Методы и средства очистки воды в сельхозпроизводстве
Изучение основных методов очистки воды, а так же новых технологий, применяемых в сельхозпроизводстве. Характеристика средств, необходимых для очищения воды. Системы водоснабжения животноводческих комплексов и птицеферм, пастбищ, населенных пунктов.
Рубрика | Экология и охрана природы |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 09.11.2016 |
Размер файла | 252,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Водоснабжение в сельском хозяйстве
2. Способы очистки воды в сельском хозяйстве
3. Методы очистки воды, применяемые в сельскохозяйственном производстве
Заключение
Список источников
Введение
Из воды возникло всё. Вода - универсальное сырьё любой культуры и фундамент любого человеческого и духовного развития. Вода - ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания.
Человек - элемент биосферы. Все жизненные ресурсы - воздух, пищу, воду и значительную часть энергетических и строительных ресурсов - он получает из биосферы. В биосферу человек сбрасывает и отходы - бытовые и промышленные. Долгое время такой тип человеческой деятельности не нарушал равновесия биосферы. В настоящее время стихийное взаимоотношение с природой представляет опасность для существования не только отдельных объектов, территорий, стран и т.п., но и для всего человечества.
Существование биосферы и человека всегда было основано на использовании воды. Человечество всегда стремилось к увеличению водопотребления, оказывая на гидросферу многообразное давление. Загрязнение вод проявляется в изменении физических и органолептических средств (нарушение прозрачности, окраски, запахов, вкуса), увеличении содержания сульфатов, хлоридов, нитратов, токсичных тяжелых металлов, сокращении растворенного в воде кислорода воздуха, появлении радиоактивных элементов, болезнетворных бактерий и других загрязнителей.
Загрязнение водных экосистем представляет огромную опасность для всех живых организмов и, в частности, для человека. Для здоровья человека неблагоприятные последствия при использовании загрязненной воды, а также при контакте с ней (купание, стирка, рыбная ловля и др.) проявляются либо непосредственно при питье, либо в результате биологического накопления.
Использование воды ненадлежащего качества очень сильно влияет на здоровье человека и срок службы бытовой техники. Поэтому вода, поступающая из скважины или водопровода, нуждается в специальной обработке, представляющей собой комплекс физических, химических и биологических методов. Ежедневно, даже небольшое поселение требует огромные объемы воды, которая идет на обеспечение хозяйственных нужд проживающих в селе людей, а также на животноводческие и птицефермы, на полив полей и теплиц, на предприятия по переработке сельскохозяйственной продукции и другие нужды. Специалисты по системам водоснабжения давно выделили в отдельную категорию такое понятие как сельскохозяйственное водоснабжение, основой которого являются оросительные каналы и традиционные для сельской местности точки водозабора -- колодцы, бурение скважин на воду и добыча, родники и водохранилища.
Исходя из этого, можно поставить следующие задачи, для более углубленного понимания темы «Методы и средства очистки воды в сельхозпроизводстве»
1. Изучить основные методы очистки воды, а так же новые технологии, применяемые в сельхозпроизводстве
2. Рассмотреть и описать определённые средства очистки воды
3. Значимость водоснабжения в сельском хозяйстве
Целью курсового исследования является - раскрыть основные понятия, применяемые для очистки воды в сельхозпроизводстве
Объектом исследования является - очистка воды в сельском производстве
Предметом исследования - средства, необходимые для применения очищения воды.
1. Водоснабжение в сельском хозяйстве
В большинстве стран, одной из ведущих отраслей всегда являлось народное хозяйство. Даже в тех государствах, где значительную долю народного хозяйства занимает легкая и тяжелая промышленность или машиностроение, сельскому хозяйству уделяется немало внимания, так как эта отрасль в буквальном смысле кормит население страны. Касаемо России можно отметить, что так исторически сложилось, что наша страна считается почти аграрной державой, тем более, что половина населения России проживает в сельской местности. Бурное развитие сельского хозяйства и благоустройство сельских поселений привели к тому, что на первое место вышел вопрос водоснабжения агропромышленного комплекса и населения сельских районов. Наверное нет такой отрасли народного хозяйства, где вода требовалась в таком количестве, как в сельском хозяйстве.
Как и при проектировании и внедрении любой системы водоснабжение, системы сельскохозяйственного водообеспечения разрабатываются согласно строительным и иным нормам, принятым на территории Российской Федерации. Также, особое внимание уделяется выбору насосного оборудования, станций водоснабжения и фильтров очистки воды. Сегодня, сельскохозяйственное водоснабжения по своему назначению условно разделено на пять основных групп.
1. Системы полива сельскохозяйственных угодий (полей).
2. Системы водоснабжения пастбищ.
3. Системы водоснабжения животноводческих комплексов и птицеферм.
4. Системы водоснабжения населенных пунктов.
5. Системы водоснабжения ремонт-технических станций.
Подача воды для бытовых нужд жителей сельских районов, парка автомобильной и сельскохозяйственной техники, ремонтных и иных мастерских, для полива полей и теплиц, предприятий сельскохозяйственного комплекса и комплексов автоматического пожаротушения производится с помощью стандартных насосных станций. В качестве источников воды принято использовать подземные воды, однако, если количество воды в них не удовлетворяет в полной мере потребности указанных категорий потребителей, то возможен водозабор из наземных естественных или искусственных водных резервуаров: реки, озера, ставки и водохранилища. Если качество воды в подземных источниках соответствует ГОСТ 2874--73 «Вода питьевая», то традиционная система водоснабжения выглядит, как несколько шахтных колодцев или артезианских скважин, оборудованных погружными, реже поверхностными, насосами для подъема воды. Обязательным компонентом такой системы является оборудование водоподготовки, а в некоторых случаях, также используют насосы второго подъема (подкачки) и промежуточные резервуары для хранения воды, так называемые водонапорные башни. При этом, подкачивающее насосное оборудование выбирают таким образом, чтобы оно было в состоянии обеспечить нормальную подачу воду в период пиковых нагрузок на сеть водоснабжения, например при тушении пожара или резком падении давления в системе ввиду объективных причин -- засуха, сброс воды из водохранилищ и т. п.
