такого развития нужны не только сельскохозяйственные угодья, но и значительные водные ресурсы. Чтобы обеспечить наличие этих ресурсов в районах, где они исчерпаны, необходимы большие работы по перераспределению речного стока. Такие работы ведутся в стране давно, созданы многочисленные системы перераспределения вод, общий объем которых оценивается более чем в 110 км3. Только крупных каналов с забором воды в их головной части свыше 1,0 км3/год около 20. Они пропускают в зависимости от водности года от 75 до 90 км3. Их суммарная пропускная способность составляет 7,5 тыс. м3/с.

При разработке схемы перераспределения стока сибирских рек на юг вопросам изменения природных условий Западной Сибири не уделялось должного внимания. Широкое обсуждение этой проблемы позволило бы определить ряд специфических природных изменений, которые могут возникнуть в Западной Сибири при изъятии части речного стока для Средней Азии. Наиболее существенные задачи в научной разработке комплексной оценки изменения природной среды при переброске части стока рек Сибири на юг и создании методики эколого-географического прогноза этих явлений в будущем следующие:

1) выработка научно обоснованных рекомендаций по характеру использования различных видов природных ресурсов в условиях преобразования режима сибирских рек;

2) разработка методики эколого-географического и экономико-географического обоснования оптимальных вариантов переброски части стока сибирских рек с учетом максимальной эффективности намечаемых мероприятий по мелиорации не только засушливых районов Средней Азии, но и переувлажненных районов Сибири;

3) оценка ожидаемых изменений гидрологического режима рек при частичной переброске их стока на юг и выработка рекомендаций по устранению отрицательного влияния перераспределения стока на народное хозяйство Сибири;

4) создание методики инженерно-геологических, гидрогеологических расчетов и гидрологических расчетов и прогнозов изменения водного режима рек и их влияния на прилегающие территории суши у создаваемых водохранилищ и каналов по трассам переброски стока. (11)

4.3 Использование и восполнение подземных вод

Основными типами разведанных месторождений являются: грунтовые воды аллювиальных отложений речных долин (60% от разведанных запасов вод); напорные воды артезианских бассейнов платформенного и геосинклинального типа (15%); напорные воды межгорных впадин и конусов выноса (10%); трещинно-карстовые воды карбонатных пород (8%).

Подземные воды используются весьма широко и главным образом для питьевого водоснабжения, так как они более стабильны по своим качествам, менее подвержены загрязнению, чем поверхностные.

Общее потребление подземных вод в целом по стране составляет примерно 50% от потенциальных эксплуатационных. В связи с широким использованием подземных вод, необходимостью охраны встает проблема рациональной эксплуатации и защиты их от истощения.

Наиболее существенные изменения в режиме подземных вод отмечаются при различных видах эксплуатации недр (добыча полезных ископаемых), гидротехническом и жилищном строительстве. Велико воздействие на качество подземных вод сельского и коммунального хозяйства. В результате возникает ряд отрицательных последствий, связанных в первую очередь с загрязнением и засолением прилегающих земель, истощением водоносных горизонтов, деформацией поверхности и возникновением просадок грунта. Часто эти явления оказываются необратимыми и потребление таких подземных вод становится недопустимым.

В то же время при научно обоснованном планировании использования подземных вод и проведения всех необходимых охранных мероприятий имеются реальные возможности для длительной их эксплуатации.

Искусственное восполнение подземных вод осуществляется путем применения инженерно-геологических методов при благоприятных условиях просачивания в грунт поверхностных вод. В результате становится возможным сезонное искусственное восполнение запасов подземных вод. Оно реализуется за счет перевода поверхностных вод в водовмещающие породы посредством инфильтрационного питания подземных вод. Естественно, это предполагает наличие подземных водовмещающих водоносных горизонтов или специальных подземных емкостей.

Следует указать, что во всех случаях пополнения подземных вод за счет закачки поверхностных и их последующей фильтрации создаются условия для улучшения качественного состава вод.

