Биосфера и ландшафты Земли

Изучение основных особенностей биосферы и ее роли в экосфере. Принципы биотического управления экосферой и роль деятельности человека. Современные ландшафты мира. Проблемы обезлесения, опустынивания и сохранения биологического разнообразия Земли.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 15.08.2017
Размер файла 52,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Биосфера и ландшафты Земли: влияние деятельности человека

1. Основные особенности биосферы и ее роль в экосфере

В научной литературе встречается разнозначное толкование понятий, обозначаемых словом «биосфера». Согласно одному, более широкому, биосфера -- это область существования живого вещества. В этом смысле биосферу понимал В. И. Вернадский и в этом же смысле оно часто встречается в литературе, в особенности популярной. Понятие «биосфера» во многом совпадает с понятием или географической оболочки, или экосферы, и потому в таком смысле в этой книге не используется. В более узком смысле биосфера -- одна из геосфер Земли. Это область распространения живого вещества, и именно в таком смысле мы рассматриваем биосферу.

Биосфера сконцентрирована в основном в виде относительно тонкой пленки на поверхности суши и преимущественно (но не исключительно) в верхних слоях океана. Она не может функционировать без тесного взаимодействия с атмосферой, гидросферой и литосферой, а педосфера без живых организмов просто не существовала бы.

Наличие биосферы отличает Землю от других планет Солнечной системы. Особо следует подчеркнуть, что именно биота, то есть совокупность живых организмов мира, создала экосферу в том виде, как она есть (или, точнее, какой она была до начала активной деятельности человека), и именно биота играет важнейшую роль в стабилизации экосферы. Кислородная атмосфера, глобальный круговорот воды и ключевая роль углерода и его соединений связаны с деятельностью биоты и характерны только для Земли. Биота играет значительную, если не определяющую, роль во всех глобальных биогеохимических циклах. В основном благодаря биоте обеспечивается гомеостазис экосферы, то есть способность системы поддерживать ее основные параметры, несмотря на внешние воздействия, как естественные, так и, в возрастающей степени, антропогенные.

Процесс фотосинтеза, то есть создания живого вещества из неживого, обеспечивает устойчивое образование важнейшего из природных ресурсов -- первичной биологической продукции.

2. Биотическое управление экосферой и роль деятельности человека

Величина первичной биологической продукции -- это общее количество органического вещества, создаваемого в ходе фотосинтеза за единицу времени (обычно за год) на определенной площади. Как правило, в литературе рассматривается «чистая» первичная биологическая продуктивность, представляющая общую биопродуктивность за вычетом расхода органического вещества на дыхание растений.

Величины биопродуктивности выражаются обычно или в массе органического вещества (в сухом состоянии), или в массе содержащегося в нем углерода. Средний коэффициент пересчета от массы органического вещества к массе углерода принимается равным 0,45, а чтобы получить величину массы органического вещества из массы углерода необходимо последнее умножить на 2,2. Удельные величины биологической продуктивности выражаются обычно в г/кв. м или в т/кв. км за год, а в российской литературе также и в центнерах с гектара за год.

Вследствие сложностей расчетов или полевых измерений биомассы и ее прироста, величины биопродуктивности, полученные различными исследователями, заметно различаются. Для суши мира она составляет около 130 млрд т органического вещества в год, или около 60 млрд т углерода. Для Мирового океана эти величины соответственно -- 90 млрд т и 40 млрд т. Общемировая величина «чистой» первичной биологической продуктивности порядка 220 млрд т за год в органическом веществе, или приблизительно 100 млрд т углерода. Средняя для мира удельная биологическая продуктивность составляет приблизительно 430 г/кв. м, или 43 ц/га. Средняя для всей свободной от ледников суши удельная продуктивность органического вещества равна около 1000 г/кв. м, или 100 ц/га. Для океана эта величина равна всего лишь 250 г/кв. м, или 25 ц/га.

Фитомасса составляет подавляющую часть биомассы суши, а масса лесов представляет 87% фитомассы. Подавляющая часть массы живого вещества находится на суше, но вследствие большего, чем на суше, количества беспозвоночных и микроорганизмов, отличающихся более высокой скоростью метаболизма, океан производит за год лишь вдвое меньше первичной биологической продукции, чем суша.

Общая масса живого вещества Земли составляет величину порядка 1300 млрд тонн, или 590 млрд т углерода. Общая масса неживого органического вещества в биосфере оценивается в 3200 млрд тонн, что приблизительно соответствует 1300 млрд т углерода (А1сашо, 1994).

Первичная биологическая продукция является основой жизнедеятельности большинства живых существ. Она расходуется на питание на всех трофических уровнях экологической пирамиды. В предшествующих главах мы уже говорили, что баланс углерода как для экосферы в целом, так и для первичных (незатронутых человеком) экосистем замыкается с весьма высокой степенью точности. Можно сказать, что в масштабе времени до 1000 лет для первичных экосистем существует квазистационарный баланс источников и стоков.

Результирующая баланса за год в этом масштабе времени составляет весьма малую величину, как правило, всего лишь порядка 0,1% от величины биопродуктивности, но именно она предопределяет естественную эволюцию экосистем. Остаточный член баланса органического вещества (или баланса углерода) называется чистой экосистемной продуктивностью. Если экосистемная продуктивность положительна, то это указывает на накопление углерода в экосистеме, и наоборот.

Вследствие деятельности человека величина экосистемной продуктивности углерода (то есть степени разомкнутости его баланса в экосистеме) возрастает и начинает оказывать решающее влияние на глобальные геоэкологические процессы. В разделе, посвященном факторам парникового эффекта, например, указывалось, что вследствие антропогенного преобразования экосистем, главным образом в тропической и экваториальной зонах, в атмосферу из ландшафтов Земли (то есть из биосферы) выносится 1,6±1,0 млрд т углерода в год, что составляет уже 3% первичной продукции, а это говорит о высокой степени разомкнутости баланса углерода и органического вещества экосферы.

Одна из моделей современного цикла углерода для суши показала, что при глобальной чистой первичной продукции экосистем суши, равной 60,6 млрд т углерода в год, экосистемная продукция составила 2,4 млрд т углерода, или 4% первичной продукции. На 2050 г. ожидается, что чистая первичная продукция составит 82,5 млрд т в год при экосистемной продукции, равной 8,1 млрд т. Таким образом, степень разомкнутости увеличится до 10%, что указывает на прогрессирующее неблагополучие экосферы, если только стратегия человечества в отношении проблем геоэкологии не будет коренным образом изменена.