После оборудования точек водозабора и установки насосного оборудования необходимой мощности и систем коллективной фильтрации воды , производят монтаж инженерных коммуникаций и запорной арматуры для подачи воды в культурно-бытовые и административные здания, многоэтажные жилые дома, больницы, дошкольные и учебные заведения, а также бытовые помещения предприятий сельского хозяйства. Водоснабжение частных домовладений осуществляется через колонки, но в последнее время от этой практики отходят, подводя к каждому жилому дому отдельную ветку для подачи воды. Также, практически в каждом сельском населенном пункте, на подворьях можно встретить колодец, являющийся дополнительным источником воды. Что касается поверхностных источников водоснабжения сельских регионов, то в подавляющем числе случаев для подачи качественной воды из них необходима установка мощных водоочистных сооружений. Сегодня, наиболее популярными такими система являются установки для осветления безреагентным способом на медленных фильтрах, которые позволяют добиться необходимого качества воды при относительно небольших затратах. Также, в сельской местности достаточно распространены фильтры обезжелезиватели и другие системы, снижающие концентрацию микроэлементов и механических примесей в воде. Поскольку водоснабжение сельских регионов по-прежнему довольно дорогостоящее предприятие, ввиду значительной удаленности мест забора воды, то специалисты рекомендуют организовывать ее подачу сразу на несколько предприятий сельскохозяйственного комплекса и другие нужды посредством единого водовода и одной или нескольких насосных и очистных станций.
До сих пор большой проблемой является водоснабжение современных животноводческих комплексов, где помимо нужд производства, вода необходима для поддержания в «боевой готовности» систем автоматического пожаротушения. Сегодня, для расчета необходимого количества воды на подобных сельскохозяйственных предприятиях существуют определенные нормы, которые зависят от количества голов животных и возможного тушения пожара в течении трех часов.
Расход кубических метров воды в сутки:
· животноводческая ферма по производству свинины на 108 тысяч голов -- 3000 кубометров;
· животноводческая ферма по производству говядины на 10 тысяч голов -- 600 кубометров;
· комплекс по производству молока на 1200 голов -- 380 кубометров.
Как правило, в традиционную схему снабжения водой животноводческой фермы входят: точка водозабора с насосной установкой (станцией); очистное оборудование; промежуточный резервуар для хранения воды (водонапорная башня); разводящие сети с запорной арматурой. В качестве примера можно привести систему водоснабжения небольшой животноводческой фермы на 400 голов крупного рогатого скота (молочные коровы), где забор воды осуществляется из шахтного колодца погружными электрическими насосами БЦП или ЭЦВ. Для качественного снабжения водой такой фермы требуется водонапорный промежуточный бак, емкость которого должна составлять 12-15% от суточного объема, необходимого для нормального обеспечения комплекса -- это водонапорная башня с баком на 25 кубических метров. Колодцы, камеры для погружных насосов, водонапорные промежуточные емкости, трассы для трубопроводов и их смотровые колодцы, как правило, выполнены из железобетона. Сама водопроводная сеть, в том числе вводы в ферму и подсобные помещения комплекса, смонтирована их чугунных, стальных, полиэтиленовых или асбестоцементных труб. Современное насосное оборудование позволяет обеспечивать водой животноводческие комплексы без применения водонапорных башен. В этом случае, на точку водозабора и промежуточный резервуар для воды устанавливаются мощные насосные установки, способные работать в круглосуточном режиме практически без участия человека. Необходимое давление и расход воды в них регулируется автоматически.
вода очистка сельхозпроизводство
2. Способы очистки воды в сельском хозяйстве
Основными источниками загрязнения и в то же время основными потребителями подготовленной воды являются промышленность, сельское хозяйство и бытовое хозяйство. В свою очередь к основным формам загрязнения относят физическое химическое, биологическое и тепловое. Таким образом сельскохозяйственное производство относится к химическому загрязнению, так как химическое загрязнение - это попадание в водоемы химических веществ, специфических для различных производств или отраслей промышленности и сельского хозяйства. В особенности стоит выделить загрязнение нефтепродуктами, соединениями тяжелых металлов, поверхностно-активными веществами (ПАВ) и нитратами, главным источником которых является смыв сельскохозяйственных удобрений. В случае биологического загрязнения речь идет о засорении органическими веществами и микроорганизмами (в том числе болезнетворными и паразитическими). Кроме того, ряд химических соединений, богатых азотом и фосфором биогенного происхождения, является питательной средой для определенных организмов, и загрязнение водоема такими соединениями ведет к его эвтофикации - постепенному зарастанию с последующим превращением в болото.
Разнообразие различных загрязнителей порождает не меньшее разнообразие способов очистки воды от них. Тем не менее, их все можно разделить на группы по принципу действия. Таким образом, наиболее общая классификация способов очистки выглядит следующим образом:
· Физические;
· Химические;
· Физико-химические;
· Биологические.
Каждая из групп способов включается в себя множество конкретных вариантов реализации процесса очистки и его аппаратного оформления. Так же необходимо учитывать, что очистка воды, как правило, - это комплексная задача, требующая для своего решения комбинации различных способов для достижения максимальной эффективности. Комплексность задачи очистки обуславливается характером загрязнения - обычно в качестве нежелательных компонентов выступает целый ряд веществ, требующих разного подхода. Установки очистки, основанные на одном способе, обычно встречаются в тех случаях, когда вода преимущественно загрязнена одним или несколькими веществами, эффективное отделение которых возможно в рамках одного способа. В качестве примера можно привести сточные воды различных производств, где химический и количественный состав загрязнителей заранее известен и не отличатся большой разнородностью.
Физические способы (методы) очистки воды:
В основе работы физических способов очистки воды лежат различные физические явления, которые используются для воздействия на воду или содержащиеся в ней загрязнения. При очистке больших объемов воды эти методы используются преимущественно для удаления достаточно крупных твердых включений и выступают в качестве предварительной стадии грубой очистки, призванной снизить нагрузку на последующие стадии тонкой очистки. В то же время существует ряд физических методов, способных проводить глубокую очистку воды, но, как правило, производительность таких методов мала.