Широко известны и частично обратимые процессы, когда уровень подземных вод восстанавливается после откачки подземных вод при их движении от областей питания к водозаборам. Но эти процессы не могут быть сопоставимы с разнообразным влиянием хозяйственной деятельности человека на подземные воды и их загрязнением. (10)

4.4 Современное и перспективное использование вод повышенной минерализации

Как было показано, запасы пресных вод на планете сокращаются. В ряде районов земного шара, в которых потребность в пресной воде ранее удовлетворялась, теперь возник острый дефицит воды. Речь идет прежде всего о пустынных районах, где были открыты и начали разрабатываться месторождения нефти, цветных металлов и т. д., например на Аравийском полуострове, в Средней Азии, а также о многих преимущественно небольших островах в Мировом Океане, ставших в последние десятилетия центрами международного туризма или превращенных в военные базы.

Один из путей пополнения запасов пресных вод - опреснение солоноватых и соленых. Опреснение вод повышенной минерализации обходится подчас значительно дешевле, чем доставка пресной воды из других районов. Ареал распространения солоноватых и соленых вод за последние десятилетия несколько расширился в связи с уменьшением стока рек вследствие забора воды на хозяйственные нужды и вторжения в заливы, эстуарии и дельты рек соленых морских вод. Но, пожалуй, об опреснении как глобальной проблеме можно было бы не вести речь, если бы пресные воды не осолонялись в процессе промышленного и сельскохозяйственного производства. Минерализация речных вод во всех районах орошения постепенно нарастает, достигнув кое-где 2-3 г/л, и продолжает увеличиваться. То же происходит и в ряде промышленных районов. Постоянно повышается соленость поверхностных вод практически во всех районах размещения добывающей промышленности. Особенно много соленых вод откачивается в угольных бассейнах. Непрерывно возрастает соленость оборотных вод в связи с переводом большинства предприятий на оборотное водоснабжение. Вот почему в настоящее время мы являемся свидетелями первых, но существенных шагов, которые делает человечество в области уже не экспериментальной, а производственной деминерализации воды.

Опреснение соленой воды производится либо удалением из нее солей, либо извлечением молекул воды. Наиболее развит метод дистилляции (выпаривание воды с последующей конденсацией пара). Этим методом сегодня получают свыше 60% опресненной воды, предназначенной для питьевых целей. Все более широко распространяется метод опреснения обратным осмосом. Он основан на фильтровании воды через полупроницаемые мембраны, пропускающие молекулы воды, но задерживающие ионы солей в их гидратной оболочке.

Особый интерес был проявлен к изучению пригодности для питьевых целей воды, получаемой опреснением, поскольку дистиллят, по внешним признакам принимаемый за чистейшую питьевую воду, на самом деле весьма далек по своим показателям от биологически полноценных вод. Ему свойственны крайне низкое содержание солей, а возможно, и особенности физической структуры. Это определило появление гигиенических требований к улучшению качества дистиллята, когда предполагается его использование для хозяйственно-питьевых целей. Были научно обоснованы и разработаны различные технологические приемы коррекции солевого состава глубокообессоленных вод.

Опреснительные установки работают более чем в 100 странах мира. Наиболее обеспечены опресненной водой (в пересчете на душу населения) прибрежные территории и острова в засушливой зоне планеты. Крупные опреснительные установки, практически полностью удовлетворяющие потребности отдельных объектов в пресной питьевой воде, расположены на юге США, юго-востоке Италии, средиземноморском побережье Ливии.

Перспективы опреснения соленых и солоноватых вод в значительной мере прояснены. Встает, однако, проблема снижения себестоимости опреснения воды. Сегодня в зависимости от мощности и типа опреснительных установок себестоимость опреснения 1 м3 воды на один-два порядка выше себестоимости 1 м3 воды, получаемого при зарегулировании и территориальном перераспределении речного стока. Но поскольку возможности обеспечения водой указанными способами не беспредельны и через 40-50лет будут практически исчерпаны, значение проблемы опреснения воды становится все более очевидным. Обессоливание вод, несомненно, сыграет важную роль и в спасении рек и озер от судьбы сточных водных трактов, в которые они постепенно превращаются в связи со сбросом вод промышленностью и мелиоративными системами.

