Водоподготовка и улучшение качества воды

Электрохимические методы очистки сточных вод, факторы оценки их эффективности. Факторы, влияющие на процесс электрокоагуляции и электрофлотации сточных вод. Достоинства метода электрокоагуляции и недостатки электродиализа. Стадии технологии очистки воды.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 23.12.2016
Размер файла 44,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образование и науки РФ

Государственное образовательное учреждение высшего профессионального образования

«Тверской государственный технический университет»

Кафедра ТПМ

Реферат

на тему: Водоподготовка

Выполнил: Бойко Н.О.

2 курс БТ-1503 ХТФ

Проверил:

Смирнов Ю.Н.

Тверь 2016

Оглавление

  • 1. Электрохимические методы очистки сточных вод
  • 2. Анодное окисление и катодное восстановление
  • 3. Электрокоагуляция
  • 4 .Электрофлотация
  • 5. Электрохимическая активация
  • 6. Специальные методы улучшения качества воды
  • 6.1 Умягчение
  • 6.2 Сорбция
  • 6.3 Ультразвуковая обработка воды
  • 7. Новые технологии и инновационные методы улучшения качества воды

1. Электрохимические методы очистки сточных вод

Для очистки сточных вод от различных растворимых и диспергированных примесей применяют процессы анодного окисления и катодного восстановления, электрокоагуляции, электрофлокуляции и электродиализа. Все эти процессы протекают на электродах при пропускании через сточную воду постоянного электрического тока. Электрохимические методы позволяют извлекать из сточных вод ценные продукты при относительно простой автоматизированной технологической схеме очистки, без использования химических реагентов. Основным недостатком этих методов является большой расход электроэнергии.

Очистку сточных вод электрохимическими методами можно проводить периодически или непрерывно.

Эффективность электрохимических методов оценивается рядом факторов: плотностью тока, напряжением, коэффициентом полезного использования напряжения, выходом по току, выходом по энергии. Напряжение электролизера складывается из разности электродных потенциалов и падения напряжения в растворе.

2. Анодное окисление и катодное восстановление

В электролизере, схема которого показана на рис. 1, на положительном электроде -- аноде ионы отдают электроны, т. е. протекает реакция электрохимического окисления; на отрицательном электроде -- катоде происходит присоединение электронов, т. е. протекает реакция восстановления.

Рис. 1. Схема электролизера:

1 -- корпус; 2 -- анод; 3 -- катод; 4 -- диафрагма

Эти процессы разработаны для очистки сточных вод от растворенных примесей (цианидов, роданидов, аминов, спиртов, альдегидов, нитросоединений, азокрасителей, сульфидов, меркаптанов и др.). В процессах электрохимического окисления вещества, находящиеся в сточных водах, полностью распадаются с образованием СОз, МНз и воды или образуются более простые и нетоксичные вещества, которые можно удалять другими методами.

В качестве анодов используют различные электролитически нерастворимые материалы: графит, магнетит, диоксиды свинца, марганца и рутения, которые наносят на титановую основу.

Катоды изготовляют из молибдена, сплава вольфрама с железом или никелем, из графита, нержавеющей стали и других металлов, покрытых молибденом, вольфрамом или их сплавами. Процесс проводят в электролизерах с диафрагмой и без нее. Кроме основных процессов электроокисления и восстановления, одновременно могут протекать электрофлотация, электрофорез и электрокоагуляция.

Сточные воды, содержащие цианиды, образуются на предприятиях машиностроения, приборостроения, черной и цветной металлургии, химической промышленности и др. В состав вод кроме простых цианидов (KCN, NaCN) входят комплексные цианиды цинка, меди, железа и других металлов, концентрация которых колеблется от 10 до 600 мг/л. Обычно рН таких стоков колеблется в пределах 8 - 12.

При использовании электролизеров проточного. типа целесообразно разделять их перегородками на несколько отсеков. В процессе электролиза сточные воды перемешивают сжатым воздухом. Обработанные сточные воды содержат до 200 мг/л активного хлора и должны быть обезврежены. Металлы, которые выделяются на катоде, утилизуют. Установка компактна и проста в эксплуатации.