Процесс фотосинтеза -- основа жизнеобеспечения на Земле, а его результат -- биологическая продукция -- наиважнейший возобновимый ресурс. Эти 220 млрд тонн органического вещества в год -- главнейший возобновимый ресурс Земли, обеспечивающий сельское хозяйство, лесоводство, рыбное хозяйство и другие сектора экономики, связанные с использованием возобновимых природных ресурсов.

Еще более важна роль биологической продукции и биоты в целом в обеспечении устойчивого функционирования экосферы. Об этой наиважнейшей стабилизирующей роли биоты часто забывают. Синтез и соответствующая ему деструкция органического вещества лежат в основе глобального биогеохимического цикла углерода, а в локальном плане -- в основе устойчивости экосистем. При этом, согласно В. Г. Горшкову , на глобальном уровне синтез и деструкция балансируются с точностью порядка 10"4 для промежутков времени продолжительностью порядка 10 000 лет.

Антропогенное нарушение глобальных и локальных циклов углерода связано со многими факторами. Суммарная для мира первичная биологическая продуктивность неизмененных человеком ландшафтов («потенциальных ландшафтов») представляет, по-видимому, верхний предел глобальной естественной биопродуктивности. Антропогенные воздействия, преобразующие ландшафты, приводят, как правило, к снижению биопродуктивности. Например, земледелие в мире использует 15 млн кв. км земли, на которых выращивается примерно 2500 млн т сельскохозяйственных продуктов (в сухом весе). Таким образом, средняя урожайность составляет 17 ц/га, в то время как средняя биологическая продуктивность суши равна 43 ц/га.

Значительна роль биоты в глобальном гидрологическом цикле. Поскольку живое вещество приблизительно на 90% состоит из воды, то ежегодно биота связывает во вновь фотосинтезированном органическом веществе 60 млрд т углерода и порядка 500 куб. км воды. В процессе синтеза органического вещества растительность пропускает сквозь себя на два порядка больше воды, чем то количество, которое в конце концов оказалось связанным в органическом веществе. Эта вода забирается растениями из почвенной влаги, участвует в функционировании растений, а затем транспирирует в атмосферу. Таким путем в биологическом звене глобального круговорота воды (гидрологического цикла) участвует около 30 тыс. куб. км воды в год. Это около 25% суммарного количества осадков, выпадающих на поверхность суши. биосфера биотический ландшафт опустынивание

Величина солнечной энергии, используемой для построения органического вещества в процессе фотосинтеза, составляет 133х1012 ватт. Это в 13 раз больше общемирового потребления энергии человеком, но всего лишь 0,16% приходящей к поверхности Земли солнечной радиации. Отношение затрат энергии на синтез биомассы к общему количеству поглощенной солнечной радиации находится в пределах от 0,1 до 1%, а в среднем порядка 0,5% (М. И. Будыко). Средняя величина коэффициента использования фотосинтетически активной солнечной радиации (ФАР), приходящей в течение вегетационного периода, растительным покровом территории бывшего СССР составляет примерно 0,8%, с колебаниями от 0,1% в пустынях Средней Азии до 1,8--2,0% на Черноморском побережье Кавказа. Средний для СССР коэффициент использования суммарной солнечной радиации составляет около половины коэффициента использования ФАР, или примерно 0,4%.

Величины коэффициента использования солнечной радиации для синтеза первичной продуции на первый взгляд кажутся весьма низкими. Некоторые специалисты рассматривают повышение первичной биологической продуктивности как один из важнейших путей решения фундаментальных проблем человечества, таких как его обеспечение продовольствием или энергией. Казалось бы, решить эту задачу можно посредством увеличения доли ассимилируемой солнечной энергии. Однако усилия в этом направлении пока безуспешны, и можно полагать, что природа не случайно установила для себя столь низкий к.п.д., потому что антропогенная разбалансированность этого соотношения может привести к серьезным нарушениям глобального баланса углерода и, следовательно, к нарушениям устойчивости экосферы.

Передача энергии в пределах экологической пирамиды от первичной биологической продукции к более высоким уровням сопровождается значительными потерями энергии. Отношение биомассы организмов к количеству потребляемого ими органического вещества обычно не превышает 10--20%. При перемещении к более высоким трофическим уровням это приводит к быстрому сокращению биомассы и потребляемой ею энергии. В природных экосистемах с одного трофического уровня экологической пирамиды переходит на другой ее уровень в среднем не более 10% энергии (и вещества в энергетическом выражении).

Еще более жесткое соотношение обусловливает устойчивость природных систем: эмпирически установлено, что изменение энергетики системы в пределах всего лишь 1% выводит ее из равновесного (квазистационарного) состояния. Не случайно доля суммарной радиации, используемой для устойчивого процесса фотосинтеза, составляет только 0,16% приходящей суммарной солнечной радиации.

В. Г. Горшковым было установлено, что в пределах биосферы биота сохраняет способность контролировать условия окружающей среды, если человек в процессе своей деятельности использует не более 1% чистой первичной продукции биоты. Остальная часть продукции должна распределяться между видами, выполняющими функции стабилизации окружающей среды. Следовательно, с точки зрения человечества, биота представляет собой механизм, обеспечивающий человека питанием (энергией) с коэффициентом полезного действия 1%, а 99% идет на поддержание устойчивости окружающей среды.

Если рассматривать человека как биологический вид, находящийся на вершине экологической пирамиды, то ему, по законам биологической экологии, полагалось бы на питание лишь несколько процентов производимой на суше первичной биологической продукции, то есть порядка 10 млрд тонн в год. Фактически, благодаря использованию пашни, пастбищ и лесов, человек поглощает сельскохозяйственные и лесные продукты общей массой 31 млрд т. Кроме того, вследствие деятельности человека, современная первичная продуктивность меньше исходной на 27 млрд т вследствие: а)деградации естественных ландшафтов и б)превращения естественных экосистем в антропогенные. Общее количество потребляемой и разрушаемой человеком биомассы суши равно 58 млрд т в год, или почти 40% биологической продукции суши. Эти величины, полученные в 1986 г. П. Витусе- ком с соавторами (США), стали широко известны в мире среди специалистов как еще один индикатор глобального экологического кризиса. Менее известно, что подобные выводы получены в России еще в 1980 г. В. Г. Горшковым.