К основным физическим методам очистки воды относят:
процеживание;
отстаивание;
фильтрование (в том числе центробежное);
ультрафиолетовая обработка.
Процеживание представляет собой пропускание очищаемой воды через различные решетки и сита, на которых происходит задержание крупных загрязнителей. Этот метод относится к грубой очистке и часто выступает в качестве предварительной стадии. Его назначение - удалить из очищаемой воды легко отделяемые загрязнители для снижения нагрузки на очистные сооружения и обеспечить работоспособность последующих установок тонкой очистки, которые могут выйти из строя из-за попадания крупных механических включений.
Отстаивание заключается в отделении части механических загрязнений из воды под действием гравитационных сил, заставляющих частицы опускаться на дно, образуя осадок. Отстаивание может выступать как в качестве предварительной стадии очистки, на которой отделяются наиболее крупные загрязнители, так и в качестве промежуточных стадий. Данный процесс осуществляется в отстойниках - резервуарах, снабженных устройствами для удаления осадка, время пребывания воды в которых рассчитывается из условия полного осаждения всех загрязняющих частиц, которые должны быть отделены.
Фильтрование основывается на прохождении очищаемой воды через пористый слой фильтрующего материала, на котором происходит задержание частиц определенного размера. По своему принципу фильтрация схожа с процеживанием, однако с ее помощью можно проводить как грубую, так и тонкую очистку. Фильтрация позволяет удалять такие загрязнители как ил, песок, окалина, а также различные твердые включения размером в несколько микрон. Кроме того, с помощью фильтрации можно улучшить органолептические качества воды. Механическая фильтрация получила широкое распространение, как в крупных установках водоочистки, так и в бытовых фильтрах малой производительности.
Ультрафиолетовая дезинфекция воды, хоть и не производит непосредственно очистку, но активно применяется в процессе водоподготовки и заключается в обработке уже очищенной воды ультрафиолетовой частью спектра света (в частности используется диапазон волн с длиной 200-400 нм), невидимой для человеческого глаза, с целью обеззараживания воды. Смерть живых организмов под данным излучением наступает преимущественно вследствие повреждений молекул ДНК и РНК, что вызвано фотохимическими реакциями, возникающими в их структуре. Преимуществами такого способа обеззараживания является независимость процесса от состава воды и сохранение этого состава после УФ обработки. Тем не менее необходимо учитывать наличие в воде твердых примесей, способных оказывать экранирующий эффект по отношению к излучению.
Химические способы (методы) очистки воды:
Методы очистки данной группы основаны на химическом взаимодействии определенных веществ (реагентов) с загрязнителями, в результате чего вторые либо разлагаются на неопасные компоненты, либо переходят в иное состояние (к примеру, образуют нерастворимые соединения, выпадающие в отделяемый осадок). Несмотря не огромное разнообразие возможных загрязнителей и химический реакций, в которые эти загрязнители могут вступать, выделяют ряд способов очистки, принципиально отличающихся по типу химического взаимодействия:
· нейтрализация;
· окисление;
· восстановление.
Нейтрализация заключается в, как следует из названия, осуществлении процесса нейтрализации, при котором происходит выравнивание кислотно-щелочного баланса за счет взаимодействия кислот и щелочей с последующим образованием соответствующих солей и воды. Нейтрализацию проводят как путем смешения очищаемых вод с кислотной и щелочной средой, так и путем добавления реагентов, создающих в воде среду определенной реакции (кислотной или щелочной). Для нейтрализации кислых стоков обычно используют аммиачную воду (NH4OH), гидроксиды натрия и калия (NaOH и KOH), кальцинированную соду (Na2CO3), известковое молоко (Ca(OH)2) и т.д. В случае щелочных стоков применяют различные растворы кислот, а также кислые газы, содержащие такие оксиды как CO2, SO2, NO2 и т.д. В качестве кислых газов обычно используют отходящие газы, которые пропускают через очищаемую воду, при этом попутно осуществляется процесс очищения и самих газов от твердых включений.
Окисление и восстановление также используется для очистки воды от различных загрязняющих веществ, хотя на практике соотношение их использования сильно смещено в сторону окислителей. Несмотря на то, что в реакции нейтрализации также протекают параллельные процессы окисления и восстановления, данный метод отличается использованием значительно более сильных окислителей и восстановителей, так как целевые загрязнители просто не будут вступать в реакцию с веществами, используемыми в методе очистке нейтрализацией. С их помощью проводят обезвреживание различных токсичных веществ, и также веществ, трудно извлекаемых из воды иными способами. Осуществлением реакций окисления добиваются переведения токсичных загрязнителей в менее токсичные или нетоксичные формы. Также за счет использования сильных окислителей достигается гибель микроорганизмов, наступающая вследствие окисления их клеточных структур. В основном применяют хлорсодержащие окислители: газообразный хлор (CL2) а также различные хлор соединения, такие как диоксид хлора (CLO2), гипохлориды калия, натрия и кальция (KCLO; NaCLO; Ca(CLO)2). Помимо этого использую перекись водорода (H2O2), перманганат калия (KMnO4), озон (O3), кислород воздуха (O2), дихромат калия (K2Cr2O7) и т.д.
Хлорирование, то есть обработка воды хлорсодержащими соединениями, как процесс хорошо отработано и широко применяется в водоподготовке. Обработка хлором обладает также пролонгированным антибактерицидным действием, что особенно важно при водоснабжении в условиях изношенных трубопроводов, где может происходить вторичное загрязнение воды. Кроме того, реагенты для хлорирования относительно дешевы и доступны. В то же время у этого метода есть ряд недостатков, которые побуждают искать альтернативы. В некоторых случаях побочные соединения, образующиеся после хлорирования, могут быть не менее токсичными, кроме того сам хлор является ядовитым веществом, поэтому требуется тщательно соблюдать условия дозирования при хлорировании. В настоящий момент все большее распространение получает обработка воды озоном (озонирование), поскольку эффективность этого метода многократно превосходит хлорирование, озон не образует опасных соединений и со временем распадается на неопасный двухатомный кислород (O2), благодаря чему передозировка озона не влечет за собой нежелательных и опасных последствий. Широкому распространению озонирования препятствуют только техническая и экономическая сложности его получения в достаточном количестве, а также взрывоопасность озона, что требует соблюдения строгих правил безопасности на очистных сооружениях.