Катодное восстановление применяют для удаления из cточных вод ионов металлов с получением осадков, для перевода загрязняющего компонента в менее токсичные соединения или в легко выводимую из воды форму (осадок, газ). Его можно использовать для очистки сточных вод от ионов тяжелых металлов Pb2+, Sn2+, Hg2+, Cu2+, As3+, Cr6+ . При этом металлы осаждаются на катоде и могут быть рекуперированы.

Очистку сточных вод от ионов Hg2+, Pb2+, Cd2+, Cu2+ проводят на катодах, состоящих из смеси угольного и сернистого порошков в соотношении C:S от 80:20 до 20:80 при рН<7 и плотности тока 2,5 А/дм2. Осаждение этих ионов происходит в виде нерастворимых сульфидов или бисульфидов, которые удаляют механически.

Примером реакции, обеспечивающей удаление загрязнения в газовую фазу, является очистка от нитрата аммония. При постановлении нитрата аммония на графитовом электроде он превращается в нитрит аммония, который разлагается при нагревании до элементного азота.

Повышенная токсичность органических веществ связана с наличием в молекуле атомов галогенов, альдегидной, амино-, питро- или нитрозогрупп. Таким образом, продукты восстановления, например, альдегидов и кетонов - спирты и углеводороды, будут менее токсичны. Потеря атома галогена приводит к такому же результату.

3. Электрокоагуляция

При прохождении сточной воды через межэлектродное пространство электролизера происходит электролиз воды, поляризация частиц, электрофорез, окислительно-восстановительные процессы, взаимодействие продуктов электролиза друг с другом.

При использовании нерастворимых электродов коагуляция может происходить в результате электрофоретических явлений и разряда заряженных частиц на электродах, образования в растворе веществ (хлор, кислород), разрушающих сольватные соли на поверхности частиц. Такой процесс можно использовать для очистки вод при невысоком содержании коллоидных частиц и низкой устойчивости загрязнений.

Для очистки промышленных сточных вод, содержащих высокоустойчивые загрязнения, проводят электролиз с использованием растворимых стальных или алюминиевых анодов. Под действием тока происходит растворение металла, в результате чего в воду переходят катионы железа или алюминия, которые, встречаясь с гидроксидными группами, образуют гидроксиды металлов в виде хлопьев. Наступает интенсивная коагуляция.

На процесс электрокоагуляции оказывает влияние материал электродов, расстояние между ними, скорость движения сточной воды между электродами, ее температура и состав, напряжение и плотность тока. С повышением концентрации взвешенных веществ более 100 мг/л эффективность электрокоагуляции снижается. С уменьшением расстояния между электродами расход энергии на анодное растворение металла уменьшается. Теоретический расход электроэнергии для растворения 1 г железа составляет 2,9 Вт-ч, а 1 г алюминия--12 Вт-ч. Электрокоагуляцию рекомендуют проводить в нейтральной или слабощелочной среде при плотности тока не более 10 А/м2, расстоянии между электродами не более 20 мм и скорости движения воды не менее 0,5 м/с.

Достоинства метода электрокоагуляции: компактность установок и простота управления, отсутствие потребности в реагентах, малая чувствительность к изменениям условий проведения процесса очистки (температура, рН среды, присутствие токсичных веществ), получение шлама с хорошими структурно-механическими свойствами. Недостатком метода является повышенный расход металла и электроэнергии. Электрокоагуляция находит применение в пищевой, химической и целлюлознобумажной промышленности.

Технологическая схема очистки сточных вод электрокоагуляцией показана на рис 3.

Рис. 3. Схема электрокоагуляционной установки:

1 -- усреднитель; 2 -- бак для приготовления раствора; 3 -- источник постоянного тока; 4 -- электрокоагулятор; 5 -- отстойник; 6 -- аппарат для обезвоживания осадка

Обезвоживание осадка проводят в фильтр-прессе или центрифуге. Выделяющийся в процессе газообразный водород можно использовать для флотации гидроксида. С этой целью в схеме очистки используют электрокоагуляторы-флотаторы, или специальные флотационные аппараты, например гидроциклоны-флотаторы. Замена отстойника на флотаторы позволяет значительно уменьшить габариты установки, сократить капитальные затраты и получить менее влажный осадок гидроксида.