Мировой и отечественный опыт решения проблемы опреснения убедительно демонстрирует необходимость интеграции научных сил, когда речь идет о жизни человечества. На решение общих задач направлены усилия физиков-теоретиков и технологов, электрохимиков, специалистов по очистке воды и гигиенистов, конструкторов и микробиологов, инженеров по водоснабжению и физиологов, экономистов и географов… К числу труднейших задач относится энергетическое обеспечение предполагаемых технологических решений. Наиболее рациональные подходы связаны с развитием многоцелевых атомно-энергетических комплексов. Необходимы еще более продуктивные поиски методов опреснения воды и соответствующие научно-технические разработки. Мембранная технология опреснения, занимая все большее место в решении проблемы, требует качественного скачка в создании более совершенных и экономически приемлемых мембран, их массового производства. Еще не полностью раскрыты тайны биологической полноценности пресной воды, значимости ее состава для живущих и будущих поколений людей. Не ясна в технологическом и энергетическом плане и проблема утилизации рассолов, образующихся при опреснении вод, - еще одного источника минерального сырья.

Глобальность проблемы опреснения воды не вызывает сомнений. Ее решение позволит обеспечить жизнь в пустынях, на побережьях океанов и морей, спасти погибающие от засоления почв огромные массивы сельскохозяйственных угодий. Наконец, это один из эффективнейших способов очистки сточных вод промышленных предприятий. Однако следует помнить, что для широкого применения опреснения при решении водных проблем предстоит еще многое совершить и открыть. (5)

5. Экономика использования водных ресурсов

Ценность воды, как и других природных ресурсов, заключается в том, что при ее использовании возникают доходы. Аналогично другим факторам производства вода участвует в создании продукта, величина которого зависит в том числе и от естественных свойств водоема. При наилучшем из возможных способов использования водоем приносит ренту. Проблема заключается в том, что, как и в случае с «ассимиляционным потенциалом» природной среды, достаточно трудно интернализировать эти доходы или потери, связанные с нерациональным использованием водоемов.

5.1 Максимизация доходов от использования водных ресурсов

Рассмотрим, какие меры должны быть приняты для того, чтобы максимизировать экономические результаты от эксплуатации водного объекта. Таким объектом может быть замкнутый водоем, участок реки, артезианская скважина и т. п. сами по себе или в совокупности с иммобильными фондами, обеспечивающими процесс их эксплуатации (гидротехнические сооружения и пр.). Тот, кто владеет фондами, обеспечивающими доступ к водоему, может оказывать существенное влияние на процесс образования и распределения рентных доходов.

Возрастающая потребность в воде вызывает необходимость хозяйственного освоения ее новых источников, различающихся по эксплуатационным свойствам (качество воды, удаленность от потребителя и т. п.), что создает объективные условия для образования дифференциальной ренты ?. Наращивание дополнительных затрат материальных и трудовых ресурсов на улучшение качественного состояния водного объекта, снижение потерь воды и т. д., способствует возникновению дифференциальной ренты ?.

Рассмотрим следующую обобщенную модель:

(1)

(2)

(3)

(4)

(5)

где ui (Ci,Vi) - доходы предприятий-водопользователей, получающих воду из водохозяйственной системы участка i; Ci - затраты предприятия; Vi - объем конечного потребления воды; Vj - объем воды, забираемой из водохозяйственной системы i; Mi - потери воды при ее подаче потребителю; Nj - затраты по переводу дополнительных ресурсов из категории потенциальных в категорию располагаемых (т. е. издержки по увеличению приходной части водохозяйственного баланса (ВБХ); ? Vj (Nj) - прирост располагаемых водных ресурсов источника i (на водохозяйственном участке i) при затратах Nj; Fi (Vi) - затраты по забору, подготовке, подаче и отведению воды; цi Mi - затраты по сокращению потерь воды или эксплуатации источника i до уровня M; Vj - объем располагаемых водных ресурсов (естественная продуктивность) источника i.