Физико-химические способы очистки воды:
Как следует из названия, методы очистки воды данной группы совмещают в себе химическое и физическое воздействие на загрязнители воды. Они достаточно разнообразны и применяются для удаления самых разных веществ. В их числе растворенные газы, тонкодисперсные жидкие или твердые частицы, ионы тяжелых металлов, а также различные вещества в растворенном состоянии. Физико-химические методы могут применяться как на стадии предварительной очистки, так и на поздних этапах для глубокой очистки.
Разнообразие методов данной группы велико, поэтому ниже будут приведены наиболее распространенные из них:
· флотация;
· сорбция;
· экстракция;
· ионообмен;
· электродиализ;
· обратный осмос;
· термические методы.
Флотация, применительно к водоочистке, представляет собой процесс отделения гидрофобных частиц при пропускании через воду большого числа пузырьков газа (обычно воздуха). Показатели смачиваемости отделяемого загрязнителя таковы, что частицы закрепляются на поверхности раздела фаз пузырьков и вместе с ними поднимаются на поверхность, где образуют слой пены, который может быть легок удален. Если отделяемая частица оказывается больше по размерам чем пузырьки, то вместе они (частица + пузырьки) образуют так называемый флотокомплекс. Нередко флотацию комбинируют с использованием химических реагентов, к примеру, сорбирующихся на частицах загрязнителя, чем достигается снижение его смачиваемости, или являющихся коагулянтами и проводящих к укрупнению удаляемых частиц. Флотацию преимущественно используют для очистки воды от различных нефтепродуктов и масел, но также могут удаляться твердые примеси, отделение которых другими способами неэффективно.
Существуют различные вариант осуществления процесса флотации, ввиду чего выделяют следующие ее типы:
· пенная;
· напорная;
· механическая:
· пневматическая;
· электрическая;
· химическая
Приведем в качестве примера принцип работы некоторых из них. Широко используется метод пневматической флотации, при которой образование восходящего потока пузырьков создается за счет установки на дне резервуара аэраторов, обычно представляющих собой перфорированные трубы или пластины. Подаваемый под давлением воздух проходит сквозь отверстия перфорации, за счет чего дробиться на отдельные пузырьки, осуществляющие сам процесс флотации. При напорной флотации поток очищаемой воды смешивается с потоком воды, перенасыщенной газом и находящейся под давлением, и подается в камеру флотации. При резком падении давления растворенный в воде газ начинает выделяться в виде пузырьков малого размера. В случае электрофлотации процесс образования пузырьков протекает на поверхности расположенных в очищаемой воде электродов при протекании по ним электрического тока.
Сорбционные методы основаны на избирательном поглощении загрязняющих веществ в поверхностном слое сорбента (адсорбция) или в его объеме (абсорбция). В частности для очистки воды используется процесс адсорбции, который может носить физический и химический характер. Отличие заключается в способе удержания адсорбируемого загрязнителя: с помощью сил молекулярного взаимодействия (физическая адсорбция) или благодаря образованию химических связей (химическая адсорбция или хемосорбция). Методы данной группы способны достичь большой эффективности и убирать из воды даже малые концентрации загрязнителей при больших ее расходах, что делает их предпочтительными в качестве методов доочистки на завершающих стадиях процесса водоочистки и водоподготовки. Сорбционными методами могут удаляться различные гербициды и пестициды, фенолы, поверхностно активные вещества и т.д.
В качестве адсорбентов используются такие вещества как активированные угли, силикагели, алюмогели и цеолиты. Их структура делается пористой, что значительно увеличивает удельную площадь адсорбента, приходящуюся на единицу его объема, из-за чего достигается большая эффективность процесса. Сам процесс адсорбционной очистки может быть осуществлен путем смешения очищаемой воды и адсорбента, или же путем фильтрации воды через слой адсорбента. В зависимости от сорбирующего материала и извлекаемого загрязнителя процесс может быть регенеративным (адсорбент после регенерации используется вновь) или деструктивны, когда адсорбент подлежит утилизации ввиду невозможности его регенерации.
Очистка воды методом жидкостной экстракции заключается в использовании экстрагентов. Применительно к очистке воды, эктсрагент - это несмешиваемая или мало смешиваемая с водой жидкость, значительно лучше растворяющая в себе извлекаемые из воды загрязнители. Процесс осуществляется следующим образом: очищаемая вода и эктрагент перемешиваются для развития большой поверхности контакта фаз, после чего в них происходит перераспределение растворенных загрязняющих веществ, большая часть которых переходит в экстрагент, затем две фазы разделяются. Насыщенный извлекаемыми загрязнителями экстрагент называется экстрактом, а очищенная вода - рафинатом. Далее экстрагент может быть утилизирован или регенерирован в зависимости от условий процесса. Данным методом из воды удаляются преимущественно органические соединения, такие как фенолы и органические кислоты. Если экстрагируемое вещество представляет определенную ценность, то после регенерации экстрагента оно вместо утилизации может быть с пользой использовано для других целей. Данный факт способствует применению экстракционного метода очистки к сточным водам предприятий для извлечения и последующего использования или возврата в производство ряда веществ, теряемых со стоками.