Ясно, что потребление первичной биологической продукции человеком превосходит все мыслимые пределы уже сейчас. При дальнейшем росте населения мира его потребности можно будет удовлетворять только за счет потребностей других живых организмов, а это неизбежно, рано или поздно, приведет к катастрофической деградации биосферы и, следовательно, всей системы Земля. В проблемах деградации биосферы есть два наиболее серьезных аспекта: во-первых, как мы только что видели, чрезмерное, не соответствующее установленному природой уровню антропогенное поглощение и разрушение возобновимых биологических ресурсов и, во-вторых, снижение роли биосферы в стабилизации состояния экосферы. Обе проблемы чрезвычайно серьезны, но, вероятно, вторая проблема более важна, потому что она затрагивает основные, глубинные, системные процессы функционирования экосферы. Можно считать, что величина антропогенной доли поглощения и разрушения первичной биологической продукции суши -- важнейший геоэкологический индекс чрезвычайно неблагоприятного, кризисного состояния экосферы.

3. Современные ландшафты мира

Величина биологической продуктивности каждого участка земной поверхности зависит от соотношения тепла и влаги, поступающих к этому участку. Чем больше величина солнечной энергии, поглощаемой поверхностью земли, или, что то же, радиационного баланса, тем лучше условия для синтеза первичной биологической продукции. Однако это верно только в том случае, если этот участок получает оптимальное количество воды, то есть такое, когда количество осадков и величина испаряемости равны. Если осадков меньше, чем величина испаряемости, то биопродуктивность будет сдерживаться дефицитом влаги, и чем меньше влаги, тем хуже условия для прироста биомассы. А если осадков больше, чем может испариться, то переувлажнение почв также будет подавлять прирост.

Наибольшая величина первичной продуктивности характерна для влажных лесов экваториального пояса (около 4000 т/ кв. км в год). Субтропические леса производят порядка 2000 т/ кв. км, а тайга -- 700 т/кв. км. В этом ряду различных типов лесных ландшафтов определяющим фактором является тепло, то есть радиационный баланс.

Если взглянуть на картину распределения ландшафтов с точки зрения убывающего увлажнения, то саванны тропического пояса имеют биопродуктивность порядка 1500 т/кв. км, степи (в целом получающие меньше осадков по сравнению с саваннами) -- около 900 т/кв. км, а пустыни -- не более 200 т/кв. км.

Таким образом, не только величины тепла и влаги, но и их соотношение предопределяют величину первичной биологической продукции и, в конечном итоге, формирование основных типов растительности. При этом можно видеть, что, например, леса произрастают в условиях достаточного или избыточного увлажнения, но в зависимости от поступающего тепла принимают различный облик. С другой стороны, при сокращении увлажнения растительность становится все более сухолюбивой, так что при одном и том же радиационном балансе, но убывающем количестве осадков, мы наблюдаем направленное чередование типов растительности: от влажного леса к саванне, затем к степи и, наконец, к пустыне. Таким образом, распределение основных типов растительности не случайно, а подчиняется определенным закономерностям..

Им же подчиняются другие природные явления, такие как основные типы почв и геохимических процессов, особенности климата, водного баланса и режима, многие геоморфологические процессы и т. п. Это так называемый закон географической зональности, выведенный М. И. Будыко и А. А. Григорьевым.

Закон географической зональности позволяет описать не только пространственное распределение основных черт зональных процессов, но и их сочетаний в виде природно-территориальных комплексов, или ландшафтов . Это коренные (потенциальные) ландшафты, то есть такие, какие сейчас существовали бы на Земле, если бы на ней не действовал человек.

Деятельность человека весьма значительно преобразовала потенциальные ландшафты Земли. Значительные массивы земель (в прошлом степи, леса, саванны и пр.) были распаханы. Многие безлесные типы ландшафтов подверглись глубоким преобразованиям под влиянием продолжительного выпаса скота или антропогенных пожаров. Большие площади лесов вырублены, а часть первичных лесов сменилась на вторичные. Саванна преобразована человеком до такой степени, что трудно установить, какой она была до того, как человек начал там выпасать скот, выжигать траву перед сезоном дождей, вырубать деревья и кустарники. Работы по орошению и осушению земель коренным образом преобразовали аридные или переувлажненные территории. Построены города и другие населенные пункты, дороги, промышленные предприятия, появились карьеры и рудничные отвалы, земли с полностью смытой почвой и пр. Этот список антропогенных преобразований еще далеко не полон.

На 20-30% площади суши человек преобразовал ландшафты практически полностью. На территориях с высокой плотностью населения естественные экосистемы почти не сохранились. Вместо этого их территории на 40-80% заняты сельскохозяйственными землями, населенными пунктами, дорогами, промышленными сооружениями и прочими результатами деятельности человека. На остальной части встречаются вторичные или специально выращиваемые леса, деградировавшие земли и водохозяйственные системы, находящиеся, как правило, в далеко не идеальном состоянии. При этом внешне такие территории могут выглядеть благополучно (что и наблюдается, например, в Западной Европе или США), но фактически это области дестабилизации экосферы.

В результате некоторые зональные типы ландшафтов исчезли, другие были трансформированы, так что возникли антропогенные модификации природных ландшафтов. По нашим оценкам (Б. А. Алексеев и Г. Н. Голубев), из 96 зональных типов ландшафтов, выделяемых на равнинах мира, около 40 типов исчезли или были коренным образом преобразованы.

На многих остальных территориях произошли менее заметные изменения, часто невидимые, такие как изменения потоков химических веществ, изменения теплового или водного баланса и многие другие. Всего около 60% территории в той или иной степени преобразовано человеком.

Территорий, совсем неизмененных человеком, в мире не осталось. Даже в отдаленных от центров экономической деятельности областях, таких как Антарктида или северо-восток нашей страны, выпадения химических веществ из атмосферы изменили, хотя и в малой степени, первоначальное, доантропогенное состояние ландшафтов Земли. Деятельность племен охот- ников-собирателей, обитающих в слабо измененных ландшафтах, тем не менее также внесла свой вклад в антропогенное преобразование мира.

И все же большие территории на Земле остаются почти нетронутыми. Они играют огромную, общепланетарную роль в сохранении гомеостазиса экосферы, и потому должны рассматриваться как ценнейшее достояние всего человечества.

По степени антропогенной трансформации современные ландшафты Земли могут быть разделены на две большие группы: А. Коренные (или первичные) и Б. Природно-антропогенные. Ландшафты второй группы делятся на вторично-производные, антропогенно-модифицированные и техногенные.