Критерий (1) означает, что выбирается такая стратегия водопотребления, при которой достигается наибольший эффект от использования водных ресурсов, относящихся к рассматриваемой системе взаимосвязанных источников (в практике они называются водохозяйственными участками). При этом неважно, что именно представляют собой источники. Главное, что между ними существует взаимосвязь и все они связаны последовательно. Ресурсы, на использовавшиеся полностью (за вычетом санитарного попуска Тє, т. е. минимального количества воды, которое должно обязательно быть в водоеме) на участке i, автоматически становятся дополнительными ресурсами на участке i+1. Это свойство формализовано при помощи неравенства (4).

Неравенство (2) означает, что суммарные затраты не должны превышать определенного уровня. Следует заметить, что и функциональная зависимость ui(Ci,Vi), и вид ограничения (2) выбирались таким образом, чтобы формализовать возможность замещения водного фактора затратами на другие виды деятельности. Подразумевается, что потребность в воде может удовлетворяться как за счет дополнительного вовлечения водных ресурсов в сферу хозяйственной деятельности (увеличение Vi), так и путем сокращения водоемкости производства - увеличение ui(Ci,Vi) при фиксированном значении Vi, благодаря наращиванию Ci.

Неравенство (3) устанавливает взаимосвязь между забором воды Vi, потерями при ее доставке потребителю Mi и конечным потреблением Vi. сокращение потерь как бы увеличивает приходную часть ВХБ. Поэтому борьбу с потерями можно весьма условно отнести к интенсивным мероприятиям, так как она направлена на улучшение промежуточных результатов функционирования водохозяйственного комплекса.

Рассматриваемая модель дает возможность определить предельные затраты на воду и рентную оценку водных ресурсов для всех участков, а также установить принципы водохозяйственного районирования, т. е. принципы выделения независимых друг от друга в экономическом отношении участков водной системы.

Рассмотрим основные свойства, полученные нами при анализе необходимых условий оптимальности. Пусть м - двойственная оценка к ограничению (2), а з и л - к системам ограничений (3) и (4). Тогда равенство (6) означает, что оценка воды на водохозяйственном участке i (обозначим ее ) равна разности между доходами от использования воды и затратами по удовлетворению потребностей в воде на заданном уровне.

Рассмотрим закономерности образования. Если каждый створ критический, т. е. на каждом водохозяйственном участке водохозяйственные ресурсы получают полное использование, то ; j=1, … , n и, следовательно, ; i=1, … , n-1. Иными словами, оценка воды в районах, расположенных ниже по течению реки, меньше, чем в расположенных выше. Это свойство вполне объяснимо. Если бы, например, выполнялось обратное и степень лимитированности воды на участке i оказалась выше, чем на участке i-1, то, сократив водопотребление выше по течению, несложно было бы добиться прироста критерия и уравнивания оценок.

Модель (1)-(5) позволяет обосновать критерий водохозяйственного районирования: если для некоторого , то на реке имеется критический створ, расположенный на выходе источника i. В этом случае образуется изолированный хозяйственный район с собственным водохозяйственным балансом. На практике это означает, что, решая вопрос об управлении водными ресурсами в конкретном районе, оптимизируя их использование. Не надо согласовывать данную стратегию со стратегией водопользования в других районах. Если для всех j , то все районы, лежащие выше по течению, включаются в рассматриваемый район.

Таким образом, критерием выделения обособленного водохозяйственного района является положительное значение . Тогда между районами i и i+1 имеет место критический створ, через который проходит только санитарный попуск.