Ионный обмен в основном используется в водоподготовке с целью умягчения воды, то есть изъятия солей жесткости. Суть процесса заключается в обмене ионами между водой и специальным материалом, называемым ионитом. Иониты подразделяются на катиониты и аниониты в зависимости от типа обмениваемых ионов. С химической точки зрения ионит представляет собой высокомолекулярное вещество, состоящее из каркаса (матрицы) с большим количеством функциональных групп, способных к ионообмену. Существуют природные иониты, такие как цеолиты и сульфоугли, которые применялись на ранних этапах развития ионообменной очистки, но в настоящее время широкое распространение получили искусственные ионообменные смолы, значительно превосходящие свои природные аналоги по ионообменной способности. Метод очистки ионным обменом получил широкое распространение, как в промышленности, так и в быту. Бытовые ионообменные фильтры, как правило, не используются для работы с сильнозагрязненными водами, поэтому ресурса одного фильтра хватает на очистку большого количества воды, после чего фильтр подлежит утилизации. В то же время при водоподготовке ионообменный материал чаще всего подлежит регенерации с помощью растворов с большим содержанием ионов H+ или OH--.
Электродиализ представляет собой комплексный метод, сочетающий мембранный и электрический процессы. С его помощью можно удалять из воды различные ионы и проводить обессоливание. В отличие от обычных мембранных процессов, в электродиализе используются специальные ионоселективные мембраны, пропускающие ионы только определенного знака. Аппарат для проведения электродиализа называется электродиализатором и представляет собой ряд камер, разделенных чередующимися катионообменными и анионообменными мембранами, в которые поступает очищаемая вода. В крайних камерах расположены электроды, к которым подводится постоянный ток. Под действием возникшего электрического поля ионы начинаются двигаться к электродам согласно своему заряду, пока не встречают ионоселективную мембрану с совпадающим зарядом. Это приводит к тому, что в одних камерах происходит постоянный отток ионов (камеры обессоливания), а в других, наоборот, наблюдается их накопление (камера концентрирования). Разводя потоки из разных камер можно получить концентрированный и обессоленный растворы. Неоспоримые преимущества данного метода заключаются не только в очищении воды от ионов, но и в получении концентрированных растворов отделяемого вещества, что позволяет возвращать его назад в производство. Это делает электродиализ особенно востребованным на различных химических предприятиях, где вместе со стоками теряется часть ценных компонентов, и применение данного метода удешевляется за счет получения концентрата.
Обратный осмос относится к мембранным процессам и проводится под давлением больше осмотического. Осмотическое давление - избыточное гидростатическое давление, приложенное к раствору, отделенному полупроницаемой перегородкой (мембраной) от чистого растворителя, при котором прекращается диффузия чистого растворителя через мембрану в раствор. Соответственно, при рабочем давлении выше осмотического будет наблюдаться обратный переход растворителя из раствора, за счет чего концентрация растворенного вещества будет расти. Таким способом можно отделять растворенные газы, соли (включая соли жесткости), коллоидные частицы, а также бактерии и вирусы. Также установки обратного осмоса выделяются тем, что используются для получения пресной воды из морской. Данный тип очистки с успехом используется как в бытовых условиях, так и при обработке сточных вод и водоподготовке.
Термические методы основаны на воздействии на очищаемую воду повышенных или пониженных температур. Одним из наиболее энергоемких процессов является выпаривание, однако оно позволяет получить воду высокой степени чистоты и высококонцентрированный раствор с нелетучими загрязнителями. Также концентрирование примесей может осуществляться с помощью вымораживания, поскольку в первую очередь начинает кристаллизоваться чистая вода, и лишь затем оставшаяся ее часть с растворенными загрязнителями. Выпариванием, как и вымораживанием, можно проводить кристаллизацию - выделение примесей в виде выпадающих в осадок кристаллов из насыщенного раствора. В качестве экстремального метода используется термическое окисление, когда очищаемая вода распыляется и подвергается воздействию высокотемпературных продуктов сгорания топлива. Данный метод используется для нейтрализации высокотоксичных или трудно разлагаемых загрязнителей.
Биологические способы(методы) очистки воды:
Как следует из названия, методы очистки данной группы основаны на использовании живых организмов. Несмотря на очевидность метода, биологическая очистка является наиболее передовым и перспективным направлением в очистке сточных вод. Для осуществления процесса обычно используются бактерии различных видов, но также это могут быть низшие грибы и водоросли, простейшие и даже некоторые многоклеточные, такие как красные черви и мотыль. Одной из особенностей биологического метода очистки является возможность подбора определенных живых организмов для оптимальной очистки сточных вод заданного химического состава. Так нитрофицирующие бактерии, такие как Nitrobacter и Nitrosomonas, способны окислять азотосодержащие соединения в процессе питания, а фосфат аккумулирующие организмы применяются для очистки воды от фосфора.
Скопление микроорганизмов, используемое при биологической очистке, называется активным илом. Он представляет собой темно-коричневую или черную жидкую массу с землистым запахом, которая при отстаивании образует оседающие хлопья. Благодаря этому активный ил может быть сравнительно легко отделен от воды после завершения процесса очистки. Сами микроорганизмы, как правило, находятся в активном иле не поодиночке, а в составе колоний, называемых зооглеи. В зависимости от состава очищаемой воды и условий проведения процесса очистки зооглеи могут иметь различную форму: шарообразную, древовидную и т.д.
В общем случае все используемые в биоочистке микроорганизмы можно разделить на две большие группы, определяющие характер проведения процесса: аэробные и анаэробные. Аэробные организмы потребляют кислород в процессе питания, необходимый им для окисления веществ. В свою очередь анаэробные организмы не нуждаются в кислороде. Для процесса очистки использование микроорганизмов того или иного типа определяет характер проведения процесса и необходимое для его осуществления оборудование.
Биологическая очистка может проводиться в следующих условиях:
биологические пруды;
поля фильтрации;
биофильтры;
аэротенки (окситенки);
метантенки.
В первых двух случаях используются крайне простые сооружения. Биологический пруд - это естественный или искусственный водоем с, как правило, естественной аэрацией, в котором обитают микроорганизмы активного ила. Поле фильтрации представляет собой участок почвы (песок, глина, суглинок или торф), через который осуществляют фильтрацию воды и ее очистку за счет содержащихся в почве микроорганизмов. Сооружения такого типа неспособны работать с сильнозагрязненными водами при большом расходе. В тоже время они почти не требуют эксплуатационных затрат и постоянного контроля со стороны человека.