На практике наиболее широко используют безнапорные пластинчатые электрокоагуляторы, направление движения жидкости, в которых может быть горизонтальным и вертикальным. Они могут быть однопоточными, многопоточными и смешанными. При многопоточной схеме движения вода проходит одновременно через промежутки между электродами (параллельное соединение каналов). При однопоточной схеме вода проходит между электродами последовательно (последовательное соединение каналов), что уменьшает пассивацию электродов. Скорость движения воды у однопоточных электрокоагуляторов в п--1 раз больше, чем у многопоточных

Толщину электродов, их ширину, межэлектродное расстояние определяют с учетом конструктивных особенностей, а также заданной скорости движения воды.

4 .Электрофлотация

В этом процессе очистка сточных вод от взвешенных частиц проходит при помощи пузырьков газа, образующихся при электролизе воды. На аноде возникают пузырьки кислорода, а на катоде -- водорода. Поднимаясь в сточной воде, эти пузырьки флотируют взвешенные частицы. При использовании растворимых электродов происходит образование хлопьев коагулянтов и пузырьков газа, что способствует более эффективной флотации.

Основную роль при электрофлотации играют пузырьки, образующиеся на катоде. Размер пузырьков водорода значительно меньше, чем при других методах флотации. Он зависит от краевого угла смачивания и кривизны поверхности электродов. Диаметр пузырьков меняется от 20 до 100 мкм. Из пересыщенных растворов мельчайшие пузырьки выделяются на поверхности частичек загрязнений и тем самым способствуют эффекту флотации. Для получения пузырьков требуемого размера необходим правильный подбор материала, диаметра проволоки катода и плотности тока. Оптимальное значение плотности тока 200 - 260 А/м2, газосодержание - около 0,1%.

При небольших объемах сточных вод (10 - 15 м3/ч) электрофлотационные установки могут быть однокамерными (рис. 4), при больших -- следует применять двухкамерные установки, которые могут быть горизонтальными и вертикальными.

В электродиализаторе имеется две мембраны. Одна из них - анионообменная и пропускает в анодную зону анионы. Другая мембрана - катионообменная расположена со стороны катода и пропускает катионы в катодное пространство.

Обычно электролизеры для очистки воды делают многокамерными (100 - 200 камер) с чередующимися катионо- и анионопроницаемыми мембранами. Электроды помещают в крайних камерах. В многокамерных аппаратах достигается наибольший выход по току.

Для обессоливания воды применяют гомогенные и гетерогенные мембраны. Гомогенные мембраны состоят только из одной смолы и имеют малую механическую прочность. Гетерогенные мембраны представляют собой порошок ионита, смешанный со связующим веществом -- каучуком, полистиролом, метилмер-каптаном и др. Из этой смеси вальцеванием получают пластины. Мембраны должны обладать малым электрическим сопротивлением. На эффективность работы электродиализатора большое влияние оказывает расстояние между мембранами. Обычно оно составляет 1 - 2 мм. Во избежание засорения мембран сточные воды перед подачей в электродиализатор должны быть очищены от взвешенных и коллоидных частиц.

Расход энергии при очистке воды, содержащей 250 мг/л примесей, до остаточного содержания солей 5 мг/л составляет 7 кВт-ч/м3. С увеличением содержания солей в воде удельный расход энергии возрастает.

Основным недостатком электродиализа является концентрационная поляризация, приводящая к осаждению солей на поверхности мембран и снижению показателей очистки.