Имеется еще один случай выделения обособленных водохозяйственных районов - при нелимитированности водного фактора. В терминах модели - это равенство нулю всех , i = 1, … , n. Наращивание потребления воды на одном участке не препятствует приросту водопотребления на других. Поэтому для каждого из них может быть составлен особый водохозяйственный баланс, оптимизируемый в пределах отдельно взятого района.

Затраты по привлечению дополнительных водных ресурсов путем перевода их из категории потенциальных в категорию располагаемых соответствует оценке ограниченности воды. Рассмотрим следующую ситуацию: = 0; i = 1, … , k-1; , или, что то же самое, = 0; i = 1; … ; k - 1, а 0. Предельные затраты по привлечению дополнительных водных ресурсов в районе k и во всех вышерасположенных районах совпадают и равны рентной оценке воды . Это означает. Что пополнение приходной части ВХБ района k может быть распределено в пространстве - главное, чтобы выполнялось приростных характеристик.

Предельные издержки по экономии воды составляют . Они определяются ее ценностью в конечном потреблении, когда вода выступает не только как природный ресурс, но и как продукт деятельности предприятий водообеспечения. Разница в оценке воды (как природного ресурса) и (как природного ресурса и продукта производственной деятельности) может быть существенной.

В модели была принята гипотеза, что основная масса потерь приходится на заключительные стадии водоснабжения. Это действительно так, поскольку в крупных городах вода теряется в основном во внутрирайонных (60 - 70% потерь) и во внутридомовых сетях. Осуществляя затраты по экономии воды на данных объектах, мы тем самым экономим на издержках по водоснабжению и сохраняем естественный ресурс. Снижая нагрузку на источник. Этим и объясняется высокий уровень приемлемых - с точки зрения рационального использования - предельных издержек, которые связаны с реализацией мероприятий, направленных на борьбу с потерями.

Говоря о предельных затратах на воду, следует выделять две ее характеристики: вода в источнике, выступающая как природный ресурс, и вода в конечном потреблении (вобравшая в себя затраты по ее доставке потребителю, предварительной очистке и водоотведению). Наряду с этим вода может удовлетворять и новый спектр потребностей, а ее использование - приносить большие доходы.

Таким образом, мы имеем дело с несколькими категориями. Ценность воды, или цена воды, находящейся в источнике, определяется суммой, которую водопотребитель, осуществляющий забор воды, платит за нее. Оценка источника - разность между выручкой от продажи забранной из него воды и затратами на содержание источника. Оценка воды у конечного потребителя - цена воды, которую он платит за воду, получаемую из водопровода. Наконец, доход организации, осуществляющей забор воды из источника и ее подачу потребителю, - это разница между ценой водопроводной воды и затратами на ее подачу, включая цену, затраченную на забор воды из источника.

Разграничение названных категорий имеет принципиальное значение при установлении тарифов на воду. Потребитель может забирать воду непосредственно из источника и, следовательно, участвовать в его эксплуатации наряду с другими предприятиями, включая систему водопровода, управления оросительных систем и т. п., а может получать воду опосредованно, пользуясь услугами указанных организаций. (8)

5.2 Экономическая оценка воды и плата за ее использование

Рассмотрим сначала предельные затраты на воду в источнике. Они, как было установлено, равны . в приведенной выше модели мы абстрагировались от текущих затрат по эксплуатации источника, принимая их равными нулю. В результате мы сделали вывод о том, что рентная оценка равна предельным затратам. Если же предусмотреть, что на поддержание продуктивности водоемов нам надо затрачивать средства в объеме f, то мы получим вполне традиционную формулу для измерения ренты в расчете на 1 м3 воды: R = - f. Затраты по переводу водных ресурсов из категории потенциальных в категорию располагаемых формируют вложения в иммобильные фонды. Их эффект отражен в рентной оценке воды. Поэтому, учитывая эксплуатационные затраты, можно заключить, что размер предельных издержек по данному кругу мероприятий не должен превышать разницы - f. Это следует из проводившегося ранее анализа оптимальных затрат при освоении природного объекта. Итак, предельные затраты на воду, должны лежать в основе тарифа за ее забор из источника, независимо от того, кем этот забор осуществляется.