Коренные (первичные) ландшафты -- это зональные типы ландшафта, не подвергшиеся прямому воздействию хозяйственной деятельности, то есть практически не трансформированные. В некоторых случаях на них могут повлиять локальные факторы хозяйствования в прошлом или настоящем, не приводящие, однако, к качественным изменениям ландшафта. Поэтому правильнее называть эти типы ландшафтов условно коренными.

Эта категория включает ландшафты ледниковых пустынь, некоторых тропических пустынь, подавляющую часть высокогорных районов, а также значительные части ландшафтов боре- альных лесов (то есть лесов умеренного пояса Северного полушария) и тундры. Сюда относятся также заповедники и другие строго охраняемые территории. Ряд исследователей рассматривает первичные (коренные) ландшафты как важнейший природный ресурс, играющий важную роль в экологической стабилизации системы Земля. В этой связи надо отметить, что Россия обладает наибольшей в мире площадью свободных ото льда коренных ландшафтов, то есть «дикой» природы.

Вторично-производные ландшафты это природно-антропогенные ландшафты, сформировавшиеся на месте первичных в результате хозяйственной деятельности в настоящем или прошлом, существующие в относительно устойчивом состоянии на протяжении десятилетий или первых столетий благодаря естественным процессам саморегулирования. Такие ландшафты отличаются хозяйственной деятельностью средней интенсивности, или же в малоизмененном ландшафте встречаются отдельные пятна высоко интенсивной деятельности.

Имеется много примеров вторично-производных ландшафтов, таких как мелколиственные (березовые и осиновые) леса Русской равнины, ксерофитные (сухие) кустарники и леса средиземноморского типа, деградированные степи, трансформированные саванны и многие другие. Общим для всех ландшафтов этой категории является видимое преобладание значительно измененных человеком сообществ растительности (вторичной растительности). Наряду с этим происходят изменения особенностей почв, микроклимата и других компонентов ландшафта.

К категории антропогенно-модифицированных ландшафтов относятся ландшафты с весьма высокой степенью трансформации. В них антропогенные изменения отличались большей скоростью, чем природные вариации географических условий. Эти ландшафты управляются, с одной стороны, как природные системы, а с другой стороны, они в очень большой степени зависят от деятельности человека.

В эту категорию входят прежде всего сельскохозяйственные модификации ландшафтов: поля (орошаемые и неорошаемые), огороды, сады, плантации и пастбища разного типа. Сюда относятся также территории интенсивного, целенаправленного выращивания древесины (сильвикультура). К категории антропогенно-модифицированных ландшафтов относятся также охраняемые рекреационные области, парки прежде всего.

Техногенные ландшафты -- это природные системы, управляемые преимущественно деятельностью человека. Это городские системы со всей городской и пригородной инфраструктурой (жилые кварталы, улицы и площади, места отдыха, промышленные зоны, пути сообщения, системы жизнеобеспечения (водоснабжение и канализация, сбор и переработка мусора, энергоснабжение и отопление) и пр.). Это места добычи и переработки минеральных ресурсов (карьеры, шахты, нефтяные промыслы и пр.). Это ландшафты гидротехнических сооружений (плотины, водохранилища, каналы, насосные станции и т. д.) с прилегающими акваториями и территориями.

По типам деятельности человека антропогенные ландшафты могут быть разделены на следующие категории: ландшафты районов неорошаемого земледелия, ландшафты районов орошаемого земледелия, пастбищные ландшафты, лесохозяйственные ландшафты, горнопромышленные ландшафты, урбанизированные ландшафты, рекреационные ландшафты. Анализ особенностей каждого типа антропогенных ландшафтов выполнен Л.И. Кураковой .

Основные особенности антропогенной трансформации ландшафтов и экосистем заключаются в следующем.

• Система из почти полностью замкнутой преврашается в разомкнутую (открытую), главным образом, вследствие отчуждения биомассы в виде продукции, используемой человеком. Степень открытости системы является, по-видимому, индикатором степени ее антропогенного преобразования.

• Увеличивается однообразие ландшафтов. Снижение внутриландшафтного разнообразия также может быть индикатором антропогенной трансформации.

• Продуктивность ландшафтов снижается в прямой (возможно, нелинейной) зависимости от интегрального антропогенного давления за определенный интервал времени.

• Чем выше интегральное антропогенное давление, тем в большей степени нарушено эволюционное развитие ландшафтов и экосистем.

• Химическое равновесие, сложившееся в ландшафтах и экосистемах в процессе их эволюции в доантропогенную эпоху, нарушено. Антропогенные потоки химических элементов и их соединений на один-два порядка превышают уровень естественных потоков химических веществ.

• В особенности интенсифицировались потоки биогенных веществ.

• Происходит непрерывная трансформация земельного фонда.

Общей особенностью ландшафтов мира является ухудшение их состояния (деградация), выражающееся, прежде всего, в снижении их естественной биологической продуктивности. При этом главные процессы -- это обезлесение в сравнительно влажных ландшафтах и опустынивание в относительно сухих ландшафтах. Природные условия, благоприятные для развития этих двух процессов, имеются на более чем 90% территории суши без ледников, а антропогенные воздействия превращают эту возможность в реальность.

4. Проблемы обезлесения

Мы уже обсуждали выше исключительную роль, которую играет биота в целом в стабилизации экосферы Земли. В том числе высока роль лесов. Если воздействие растительности на состояние экосферы чрезвычайно важно, то влияние лесов, составляющих порядка 85% фитомассы мира, не может не быть определяющим. Действительно, леса играют важнейшую роль в формировании как глобального цикла воды, так и глобальных биогеохимических циклов таких элементов, как углерод и кислород. Леса мира регулируют важные особенности климата и водного режима мира. Экваториальные леса являются важнейшим резервуаром биологического разнообразия, удерживая 50% видов животных и растений мира на 6% площади суши. Вклад лесов в мировые ресурсы не только значителен количественно, но и уникален, поскольку леса -- это источник древесины, бумаги, лекарств, красок, каучука, плодов и пр.