5. Электрохимическая активация

Электрохимическая активация представляет собой самостоятельную область прикладной электрохимии наряду с традиционными и имеет несколько принципиальных особенностей. Термин электрохимическая активация (ЭХА) появился в результате серии исследований, которыми было установлено, что жидкости, подвергнутые униполярному (анодному или катодному) электрохимическому воздействию переходят в термодинамически неравновесное состояние и в течение времени релаксации проявляют аномально высокую химическую активность. Этот термин был введен в науку академиком российской академии медико-технических наук В.М. Бахиром. В отличие от известных электрохимических процессов, исходным веществом в процессах электрохимической активации являются разбавленные водно-солевые растворы, пресная или слабоминерализованная вода, т.е. жидкости низкой электропроводностью. Конечным продуктом ЭХА являются не концентрированные химические вещества, а активированные растворы, т.е. низкоминерализованные жидкости в метастабильном состоянии.

Электрохимическая активация практически не используется как самостоятельный технологический процесс. Ее целью является уменьшение или полное исключение расхода химических реагентов, снижение загрязненности растворов, повышение качества целевых продуктов, сокращение времени, повышение эффективности и упрощение различных технологических процессов. Иными словами ЭХА используется для создания высокоэффективных и экологически чистых технологий в различных областях человеческой деятельности. Практически в любой области человеческой деятельности, там, где имеется соприкосновение с жидкостью, могут использоваться технологии ЭХА.

Цель ЭХА -придание воде необходимых функциональных свойств перед использованием, в том числе каталической и биокаталической активности.

Электрохимическая активация производиться путем катодной или анодной (униполярной) электрохимической обработке воды в диафрагменном электрохимическом реакторе. Диафрагма в виде пористой диэлектрической перегородки между электродами реактора препятствует смешиванию объемов воды (растворов) в анодной и катодной электродной камерах.

В результате обработки в катодной камере реактора вода насыщается продуктами катодных электрохимических реакций, обычно гидроксидами металлов, образовавшимися из растворенных солей, гидроксидионами, водородом. В момент и после катодной электрохимической обработки вода, для упрощения обозначения характера оказанного на нее воздействия, называется католитом.

При анодной обработке на нерасходуемом электроде вода насыщается продуктами окисления, в том числе кислотами, синтезированными из растворенных солей, кислородом, хлором. В момент и после анодной обработки вода называется анолитом.

Наличие устойчивых электрохимически синтезированных щелочей в католите и кислот в анолите не является признаком их активированности, как не являются им соответственно высокие и низкие значения pH католита и анолита, сохраняющие свое значение длительное время при хранении.

Активированное состояние воды и растворов в результате униполярной электрохимической обработке проявляется аномальной реакционной способностью католита и анолита в окислительно-восстановительных реакциях, в их каталической, биокаталитической активности, аномальной физико-химической активности при взаимодействиях на границе раздела фаз и нежестко коррелирует с измеряемыми параметрами, такими, как pH, окислительно-восстановительный потенциал, поверхностное натяжение, диэлектрическая проницаемость, электропроводность и другие.

Технология очистки состоит из нескольких стадий, разделенных во времени и пространстве:

- в электрохимическом реакторе - анодное окисление обеспечивает уничтожение микроорганизмов и деструкцию вредных органических соединений, а катодное - восстановление (нейтрализацию) ионов тяжелых металлов;

- каталитический реактор - обеспечивает каталитическое разложение активых веществ, например хлора

- флотационный реактор - флотационное отделение взвешенных веществ, гидроксидов тяжелых металлов, в том числе железа.

6. Специальные методы улучшения качества воды

Из специальных способов водоочистки наиболее часто применяют обессоливание воды (снижение общей минерализации воды). К настоящему времени в мировой практике определились следующие основные методы обессоливания (опреснения) воды: дистилляция, ионный обмен, электродиализ (электролиз), вымораживание, гелиоопреснение и обратный осмос (гиперфильтрация). Многообразие методов объясняется тем, что ни один из них не может считаться универсальным, приемлемым для любых конкретных местных условий.

6.1 Умягчение

Умягчение воды - процесс понижения её жесткости, обусловленной наличием солей кальция и магния. Метод снижения жесткости воды выбирают исходя из требований к качеству умягчаемой воды (глубины умягчения) и технико-экономических обоснований (ТЭО). В практике водоподготовки получили распространение следующие методы умягчения воды: реагентный (известковый, содовый, едконатриевый, фосфатный способы); катионитный (метод ионного обмена); диализ (мембранный) и термохимический (при температуре от 100 до 165°С).