Биофильтр - это сооружение, в котором очистка воды осуществляется путем фильтрации через слой загрузочного материала, покрытого слоем аэробных микроорганизмов, который также называется биопленкой. Для обеспечения достаточного количества кислорода, необходимого организмам для биоразложения загрязнителей, предусматривается воздухораспределительная система. Однако аэрация может осуществляться и естественным путем.
Аэротенк является более сложным очистным сооружением, в котором аэрация осуществляется искусственным образом. Как следует из описания, в нем проводится очистка аэробными микроорганизмами. Перед подачей в аэротенк вода предварительно смешивается с активным илом. Аэрация в аэротенке не только насыщает среду кислородом, стимулируя процессы биоразложения загрязнений, но и обеспечивает дополнительное перемешивание. Обычно для аэрации используется атмосферный воздух, но в случае окситенков вместо него используется технический кислород, что значительно увеличивает эффективность процесса.
Биологическая очистка сточных вод анаэробными организмами преимущественно проводится в метантенках. Отличительной особенностью такой очистки является отсутствие потребности в кислороде и получение биогаза в качестве продукта жизнедеятельности анаэробных бактерий. Также в метантенк обычно подается не сама вода, а выпадающий в отстойниках концентрированный осадок, который необходимо подвергнуть брожению. Для интенсификации процесса брожения в метантенке может быть предусмотрен дополнительный подогрев. При этом выделяют мезофильное сбраживание, проводимое при 30-35 °C, и термофильное сбраживание, проводимое при 50-55 °C. Сам процесс анаэробного разложения достаточно сложен и протекает в несколько стадий, а на завершающей стадии происходит образование метана, являющегося экологически чистым топливом.
3.Методы очистки воды, применяемые в сельскохозяйственном производстве
В реках и других водоемах происходит естественный процесс самоочищения воды. Однако он протекает медленно. Пока промышленно - бытовые сбросы были невелики, реки сами справлялись с ними. В наш индустриальный век в связи с резким увеличением отходов водоемы уже не справляются со столь значительным загрязнением. Возникла необходимость обезвреживать, очищать сточные воды и утилизировать их.
Очистка сточных вод - обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения - сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода). Очистка сточных вод - вынужденное и дорогостоящее мероприятие, представляющее собой довольно сложную задачу, связанную с большим разнообразием загрязняющих веществ и появлением в их составе новых соединений.
Методы очистки вод можно разделить на 2 большие группы: деструктивные и регенеративные.
В основе деструктивных методов лежат процессы разрушения загрязняющих веществ. Образующиеся продукты распада удаляются из воды в виде газов, осадков или остаются в воде,. но уже в обезвреженном виде.
Регенеративные методы - это не только очистка сточных вод, но и утилизация ценных веществ, образующихся в отходах.
Методы очистки вод можно разделить на: механические, химические, гидрохимические, электрохимические, физико-химические и биологические. Когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примеси.
Сущность механического метода состоит в том, что из сточных вод путем отстаивания и фильтрации удаляются механические примеси. Грубодисперсные частицы в зависимости от размеров улавливаются решетками, ситами, песколовками, септиками, навозоуловителями различных конструкций, а поверхностные загрязнения - нефтеловушками, бензомаслоуловителями, отстойниками. Механическая очистка позволяет выделять из бытовых сточных вод до 60-75% нерастворимых примесей, а из промышленных до 95%, многие из которых как ценные примеси, используются в производстве.
Химический метод заключается в том, что в сточные воды добавляют различные химические реагенты, которые вступают в реакцию с загрязнителями и осаждают их в виде нерастворимых осадков. Химической очисткой достигается уменьшение нерастворимых примесей до 95% и растворимых до 25%.
Гидромеханические методы применяют для извлечения из сточных вод нерастворимых грубодисперсных примесей органических и неорганических веществ путем отстаивания, процеживания, фильтрования, центрифугирования. С этой целью используют различные конструктивные модификации сит, решеток, песколовок, отстойников, центрифуг и гидроциклонов.
Электрохимические методы очистки сточных вод от различных растворимых и диспергированных примесей включают анодное окисление и катодное восстановление, электрокоагуляцию, электродиализ. Процессы, лежащие в основе этих методов, протекают при пропускании через сточную воду электрического тока. Под действием электрического поля положительно заряженные ионы мигрируют к катоду, а заряженные отрицательно - к аноду. В прикатодном пространстве происходят процессы восстановления, а в прианодном - процессы окисления.
Физико-химические методы очистки сточных вод многообразны. Это коагуляция, флотация, адсорбционная очистка, ионный обмен, экстракция, обратный осмос и ультрафикация. При физико-химическом методе обработки из сточных вод удаляются тонкодисперсные и растворенные неорганические примеси и разрушаются органические и плохо окисляемые вещества.
Биохимические методы очистки сточных вод. Применяются для очистки хозяйственно-бытовых и промышленных сточных вод от органических и некоторых неорганических (сероводорода, сульфидов, аммиака, нитратов и др.) веществ. Процесс очистки основан на способности микроорганизмов использовать эти вещества для питания, превращения их в воду, диоксид углерода, сульфат-фосфат-ион и др. и увеличивая свою биомассу.
Также к основным методам очистки воды относятся нижеперечисленные методы:
Осветление - удаление из воды взвешенных веществ. Реализуется фильтрацией воды через пористые фильтроэлементы (картриджи) или через слой фильтроматериала. Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры. В осветлителях и отстойниках вода движется с замедленной скоростью, вследствие чего происходит выпадение в осадок взвешенных частиц. В целях осаждения мельчайших коллоидных частиц, которые могут находиться во взвешенном состоянии неопределенно долгое время, к воде прибавляют раствор коагулянта (обычно сернокислый алюминий, железный купорос или хлорное железо). В результате реакции коагулянта с солями многовалентных металлов, содержащимися в воде, образуются хлопья, увлекающие при осаждении взвеси и коллоидные вещества.
Коагуляция - обработка воды специальными химическими реагентами для укрупнения частиц загрязнений. Делает возможными или интенсифицирует осветление, обесцвечивание, обезжелезивание. Коагуляцией примесей воды называют процесс укрупнения мельчайших коллоидных и взвешенных частиц, происходящий вследствие их взаимного слипания под действием сил молекулярного притяжения.