Леса с сомкнутыми кронами деревьев занимают в мире 28 млн кв. км при примерно одинаковой их площади в умеренном и тропическом поясе. Что касается лесов с разомкнутыми кронами различной площади проективного покрытия, то граница между лесом и не лесом может быть проведена лишь весьма условно, и критерии выделения лесов различаются от страны к стране и от места к месту. Например, Каракумы в районе Репетекской станции в Туркменистане квалифицируются как государственный лесной фонд, тогда как произрастающая там древесная пустынная растительность (преимущественно саксаул) с ландшафтной и геоэкологической точек зрения вряд ли все-таки образует лес. Имея в виду условности такого рода, можно сказать, что общая площадь лесов (сплошных и разреженных) в мире составляет менее трети всей свободной ото льда суши. Согласно Международной организации по продовольствию и сельскому хозяйству (ФАО), в 1995 г. естественные и саженые леса покрывали 26,6% свободной от льда суши, или примерно 35 млн кв. км.

В результате своей деятельности человек уничтожил не менее 10 млн кв. км лесов, содержавших 36% фитомассы суши. Главной причиной уничтожения лесов была потребность увеличить, вследствие роста численности населения, площади пашни и пастбища.

Заселение и антропогеное преобразование зоны влажных экваториальных лесов происходило постепенно. Впервые в этой зоне люди появились 25-40 тыс. лет тому назад в юго-восточной Азии и Океании, 10 тыс. лет назад -- в Амазонии, 3000 лет тому назад -- в Африке и еще позднее на Мадагаскаре и Новой Зеландии. Во всех случаях антропогенные изменения лесов были незначительными, поскольку обитающие там племена охотни- ков-собирателей оказывают минимальное воздействие на состояние лесов. В течение последних 200 лет в этой зоне появилось плантационное сельское хозяйство, выращивающее продукцию на продажу (сахарный тростник, табак, кофе, какао, чай, каучук, кокосовая и масличная пальмы). После Второй мировой войны возник и вырос спрос на длинные, прямые, твердые сорта древесины. Тогда же были разработаны современные технологические методы ее добычи. Экспорт тропической древесины с 1950 г. увеличился в 16 раз. Наряду с этим резко выросло население, что и привело в конце концов к существенному обезлесению и деградации лесов.

Сельскохозяйственная «колонизация» Европы началась с эпохи великих государств древности, когда были ликвидированы или трансформированы леса Средиземноморья, и в основном закончилась в конце средних веков, когда были вырублены первичные широколиственные и хвойные леса. Сокращение лесов умеренного пояса Евразии и Северной Америки также отвечало необходимости расширения сельскохозяйственного производства. Оно происходило в целом несколько позднее, чем в Западной Европе. Сокращение площади лесов умеренного пояса в основном остановилось в первой четверти XX века. Основные районы расширения пашни располагались в пограничных областях между территориями лесных и травяных формаций, таких как средиземноморские леса, лесостепь, прерии, леса областей достаточного увлажнения умеренного пояса.

В то время как обезлесение умеренного пояса к настоящему времени в основном прекратилось, сокращение площади тропических и экваториальных лесов продолжается. По разным оценкам, их потери находятся в пределах 11--20 млн га в год. Согласно ФАО, в 1980-1990 гг ежегодная потеря площади тропических лесов составляла 15,5 млн га за год. В 1991-1995 гг она сокращалась до 13,7 млн га за год, тогда как в развитых странах площади лесов изменялись незначительно, в среднем увеличиваясь на 1,8 млн га за год. В некоторых развивающихся странах сокращение площади лесов происходит особенно быстро (например, в Малайзии, Таиланде, Индонезии, Филиппинах, Нигерии, Кот д'Ивуар, Коста-Рике и др.). Кроме того, речь идет о различной степени антропогенной трансформации, или деградации, лесов -- от полностью нетронутых лесов, частично используемых, до полностью вырубленных и расчищенных территорий.

Распространено мнение, что значителное обезлесение происходит в бассейне р. Амазонка. Однако оценки, выполненные на основе детального анализа спутниковых данных за 1978-- 1994 гг., показали, что скорость обезлесения была 15--20 тыс. кв. км в год, а общая потеря лесов с начала освоения территории, то есть с 1970-х гг., составила приблизительно 6% от исходной площади леса, составляющей около 5 млн кв. км. Оценку величины обезлесения в Амазонии Д. Скоул (США) с коллегами выполнял на основе следующего соотношения:

ЧО = ВПЛ - ЗВЛ + ВВЛ,

где ЧО -- «Чистое» обезлесение; ВПЛ -- Вырубка первичного леса; ЗВЛ -- Зарастание вторичным лесом; ВВЛ -- Вырубка вторичного леса.

Установлено, что «освоению» подвергаются в основном территории, располагающиеся не в сплошном лесу, а в пограничной зоне между экваториальным лесом и саванной, в таких штатах на юго-западе Амазонии, как Мату-Гроссо или Рондония. Таким образом, сохраняется закономерность в размещении антропогенного сокращения лесов, отмеченная для умеренного пояса и заключающаяся в том, что вырубаемые леса находятся в экотонной полосе между лесными и травяными формациями.

В расширении антропогенных ландшафтов экваториальной зоны, включая Амазонию, ведущую роль играет строительство дорог. Например, после того, как в 1950-е гг. была построена автомобильная дорога Белем--Бразилия, более 2 млн чел. переселились за десятилетие на прилегающие к дороге территории. Вторичные дороги в Бразилии строятся вглубь леса перпендикулярно к основным дорогам на глубину до 80 км. Затем земля нарезается на участки площадью около 100 га, каждый с выходом к дороге.

Другие факторы сокращения лесов Амазонии -- это строительство плотин и водохранилищ и добыча и переработка полезных ископаемых (золото, железо, олово и др.).

Существует много причин тропического обезлесения и комбинаций этих причин. Они различаются от страны к стране и от места к месту. В ряде стран, в особенности в бассейне Амазонки, имеются государственные программы хозяйственного освоения лесных территорий. В целом можно назвать следующие основные причины обезлесения.

* Освоение новых земель под поля, плантации и пастбища как крестьянами-переселенцами, так и крупными фирмами (в основном животноводческими). Новые дороги, прокладываемые в районах освоения, являются опорой для дальнейшей колонизации территории. Во многих районах основная трудность в сельскохозяйственном освоении -- быстрое зарастание расчищенных участков лесной растительностью. На некоторых территориях Бразильской Амазонии через 5-10 лет после расчистки вырастают деревья 50--75 видов высотой до 8 м. Поэтому площадь фактического обезлесения бывает заметно меньше, чем площади ежегодной вырубки. Часто под поля и плантации крестьяне предпочитают расчищать относительно молодой вторичный лес, образовавшийся после сплошной вырубки в процессе лесозаготовок. Это в особенности характерно для стран юговосточной Азии.