По традиционной схеме умягчение осуществляется методом ионного обмена, основанного на фильтрации воды через, так называемые, ионообменные смолы, обменивающие входящие в их состав ионы Na+ на ионы Ca2+ и Mg2+, содержащиеся в воде. При истощении рабочих свойств производится регенерация раствором NaCl, приготовляемым из специальной таблетированной соли. Периодичность регенерации зависит от геометрических параметров слоя, обменной емкости смолы, уровня жесткости, скорости потока, объема обрабатываемой воды.

Для более глубокого умягчения воды обычно применяется фосфатирование (до 0,04 - 0,05 мг-экв/л), предварительно обработанной другими способами при температуре выше 100°С, так как фосфорнокислые соединения кальция и магния мало растворимы в воде.

Термохимический метод умягчения применяется, в основном, при подготовке воды для питания котлов. Только в этом случае утилизируется почти все тепло, затраченное на подогрев воды.

Недостатки данных методов: дорогостоящие установки с расходными материалами, постоянные затраты на реагенты и обслуживание, значительный расход энергоресурсов и др. расходы.

6.2 Сорбция

Элементом очистки является сорбирующий материал: активированный уголь, ионообменные смолы. Процесс сорбционной дезодорации активированным углем служит для улучшения органолептических показателей воды, то есть удаления неприятного привкуса, запаха и цветности. Благодаря своей высокой сорбционной способности активированный уголь эффективно поглощает остаточный хлор, растворенные газы, органические соединения. Пористая структура активированного угля и, как следствие, большая площадь поверхности, обеспечивает эффективность его использования. Срок службы активированного угля определяется его сорбционной емкостью, которая различна по каждому из удаляемых веществ. Как и все мелкозернистые материалы, активированный уголь со временем слеживается. Во избежание этого эффекта фильтрующую среду из активированного угля необходимо периодически разрыхлять с помощью интенсивной промывки обратным током воды. Недостатки сорбционного метода: малый срок службы, затраты на обслуживание.

6.3 Ультразвуковая обработка воды

Ультразвук способен разрывать оболочки клеток и тем самым является хорошим фильтром для уничтожения различных микроорганизмов и вирусов. Также ультразвук разрушает некоторые химические соединения. Поэтому, очистка воды в коттедже с использованием ультразвуковых установок - весьма перспективное направление в очистительной технике. Основным минусом таких ультразвуковых систем является их сложность. К тому же, обслуживать такие системы могут только высококлассные специалисты. Они гораздо сложнее, чем, например, установки для очистки воды ультрафиолетом. Кроме того, ультразвуковые установки очищают, как правило, только от микробов, вирусов и некоторых химических соединений. Поэтому, более полная и качественная ультразвуковая очистка воды возможна только при совместном использовании с другими методами (например, с угольными фильтрами, с использованием реагентов и т.д.). Минусом таких комбинированных систем («сэндвич-систем») является их дороговизна.

Недостатки ультразвукового метода: недостаточно эффективный и сложный в обслуживании; для полной очистки необходимо применение в комплексе с другими методами, что в итоге экономически нецелесообразно. Практика показала, что существующие традиционные сооружения водоподготовки и применяемые на них классические технологии уже не в состоянии обеспечить требуемое количество качественной питьевой воды. Это объясняется нарастающим процессом деградации состава воды в поверхностных источниках, используемых в большинстве случаев также и в качестве естественных приёмников очищенных или неочищенных сточных вод. На основных водопроводных сооружениях используются традиционные и не всегда эффективные методы водоподготовки (коагуляция, отстаивание и фильтрация), а вследствие высокого бактериального и вирусного загрязнения воды в водоисточник (водохранилище и др.) и ее потенциальной эпидемической опасности применяется двойное хлорирование. Особенностями качества исходной воды является повышенное содержание органических веществ, о чём свидетельствует высокая цветность воды (до 60-70°), бихроматная и перманганатная окисляемость (до 7,0 и 10-20 мг/дм соответственно), сдвиг активной реакции воды в щелочную сторону (рН до 8,8). Как следствие, по показателям цветности и окисляемости, питьевая водопроводная вода в большинстве анализируемых проб не отвечает гигиеническим регламентам.