Окисление - обработка воды кислородом воздуха, гипохлоритом натрия, марганцевокислым калием или озоном. Обработка воды окислителем (или их комбинацией) делает возможными или интенсифицирует обесцвечивание, дезодорацию, обеззараживание, обезжелезивание, деманганацию.
Обесцвечивание - удаление или видоизменение веществ, придающих воде цвет. Реализуется различными методами, в зависимости от причины цветности. Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).
Обеззараживание - обработка воды окислителями и/или УФ-излучением для уничтожения микроорганизмов. Обеззараживание воды (удаление бактерий, спор, микробов и вирусов) является заключительным этапом подготовки воды питьевой кондиции. Использование для питья подземной и поверхностной воды в большинстве случаев невозможно без обеззараживания. Обычными методами при очистке воды являются:
Хлорирование путем добавления хлора, диоксида хлора, гипохлорита натрия или кальция.
Озонирование. При применении озона для подготовки питьевой воды используются окислительные и дезинфицирующие свойства озона.
Ультрафиолетовое облучение. Используется энергия ультрафиолетового излучения для уничтожения микробиологических загрязнений. Кишечная палочка, бацилла дизентерии, возбудители холеры и тифа, вирусы гепатита и гриппа, сальмонелла погибают при дозе облучения менее 10 мДж/см2, а ультрафиолетовые стерилизаторы обеспечивают дозу облучения не менее 30 мДж/см2.
Обезжелезивание/деманганация - превращение растворённых соединений железа и мрования, как правило, через специальные фильтроматериалы. Решение проблемы очистки воды от железа представляется довольно сложной и комплексной задачей. К наиболее часто используемым методам можно отнести:
Аэрирование - окисление кислородом воздуха с последующим осаждением и фильтрацией. Расход воздуха для насыщения воды кислородом составляет около 30 л/м3. Это традиционный метод, применяемый уже много десятилетий. Реакция окисления железа требует довольно длительного времени и больших резервуаров, поэтому этот способ используется только на крупных муниципальных системах.
Каталитическое окисление с последующей фильтрацией. Наиболее распространенный на сегодняшний день метод удаления железа, применяемый в высокопроизводительных компактных системах. Суть метода заключается в том, что реакция окисления железа происходит на поверхности гранул специальной фильтрующей среды, обладающей свойствами катализатора (ускорителя химической реакции окисления). Наибольшее распространение в современной водоподготовке нашли фильтрующие среды на основе диоксида марганца (MnO2). Железо в присутствии диоксида марганца быстро окисляется и оседает на поверхности гранул фильтрующей среды. Впоследствии большая часть окисленного железа вымывается в дренаж при обратной промывке. Таким образом, слой гранулированного катализатора является одновременно и фильтрующей средой. Для улучшения процесса окисления в воду могут добавляться дополнительные химические окислители.
Умягчение - замена катионов кальция и магния в воде на эквивалентное количество катионов натрия или водорода. Реализуется фильтрованием воды через специальные ионообменные смолы. С жесткой водой сталкивался каждый, достаточно вспомнить о накипи в чайнике. Жесткая вода не годится при окрашивании тканей водорастворимыми красками, в пивоварении, производстве водки. В ней хуже пенится стиральный порошок и мыло. Высокая жесткость воды делает её непригодной и для питания газовых и электрических паровых котлов и бойлеров. Слой накипи в 1,5 мм снижает теплоотдачу на 15%, а слой толщиной 10 мм - уже на 50%. Снижение теплоотдачи ведет к увеличению расхода топлива или электроэнергии, что, в свою очередь, ведет к образованию прогаров, трещин на трубах и стенках котлов, выводя преждевременно из строя системы отопления и горячего водоснабжения. Наиболее эффективным способом борьбы с высокой жесткостью является применение автоматических фильтров - умягчителей. В основе их работы лежит ионообменный процесс, при котором растворенные в воде жесткие соли заменяются на мягкие, которые не образуют твердых отложений.
Обессоливание - удаление из воды растворённых солей на ионообменных смолах или фильтрование воды через специальные плёнки (мембраны), пропускающие только молекулы воды.
Все большее значение в охране поверхностных вод от загрязнения и засорения приобретают агролесомелиорация и гидротехнические мероприятия. С их помощью можно предотвращать заиление и зарастание озер, водохранилищ и малых рек. Выполнение этих работ позволит уменьшить загрязненный поверхностный сток и будет способствовать чистоте водоемов.
По данным Всемирной организации здравоохранения (ВОЗ) ежегодно в мире из-за низкого качества воды умирает около 5 млн. человек. Инфекционная заболеваемость населения, связанная с водоснабжением, достигает 500 млн. случаев в год. Это дало основание назвать проблему водоснабжения доброкачественной водой в достаточном количестве проблемой номер один.
В природе вода никогда не встречается в виде химически чистого соединения. Обладая свойствами универсального растворителя, она постоянно несет большое количество различных элементов и соединений, состав и соотношение которых определяется условиями формирования воды, составом водоносных пород. Из грунта атмосферная вода поглощает углекислоту и становиться способной растворять по пути своего движения минеральные соли
Проходя через породы, вода приобретает свойства, характерные для них. Так, при прохождении через известковые породы, вода становится известковой, через доломитовые породы - магниевой. Проходя через каменную соль и гипс, вода насыщается сернокислыми и хлористыми солями и становится минеральной.
После постройки колодца, да и любого другого источника водоснабжения, необходимо провести исследования качества и состава воды для определения пригодности ее к использованию и потреблению. Надо помнить, что хозяйственно-питьевая вода относится к пищевым продуктам и ее показатели должны отвечать согласно Закону РФ "О санитарно-эпидемическом благополучии населения" от 19.04.91года, санитарным правилам СанПиН 4630-88 и требованию ГОСТа 2874-82 "Вода питьевая".
Качество воды характеризуется ее физическими, химическими и бактериологическими свойствами.
К физическим свойствам относятся ее температура, цветность, мутность, привкус и запах.