Если лес уже сведен, то проблема заключается в разработке локальных методов устойчивого сельского хозяйства на расчищенных от леса участках. Эта проблема пока не находит успешных решений в полеводстве. В Амазонии, например, расчищенные поля обрабатываются в течение не более пяти лет, после чего их плодородие падает и их приходится забрасывать. Несколько успешнее дело обстоит с плантациями и с комбинациями земледелия и лесного хозяйства (агролесное хозяйство, или agroforestry).

• Расширение площади земли, используемой под подсечное земледелие, вследствие роста численности населения племен, практикующих этот метод землепользования.

• Добыча древесины. В отличие от лесов умеренного пояса, в тропических лесах часто производится не сплошная, а выборочная рубка отдельных ценных видов деревьев. При их транспортировке из чащи к дороге гибнет значительное количество леса (согласно одному из исследований, на одно срубленное дерево приходится два погибших или серьезно поврежденных; по другим сведениям, эта пропорция еще больше). Поэтому зачастую основной геоэкологический результат лесозаготовок не сокращение площади лесов, а их деградация.

• Помимо потребностей в ценной древесине, тропические леса удовлетворяют потребности местного населения в дровах. (В большинстве африканских стран от 70 до 95% домашних потребностей в энергии, главным образом для приготовлении пищи, удовлетворяются за счет дров.)

Эффективное использование территорий влажных экваториальных лесов приносит немалые трудности. Основная масса биогенных веществ находится преимущественно в деревьях и при вырубке удаляется вместе с ними, а почвы остаются мало плодородными. Почвы подвержены также неблагоприятному воздействию прямых лучей солнца и сильных дождей. Во влажных тропиках отмечается дефицит фосфора и калия, а в сухих -- азота. Плодородные почвы встречаются лишь в специфических местах, таких как склоны вулканов или поймы и дельты рек. В целом чем больше величина осадков за год и продолжительнее сезон дождей, тем труднее вести сельское хозяйство.

Вследствие очень сложных связей в экосистемах, небольшие изменения в них могут привести к непредвиденным последствиям. Например, определенный вид дерева может оказаться ключевым в обеспечении существования ряда видов в засуху. Многие виды животных и растений нуждаются в большой площади для поддержания своего существования, что весьма затрудняет управление территориями. Некоторые виды играют особую, часто не вполне понятную роль в экосистемах. Это так называемые ключевые виды (keystone species), требующие особого внимания.

По Д. По и Д. Сейере (Англия), основные принципы управления территориями влажных тропических лесов выглядят следующим образом.

1) Принятие во внимание экологических ограничений на всех стадиях осуществления хозяйственных проектов.

2) Предоставление тропического леса для удовлетворения потребностей, не связанных с функционированием леса, допускается только после всесторонней (экономической, социальной и экологической) оценки проекта и в диалоге с местными жителями.

3) Тропический лес может быть превращен в другие виды использования земель только в том случае, если доказано, что это выгоднее и целесообразнее, чем использование леса.

4) Деградировавший лес должен и далее использоваться, где возможно, для хозяйственных целей, тогда как естественный лес должен сохраняться.

5) Специальное внимание должно уделяться тем лесным территориям, основная задача которых -- сохранение биологического разнообразия или осуществление водозащитных функций на водосборах.

6) Население тропических лесов должно иметь возможность участвовать в их управлении.

При управлении тропическими лесами часто не принимается во внимание, что выгоды от использования лесов в их устойчивом состоянии могут приносить больше дохода, чем выгоды, связанные с расчисткой лесов и использованием древесины. Показано, например, что сбор плодов, ягод, лекарственных растений, каучука и пр. приносит не меньший, а часто и больший доход, чем вырубка леса, а при этом и лес сохраняется.

Вообще говоря, отношение к тропическим лесам только как к ресурсу имеет право на существование, но следует помнить, что очень большие территории пока еще существующих лесов играют важнейшую роль в стабилизации состояния экосферы. В конце концов, один ресурс может быть замещен другим, а экосистемная функция тропических лесов незаменима. Стратегия управления тропическими лесами должна основываться на признании леса как общего и неисчисляемого достояния человечества.

В лесах умеренного пояса наибольшие проблемы встречаются в Российской Федерации. Россия отличается наибольшей площадью лесов на Земле, достигающей 7,7 млн кв. км, что составляет 46% всех внетропических лесов мира. Расчетная лесосека страны (то есть ежегодный прирост древесины) используется лишь частично. Экономическая депрессия последнего десятилетия привела к сокращению объема добываемой древесины. В 1996 г. вырубка леса составила лишь 21,4% от расчетной лесосеки, но в некоторых районах Европейской России, например в Татарстане, Коми и Чувашии, она превышает 100%, то есть площадь лесов сокращается.

Во многих районах России первичные леса замещены вторичными. Часть лесов страдает от кислотных осадков, в особенности вокруг городов. Леса России несут большой ущерб от пожаров и вредителей, распространяющихся на больших площадях, порядка 1 млн га в год.

Вследствие общемировой роли лесов в стабилизации экосферы нужен глобальный подход к управлению ими. Необходимо разработать и принять международную конвенцию по лесам, которая определила бы основные принципы и механизмы международного сотрудничества в этой области в целях поддержания устойчивого состояния лесов и его улучшения.

Один из компонентов этого сотрудничества успешно функционирует. Это Международная Организация по древесине (1ТО), объединяющая как страны-потребители, так и страны -- владельцы лесных ресурсов (не только тропического, но и умеренного пояса). Голоса стран-участников имеют различный вес, в зависимости от объема владения или потребления древесины. Участники Организации согласились, что к 2000 г. вся древесина на международном рынке должна происходить из экологически устойчиво управляемых лесов.

5. Проблемы опустынивания

Существует неточное представление о том, что опустынивание -- это наступление пустынь на более продуктивные территории. На самом деле Международная Конвенция по борьбе с опустыниванием, заключенная в 1994 г., дает следующее определение процесса опустынивания: «Опустынивание означает деградацию земель в засушливых ... районах, которая происходит вследствие различных факторов, включая колебания климата и деятельность человека». И далее: «Деградация земель означает сокращение или полную потерю ... биологической или экономической продуктивности ... неорошаемых и орошаемых земель или же пастбищ и лесов вследствие использования земель или других действий, ведущих к таким процессам, как ветровая и водная эрозия почв, ухудшение физических, химических и биологических свойств почв, и к долгосрочной потере естественной растительности».