Рисунок 1 - Определение равновесного тарифа на воду

1 - кривая предельных затрат водной компании на подачу воды с учетом того, что Р0 было заплачено за забор воды из источника; 2 - кривая спроса на воду; S1 - заплачено водной компанией за забор воды из источника; S2 - затраты водной компании по забору воды, на ее подачу и т. п.; S3 - рента, которую приносит водохозяйственный комплекс; S4 - рента, которую получает потребитель.

Теперь обратимся к другой величине, характеризующей доходы то использования воды в конечном потреблении

Величина конечного потребления должна интерпретироваться как цена на воду или как тариф, который водная компания получает с потребителя воды, с точки зрения теории, этот тариф определяется доходом от использования воды самым последним потребителем, чьи потребности удовлетворяются водной компанией. Таким образом, должно соблюдаться соотношение, приведенное на рисунке 1.

Р*V* = S1+S2+S3 - такова будет выручка водной компании, если вода будет продана по тарифу Р*. В реальности дело обстоит совсем не так. Водная компания - это монополия, и практически абсолютная. К тому же монополия, которая в буквальном смысле слова контролирует трубу и регулирует воду, подаваемую каждому потребителю, а вместе с тем и тариф. Поэтому рисунок 1 не очень соответствует ситуации. С точки зрения теории здесь складываются все предпосылки для ценовой дискриминации. Монополия старается отнять у потребителя полученную им ренту S4 путем введения дифференцированных тарифов.

В свою очередь государство старается регулировать монополию, добиваясь не только того, чтобы монополия не отнимала у потребителей S4, но и для того, чтобы монополия не получила рентный доход S3. Реальные тарифы складываются в процессе переговоров. В конечном счете возникающая рента каким-то образом перераспределяется.

Особый интерес представляют вопросы оценки запасов подземных вод. Если их источники расположены в пределах территории, обслуживаемой централизованной системой водоснабжения, то предельные затраты определяются, исходя из уровня Р*. последние корректируются в большую или меньшую сторону в зависимости от качества подземных вод и воды, получаемой из водопровода.

В основе рентной оценки подземной воды наряду с эффектом, приносимым водными ресурсами данного региона, лежит еще и экономия затрат по ее доставке потребителю (так. Скважину можно пробурить достаточно близко к потребителю). Если же централизованная система водоснабжения отсутствует или оцениваемый источник находится вне сферы ее обслуживания, то 1 м3 подземной воды оценивается по предельному эффекту у потребителя, определяемому экономией затрат по удовлетворению потребности из поверхностных источников.

Нередки ситуации, когда подземный источник не имеет самостоятельного значения и используется только в совокупности с другими ресурсами, находящимися в монопольном пользовании предприятия, к которому он относится. Тогда оценка подземного источника отдельно не рассчитывается, а измеряется общая оценка объекта природопользования, в основе которой лежит эффект совместного использования подземных вод и других ресурсов. Аналогично поступают, когда идет речь о локализованном источнике поверхностных вод. (8)

5.3 Экономическая оценка воды и плата за загрязнение водоемов

Рассмотрим взаимосвязи оценок водных ресурсов и ассимиляционного потенциала водоемов. Решение этой проблемы имеет большое значение при разработке согласованной системы тарифов за забор свежей воды и сброс загрязненных стоков.

Для того чтобы уяснить взаимосвязь платежей за забор свежей воды и сброс в водоем загрязненных примесей, обратимся к абстрактной модели рационального использования водных ресурсов в рамках региона (изолированного водохозяйственного района).