Температура воды из колодцев должна быть 7.12°С. Вода, имеющая более высокую температуру, теряет свои освежающие свойства. Температура ниже 5° С считается вредной для здоровья людей и приводит к простудным заболеваниям.
Под цветностью понимают ее окраску и выражают в градусах по платиново-кобальтовой шкале.
Мутность определяется содержанием в воде взвешенных частиц и выражается в миллиграммах на литр (мг/л). Вода подземных источников имеет малую мутность.
Наличие в воде органических веществ резко ухудшает ее физические (органолептические) показатели, вызывая различного рода запахи (землистый, гнилостный, рыбный, болотный, аптечный, камфорный, запах нефтепродуктов, хлорфенольный и т.д.), повышает цветность, вспениваемость, оказывает неблагоприятное действие на человека и животных.
Установлено, что незначительные изменения физических свойств воды снижают секрецию желудочного сока, а приятные вкусовые ощущения повышают остроту зрения и частоту сокращений сердца (неприятные - снижают).
Окисляемость обуславливается содержанием в воде растворенных органических веществ и может служить показателем загрязненности источника сточными водами. Для колодцев особую опасность представляют сточные воды, в составе которых есть белки, жиры, углеводы, органические кислоты, эфиры, спирты, фенолы, нефть и др.
Содержание в воде растворенных солей (мг/л) характеризуется плотным (сухим) осадком. Вода поверхностных источников имеет меньший плотный осадок, чем вода подземных источников, т.е. содержит меньше растворенных солей. Предел минерализации питьевой воды (сухого остатка) 1000 мг/л был в свое время установлен по органолептическому признаку. Воды с большим содержанием солей имеют солоноватый или горьковатый привкус. Допускается содержание их в воде на уровне порога ощущения: 350 мг/л для хлоридов и 500 мг/л для сульфатов. Нижним пределом минерализации, при котором гомеостаз организма поддерживается адаптивными реакциями, является сухой остаток в 100 мг/л, оптимальный уровень минерализации 200-400 мг/л. При этом минимальное содержание кальция должно быть не менее 25 мг/л, магния - 10 мг/л.
Степень бактериологической загрязненности воды определяется числом бактерий, содержащихся в 1 куб. см воды и должен быть до 100. Вода поверхностных источников содержит бактерии, внесенные сточными и дождевыми водами, животными и т.д. Вода подземных артезианских источников обычно не загрязнена бактериями.
Заключение
Защита водных ресурсов от истощения и загрязнения и их рационального использования для нужд народного хозяйства - одна из наиболее важных проблем, требующих безотлагательного решения. В России широко осуществляются мероприятия по охране окружающей среды, в частности по очистке производственных сточных вод в сфере сельского хозяйства.
Одним из основных направлений работы по охране водных ресурсов является внедрение новых технологических процессов производства, переход на замкнутые (бессточные) циклы водоснабжения, где очищенные сточные воды не сбрасываются, а многократно используются в технологических процессах.
В химической промышленности намечено более широкое внедрение малоотходных и безотходных технологических процессов, дающих наибольший экологический эффект. Большое внимание уделяется повышению эффективности очистки производственных сточных вод, которые положительно скажутся на качестве производства сельского хозяйства.
Подобные документы
Проведение экологического мониторинга состояния питьевой воды. Выявление основных загрязнителей. Установление соответствия качества питьевой воды санитарным нормам. Характеристика основных методов очистки воды для хозяйственно-питьевого водоснабжения.
презентация [1,1 M], добавлен 12.04.2014Основание существования биосферы и человека на использовании воды. Химические, биологические и физические загрязнители воды. Факторы, обуславливающие процессы загрязнения поверхностных вод. Характеристика показателей качества воды, методы ее очистки.
курсовая работа [57,9 K], добавлен 12.12.2012Очистка и обесцвечивание природной воды коагулянтами и флокулянтами. Условия применения флокулянтов для очистки воды. Методы определения показателей качества питьевой воды. Исследование флоккулирующих свойств новых сополимеров акриламида в воде.
дипломная работа [577,3 K], добавлен 30.07.2010Гидрологический и гидрохимический режим поверхностных водотоков. Организация водоснабжения района. Общая технологическая схема очистки питьевой воды. Химические и физические процессы, происходящие при этом. Методы обработки воды для улучшения ее качества.
курсовая работа [2,5 M], добавлен 24.10.2014Санитарно-гигиеническое значение воды. Характеристика технологических процессов очистки сточных вод. Загрязнение поверхностных вод. Сточные воды и санитарные условия их спуска. Виды их очистки. Органолептические и гидрохимические показатели речной воды.
дипломная работа [88,8 K], добавлен 10.06.2010Факторы загрязнения поверхностных вод. Основные физические, химические и биологические загрязнители воды. Естственные источники загрязнения подземных вод. Методы обеззараживания и очистки поверхностных вод, используемых для питьевого водоснабжения.
реферат [25,4 K], добавлен 25.04.2010Ценность пресной воды как природного ресурса, роль сооружений, реализующих отведение, очистку, обезвреживание воды в системе водоснабжения городов и промышленных предприятий. Применяемые методы физико-химической и биологической очистки сточных вод.
реферат [38,3 K], добавлен 10.06.2015Общая характеристика условий водопроводной сети. Источники водоснабжения. Технология очистки воды в системе водоснабжения. Подача и распределение питьевой воды. Контроль качества питьевой воды. Водозаборные сооружения. Групповой водозабор подземных вод.
отчет по практике [25,3 K], добавлен 09.11.2008Основные источники загрязнения водных объектов. Физико-химические, бактериологические и паразитологические, радиологические показатели качества воды, методы очистки. Влияние химического состава питьевой воды на здоровье и условия жизни населения.
реферат [459,5 K], добавлен 28.11.2011Исследование основных химических методов очистки воды, особенности использования в данном процессе диоксида хлора, перманганата калия, гипохлорита кальция и натрия, пероксида водорода. Оценка практической эффективности использования данных соединений.
презентация [1,8 M], добавлен 12.03.2012