Почвы районов опустынивания отличаются низким плодородием, что в сочетании с малыми и изменчивыми осадками приводит к тому, что биологическая продуктивность в районах значительного опустынивания не превышает 400 кг/га в год сухого вещества.

В соответствии с климатическими условиями, пустыни должны занимать в мире площадь порядка 48 млн кв. км (включая ледниковые покровы, то есть ледяные пустыни). Фактически, в соответствии с почвенно-ботаническими данными, их площадь достигает 57 млн кв. км. Разность между этими двумя цифрами, равная 9 млн кв. км, представляет антропогенные пустыни. Опустынивание различной степени развивается еще на 25 млн кв. км. Распространение территорий, подверженных опустыниванию, показано на 18.

Около 3/4 аридных территорий Африки и Северной Америки подвержены деградации, то есть опустыниванию. Одна шестая часть населения мира живет в зоне угрозы опустынивания. Мировые экономические потери от опустынивания, по состоянию на 1990 г., оцениваются в 42 миллиарда долларов ежегодно. В России опустыниванию подвержены территории, расположенные, главным образом, в бассейне Каспийского моря, в особенности Калмыкия.

С климатической точки зрения, согласно Международной Конвенции по борьбе с опустыниванием, зона риска опустынивания находится в следующих пределах:

Р/РЕТ = 0,05-0,65,

где Р -- осадки за год и РЕТ -- потенциальная эвапотранспира- ция. В эту категорию попадают аридные земли различной степени засушливости. Отметим как пока редкий случай, что в международном юридическом документе используется геоэкологический критерий.

Как видно из определения, опустынивание развивается вследствие неблагоприятного сочетания естественных и социально-экономических факторов. Сахель -- обширная территория к югу от Сахары в наибольшей степени страдает от опустынивания. В Сахели количество населения и скота очевидно превысило потенциальную емкость этой территории. В 1968 г. там началась многолетняя засуха, то есть период с пониженным количеством осадков, продолжавшаяся двумя волнами в течение приблизительно 20 лет ( 17). Это привело к снижению продуктивности полей и пастбищ, высыханию колодцев, уменьшению речного стока, падению уровня озера Чад и другим катастрофическим последствиям. Во время первой волны засухи (1968-1973 гг.) погибло от голода свыше 250 тыс. жителей и 40% скота. В Мали и Мавритании погибло даже более 90% скота.

Климат -- важнейший естественный фактор формирования территорий различной степени опустынивания. В особенности это хорошо видно на примере Сахели, где в направлении с севера на юг имеются резкие гидроклиматический и геоэкологический градиенты, определяющие пространственные изменения основных типов хозяйства (табл. 17). С севера на юг увеличиваются осадки, снижается их изменчивость от года к году, увеличивается продолжительность влажного сезона, улучшается водный баланс за сезон дождей. Соответственно, роль земледелия в сельском хозяйстве к югу усиливается, а скотоводства, наоборот, сокращается.

Уровень в 600 мм осадков в год разделяет районы с устойчивым и неустойчивым земеледелием. Однако средняя многолетняя величина не вполне показательна. Малая продолжительность влажного сезона и его вариации во времени от года к году делают земледелие рискованным даже при большем количестве осадков. Земледелие в Сахели вследствие климатических условий всегда рискованно. К тому же краткость сезона дождей резко ограничивает возможности земледелия, заставляя крестьянина выращивать только культуры с коротким вегетационным перидом. Соответственно, и в скотоводстве большая изменчивость осадков от года к году очень сильно изменяет условия существования для скота и его хозяев, от почти изобилия до крайнего дефицита воды и пищи.

Неприятная дополнительная агроклиматическая особенность Сахели и других аридных территорий в том, что как влажные, так и сухие годы складываются обычно в серии лет, образуя засушливые или влажные периоды. Как земледельцы, так и скотоводы обычно располагают опытом выживания в пределах одного сухого года, но они не в состоянии пережить серию засушливых лет, что приводит их к катастрофе.

В Сахеле благодаря климатическим условиям при перемещении к югу увеличивается биологическая продуктивность тер- риториии, а поэтому и плотность населения. При этом во всех типах ландшафтов и соответствующих им типах хозяйства численность населения превышает потенциальную емкость территории. В особенности сложная ситуация складывается в зоне неустойчивого земледелия с осадками 400--600 мм, где высокая плотность населения сочетается с конфликтными интересами скотоводства и земледелия, что вызывает, в конечном итоге, усиление опустынивания.

С этой точки зрения, территорию Сахеля можно разделить, по изогиете 400 мм, на преимущественно земледельческую и главным образом скотоводческую зоны. В первой, вследствие роста населения, сокращаются площади залежных земель. Они превращаются в пашню, довольно быстро деградируют, что снова приводит к необходимости отправить часть пашни в залежь и к необходимости новой распашки, в то время как площади залежи и время «отдыха» земли сокращаются, что вызывает дальнейшую деградацию этих территорий. Так возникают новые очаги опустынивания в этой зоне, весьма далеко от Сахары.

В скотоводческой зоне, несмотря на невысокую биологическую продуктивность на единицу площади, естественная растительность лучше, чем в земледельческой зоне. Производительность пастбищ в Сахели (на единицу площади) в 1,5--10 раз выше, чем в современных хозяйствах Техаса или Австралии, потому что разнообразный скот в стадах населения Сахели поедает всю растительность: коровы -- траву, овцы -- кустарник, козы -- ветви деревьев. К тому же в Сахели на 1 кв. км приходится 10 пастухов, а в современных хозяйствах США -- один пастух на 100 кв. км, то есть их плотность в Сахели в 1000 раз выше. Эти обстоятельства делают, казалось бы, примитивную систему скотоводства фактически весьма эффективной, весьма приспособленной к агроэкологическим условиям района и практически не угрожающей экологическому состоянию скотоводческой зоны. Однако система скотоводства, созданная опытом многих поколений, не выдерживает повышающегося антропогенного давления.

В процессе циклического отгонного животноводства в пределах скотоводческой зоны скот зимой перегоняют к югу, а летом (в сезон осадков) -- на север, в направлении Сахары. На юге зоны количество и качество пастбищ хуже, чем на севере, вследствие высокой плотности населения и конфликта интересов скотоводов и земледельцев. В результате эти земли подвергаются сверхэксплуатации и деградируют.