В природных водах идентифицировано более 2 тыс. органических соединений, в том числе в питьевой воде более 700. Ряд идентифицированныx в питьевой воде соединений обладает экспериментально установленной канцерогенной и мутагенной активностью. К ним относятся вещества, попадающие в воду из промышленных источников, а также соединения, образующиеся в процессе водоподготовки.

На 100% воду можно очистить дистилляцией или микрофильтрованием. Однако это требует больших затрат. Суммарный объем стоков - около 150 галлонов в день на человека. Очистка такого количества воды названными методами на водоочистных сооружениях слишком расточительна, поэтому в настоящее время разрабатываются и внедряются более доступные способы. Кроме этого доказано, что дистиллированная вода вредна для организма. Употребление питьевой воды с низкой минерализацией способствует вымыванию солей из организма. Изменения водно-солевого баланса в организме были отмечены не только при употреблении деминерализованной воды, но и воды с минерализацией от 50 до 75 мг/л. (ВОЗ рекомендует употреблять в питьевых целях воду с минерализацией не менее 100 мг/л.). Подробно об этом в соответствующем разделе...

Все вышеперечисленные методы недостаточно эффективны, не всегда безопасны, и более того экономически нецелесообразны: во-первых - дорогостоящие и очень затратные, требующие постоянных расходов на обслуживание и ремонт, во-вторых - с ограниченным сроком службы, и в третьих - с большим расходом энергоресурсов.

очистка сточный вода электродиализ

7. Новые технологии и инновационные методы улучшения качества воды

Внедрение новых технологий и инновационных методов водоподготовки позволяет решать комплекс задач, обеспечивающих: производство питьевой воды, отвечающей установленным стандартам и ГОСТАм.

Мембранные методы на основе современные технологий. Применяются для опреснения сточных вод, решают комплекс задач водоочистки, но очищенная вода не значит еще, что она полезная для здоровья. Более того данные методы являются дорогостоящими и энергоёмкими, требующими постоянные расходы на обслуживание. Безреагентные методы водоподготовки. Активация (структурирование) жидкости. Метод структурирования жидкости обеспечивает решение комплекса задач водоподготовки (обесцвечивание, умягчение, обеззараживание, дегазацию, обезжелезивание воды и т.д.), при этом исключает хим-водоподготовку.

Структурированная вода существенно отличается от воды, подготовленной традиционным способом водоподготовки и водоочистки. Недостатки основных традиционных методов перечислены выше. Структурированная вода по своей физической структуре похожа на родниковую, или как говорят «живую» воду. Такая вода обладает целебными свойствами и полезна для здоровья.

Для удаления из воды трудноосаждаемых тонких взвесей (мути) используется иное свойство структурированной воды - ее способность ускорять коагуляцию (слипание и осаждение) частиц с последующим образованием крупных хлопьев. Объективно: возрастает скорость химических процессов и кристаллизации растворенных веществ, интенсифицируются процессы абсорбции, улучшается коагуляция примесей и выпадения их в осадок. Также эти эффекты широко применимы в целях предотвращения образования накипи в теплообменном оборудовании.

Показатели качества воды зависят от применяемых методов структурирования жидкости и зависят от выбора применяемых технологий, среди которых можно выделить:

- устройства магнитной обработки воды;

- электромагнитные методы;

- кавитационный метод обработки воды;

- резонансная волновая активация воды (бесконтактная обработка на основе пьезокристаллов).