В модели, разработанной для обособленного водохозяйственного района, рассматриваются следующие зависимости: u(C, D) - доход от использования продукции, произведенной в данном регионе при уровне загрязнения водоема D. , так как рост загрязнения водоема, выражающийся в увеличении D, приводит к потерям дохода. Величина D показывает, насколько концентрация загрязнителей, содержащихся в водоеме, превосходит уровень предельно допустимой концентрации (ПДК). Если фактическая концентрация загрязнителя не превосходит ПДК, то D равно 0. В противном случае D › 0. Сложив значения D и ПДК и умножив полученную сумму на объем водных ресурсов, получим количество примесей, содержащихся в водоеме. F(C, D) - затраты на производство продукции в объеме c при качестве воды на уровне D. Предполагается, что, забирая загрязненную воду, производители вынуждены осуществлять дополнительные затраты по доведению ее качества до требуемых норм.


Подобные документы

  • Водные ресурсы и их использование. Водные ресурсы России. Источники загрязнения. Меры по борьбе с загрязнением водных ресурсов. Естественная очистка водоемов. Методы очистки сточных вод. Бессточные производства. Мониторинг водных объектов.

    реферат [36,9 K], добавлен 03.12.2002

  • Охрана поверхностных вод от загрязнения. Современное состояние качества воды в водных объектах. Источники и возможные пути загрязнения поверхностных и подземных вод. Требования к качеству воды. Самоочищение природных вод. Охрана воды от загрязнения.

    реферат [27,5 K], добавлен 18.12.2009

  • Водные ресурсы: понятие и значение. Водные ресурсы Алтайского края. Водные экологические проблемы города Барнаула и пути их решения. Подземные воды как источник питьевого водоснабжения. О методах очистки воды. Вода и ее уникальные термические свойства.

    реферат [18,7 K], добавлен 04.08.2010

  • Водные ресурсы и их роль в жизни общества. Использование водных ресурсов в народном хозяйстве. Охрана вод от загрязнения. Проблемы рационального использования водных ресурсов и пути их решения. Качество природных вод в России.

    реферат [113,8 K], добавлен 05.03.2003

  • Круговорот воды в природе, поверхностные и грунтовые воды. Проблемы водоснабжения, загрязнение водных ресурсов. Методические разработки: "Водные ресурсы планеты", "Исследование качества воды", "Определение качества воды методами химического анализа".

    дипломная работа [105,2 K], добавлен 06.10.2009

  • Общая характеристика водных ресурсов в Республике Молдова и Кагульском районе. Озера и пруды, реки и ручьи, подземные воды, минеральные воды. Экологические проблемы, связанные с состоянием водных ресурсов, проблемы водоснабжения Кагульского района.

    курсовая работа [845,2 K], добавлен 01.09.2010

  • Антропогенное воздействие на водные ресурсы Костанайской области, загрязнение поверхностного стока и подземных вод, как следствие добычи и переработки руды. Проблемы контроля качества воды реки Тобол, как главного источника водоснабжения региона.

    дипломная работа [256,9 K], добавлен 03.07.2015

  • Характеристика водных ресурсов России. Последствия их перерасхода. Гидросфера и источники ее загрязнения. Эвтрофикация водоёмов. Круговорот воды в природе, антропогенное воздействие на него. Расчёт платы за сброс загрязняющих веществ в водные объекты.

    реферат [42,7 K], добавлен 16.12.2012

  • Водные ресурсы и их использование. Загрязнение водных ресурсов. Водохранилища и гидротехнические сооружения. Мелиорация. Самоочищение водоемов. Санитарные условия спуска сточных вод. Охрана водных ресурсов.

    реферат [28,0 K], добавлен 05.06.2002

  • Состояние качества воды в водных объектах. Источники и пути загрязнения поверхностных и подземных вод. Требования к качеству воды. Самоочищение природных вод. Общие сведения об охране водных объектов. Водное законодательство, водоохранные программы.

    курсовая работа [2,6 M], добавлен 01.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.