В благоприятные годы и серии лет несколько расширяется площадь более увлажненной зоны, с соответствующим смещением к северу основных типов хозяйства. Тем серьезнее проблемы последующих лет: деградация пашни и пастбищ, гибель скота, а зачастую и людей. Избыточное антропогенное давление в сочетании с неблагоприятными погодными условиями в течение ряда лет приводят к усилению опустынивания. Поэтому трудно различать вклад человека и вклад природы в процесс деградации аридных земель.

Сахель -- это лишь типичный и наиболее известный пример, но процессы опустынивания во многом схожи во всех аридных районах мира.

Признаками опустынивания являются: сокращение степени покрытости почвы растительностью, увеличение отражательной способности (альбедо) поверхности почвы, значительная потеря многолетних растений, особенно деревьев и кустарников, деградация и эрозия почвы, кое-где наступание песков и засоление почв. Все эти природные процессы типичны для аридных ландшафтов, и они регулируются естественным образом. Но когда они взаимосвязаны с действиями человека, многие изменения становятся необратимыми.

Эффективная борьба с опустыниванием должна основываться на глубоком понимании системы взаимодействующих естественных и социально-экономических факторов и, в конечном итоге, на стратегии социально-экономического преобразования стран, страдающих от опустынивания. Международная Конвенция по борьбе с опустыниванием -- один из основных механизмов участия всех стран мира в решении этой проблемы.

6. Проблемы сохранения биологического разнообразия Земли

Биологическое разнообразие (далее в этом разделе -- БР) -- это совокупность всех форм жизни, населяющей нашу планету. Это то, что делает Землю не похожей на другие планеты Солнечной системы. БР -- это богатство и многообразие жизни и ее процессов, включающее разнообразие живых организмов и их генетических различий, так же как и разнообразие мест существования, сообществ, экосистем и ландшафтов, в которых организмы существуют. БР делится на три иерархические категории: разнообразие среди представителей тех же самых видов (то есть на уровне генов), между различными видами и между экосистемами.

Генетическое разнообразие, очевидно, чрезвычайно велико. В этом контексте под ним понимаются вариации генов внутри видов. До недавних пор изменения генетического разнообразия исследовались преимущественно на породах домашних растений и животных, а также на популяциях отдельных видов, находящихся в ботанических садах и зоопарках. Исследования глобальных проблем БР на генетическом уровне -- дело будущего.

Что касается видового разнообразия, то до сего времени даже подсчеты числа видов на Земле, выполненные различными авторами, различаются на порядок. Авторитетная оценка видового разнообразия, которая привлекла к этой работе около 1500 специалистов, выполнена в ЮНЕП в 1995 г. Согласно этой оценке, наиболее вероятное количество видов -- 13--14 млн, из которых описаны лишь 1,75 млн, или менее 13%. Среди растений и хордовых животных описаны 85--90% видов, но во всех других таксонах описано много менее половины видов. Оценки общего числа видов находятся в пределах между 3,6 млн и 112 млн. Столь большое различие связано преимущественно с тем, что число видов насекомых оценивается в пределах от 2 до 100 млн видов, но даже если не принимать во внимание столь расходящиеся данные по насекомым, все равно уровень знания биологического разнообразия остается невысоким.


Подобные документы

  • Биологическое разнообразие биосферы. Сохранение биологического разнообразия и генофонда биосферы под влиянием деятельности человека, оказывающей негативное воздействие. Задачи селекции, акклиматизация видов. Охраняемые территории и природные объекты.

    курсовая работа [2,5 M], добавлен 12.03.2016

  • Определение понятия "биосфера". Ознакомление с основными процессами развития активной оболочки Земли, образованной частями геологических оболочек Земли, заселенных живыми организмами. Свойства живого вещества. Учение о биосфере В.И. Вернадского.

    презентация [2,5 M], добавлен 19.02.2015

  • Структура, границы и характерные особенности биосферы. Ограничивающие или лимитирующие факторы, их характеристика. Фотопериодизм как реакция организмов на суточный ритм освещения. Искусственные биоценозы и их характеристика. Природно-охраняемые ландшафты.

    контрольная работа [87,3 K], добавлен 18.09.2016

  • Роль растительного мира в создании органического вещества. Распределение органического вещества по планете. Пространственная неоднородность биосферы. Влияние человека на флору Земли. Исчезновение и охрана растительного мира. Биологический круговорот.

    курсовая работа [40,0 K], добавлен 13.07.2013

  • Основные причины и источники загрязнения почв. Состав загрязнителей, наиболее опасных для человека и биосферы в целом. Возможные негативные последствия загрязнения литосферы. Принципы рационального использования и охраны недр Земли (полезных ископаемых).

    контрольная работа [41,2 K], добавлен 15.12.2013

  • Ландшафтоведение как направление физической географии, его сущность и особенности становления в Беларуси. Природные ландшафты Беларуси, их развитие, разновидности и общая характеристика, Особо охраняемые ландшафты Беларуси, их экологическое значение.

    курсовая работа [1,1 M], добавлен 29.05.2013

  • Роль и место академика В.И. Вернадского в изучении биосферы. Биогеоценоз как элементарная структурная единица биосферы. Энергия солнечного света в процессе фотосинтеза. Круговорот элементов в биосфере. Современные глобальные экологические проблемы.

    презентация [5,7 M], добавлен 16.06.2013

  • Проблемы ухудшения экологической обстановки во всех регионах Земли. Возраствающие темпы сокращения биологического разнообразия животного мира и рыбных ресурсов. Водные биоресурсы Алтайского края. Охрана объектов животного мира и среды их обитания.

    контрольная работа [24,1 K], добавлен 23.07.2010

  • Территория и природа Казахстана. Обязательства страны по сохранению биологического разнообразия. Задачи формирования системы ООПТ История создания, расположение, площади территорий, рельеф, ландшафты, водные ресурсы природных заповедников государства.

    презентация [1,3 M], добавлен 13.11.2013

  • Современная концепция ноосферы и устойчивого развития. Популяции, виды, биоценозы и биосфера, их функционирование, организация и взаимодействие. Экологической проблемы, взаимодействия общества и природы, человека и биосферы. Охрана природных ресурсов.

    контрольная работа [28,2 K], добавлен 16.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.