Гидромагнитные системы (ГМС) предназначены для обработки воды в потоке постоянным магнитным полем специальной пространственной конфигурации (применяются для нейтрализации накипи в теплообменном оборудовании; для осветления воды, например, после хлорирования). Принцип работы системы - магнитное взаимодействие ионов металлов, присутствующих в воде (магнитный резонанс) и одновременно протекающий процесс химической кристаллизации. ГМС основана на циклическом воздействии на воду, подаваемую в теплообменные аппараты магнитным полем заданной конфигурации, создаваемым высокоэнергетическими магнитами. Метод магнитной обработки воды не требует каких-либо химических реактивов и поэтому является экологически чистым. Но есть и недостатки. В ГМС используются мощные постоянные магниты на основе редкоземельных элементов. Они сохраняют свои свойства (силу магнитного поля) в течение очень длительного времени (десятки лет). Однако, если их перегреть выше 110 - 120 С, магнитные свойства могут ослабнуть. Поэтому ГМС необходимо монтировать там, где температура воды не превышает этих значений. То есть, до её нагрева, на линии обратки.

Недостатки магнитных систем: применение ГМС возможно при температуре не выше 110 - 120°С; недостаточно эффективный метод; для полной очистки необходимо применение в комплексе с другими методами, что в итоге экономически нецелесообразно.

Кавитационный метод обработки воды. Кавитация - образование в жидкости полостей (кавитационных пузырьков или каверн), заполненных газом, паром или их смесью. Суть кавитации - другое фазовое состояние воды. В условиях кавитации вода переходит из её естественного состояния в пар. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении ее скорости (гидродинамическая кавитация), либо при прохождении акустической волны во время полупериода разрежения (акустическая кавитация). Кроме того, резкое (внезапное) исчезновение кавитационных пузырьков приводит к образованию гидравлических ударов и, как следствие, к созданию волны сжатия и растяжения в жидкости с ультразвуковой частотой.

Размещено на Allbest.ru


Подобные документы

  • Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Выбор технологической схемы очистки сточных вод. Физико-химические методы очистки сточных вод с применением коагулянтов. Отделение взвешенных частиц от воды.

    реферат [29,9 K], добавлен 05.12.2003

  • Санитарно-гигиеническое значение воды. Характеристика технологических процессов очистки сточных вод. Загрязнение поверхностных вод. Сточные воды и санитарные условия их спуска. Виды их очистки. Органолептические и гидрохимические показатели речной воды.

    дипломная работа [88,8 K], добавлен 10.06.2010

  • Основные достоинства и недостатки биологического метода очистки воды и почвы от нефтяных загрязнений. Описание работы очистных сооружений БИО–25 КС "Кармаскалы". Установка обеззараживания сточных вод. Выделение и активация аборигенных микроорганизмов.

    дипломная работа [344,6 K], добавлен 25.11.2012

  • Характеристика сточной воды предприятия и условия сброса очищенной воды. Предельно допустимые концентрации веществ, входящих в состав сточных вод. Выбор технологической схемы очистки. Анализ эффективности очистки сточных вод по технологической схеме.

    курсовая работа [1,1 M], добавлен 12.11.2011

  • Влияние воды и растворенных в ней веществ на организм человека. Санитарно-токсикологические и органолептические показатели вредности питьевой воды. Современные технологии и методы очистки природных и сточных вод, оценка их практической эффективности.

    курсовая работа [60,0 K], добавлен 03.01.2013

  • Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Электрохимическая активация как экологически чистые технологии настоящего и будущего, некоторые области ее эффективного применения. Технологический процесс очистки воды "Изумруд".

    контрольная работа [36,1 K], добавлен 28.01.2012

  • Ценность пресной воды как природного ресурса, роль сооружений, реализующих отведение, очистку, обезвреживание воды в системе водоснабжения городов и промышленных предприятий. Применяемые методы физико-химической и биологической очистки сточных вод.

    реферат [38,3 K], добавлен 10.06.2015

  • Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа [3,0 M], добавлен 04.10.2009

  • Очистка и обесцвечивание природной воды коагулянтами и флокулянтами. Условия применения флокулянтов для очистки воды. Методы определения показателей качества питьевой воды. Исследование флоккулирующих свойств новых сополимеров акриламида в воде.

    дипломная работа [577,3 K], добавлен 30.07.2010

  • Методы очистки сточных вод: механические, химические, биологические и электрохимические. Рассмотрение сущности метода электрохимической деструкции. Схема однокамерной электро-флотационной установки. Электрофорез, электроосмос и электрофильтрование.

    презентация [325,9 K], добавлен 06.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.