Понятие про экосистемы

Сущность экосистемы, её классификация, структура, зональность. Солнце как источник энергии. Круговороты веществ, поток энергии. Продуктивность экосистем, её динамика. Биосфера как глобальная экосистема. Развитие биосферы в ноосферу — сферу разума.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык русский
Дата добавления 14.08.2016
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Экосистемы

Содержание

экосистема энергия биосфера

1. Понятие об экосистемах

2. Классификация экосистем

3. Зональность макроэкосистем

4. Структура экосистем

5. Солнце как источник энергии

6. Круговороты веществ

7. Поток энергии в экосистемах

8. Продуктивность экосистем

9. Динамика экосистем

10. Биосфера как глобальная экосистема

11. Деятельность человека и эволюция биосферы

12. Развитие биосферы в ноосферу -- сферу разума

Литература

1. Понятие об экосистемах

Живые организмы и их неживое (абиотическое) окружение неразделимо связаны друг с другом, находятся в постоянном взаимодействии. Любая единица (биосистема), включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенные структуры и круговорот веществ между живой и неживой частями, представляет собой экологическую систему. Экологическая система, или экосистема, -- основная функциональная единица в экологии, так как в нее входят организмы и неживая среда -- компоненты, взаимно влияющие на свойства друг друга и необходимые условия для поддержания жизни в той ее форме, которая существует на Земле. Термин «экосистема» впервые был предложен в 1935 г. английским экологом А. Тенсли (1871--1955).

Само же представление об экосистеме возникло значительно раньше. Упоминание об единстве организмов и среды можно найти в самых древних письменных памятниках истории. Однако только в конце XIX в.стали появляться высказывания такого рода, при этом практически одновременно в американской, европейской и русской литературе (К. Мебиус, 1877; С. Форбс, 1877; В. Докучаев, 1886 и др.).

В настоящее время широкое распространение получило следующее определение экосистемы. Экосистема -- это любая совокупность организмов и неорганических компонентов, в которой может осуществляться круговорот веществ. По Н. Ф. Реймерсу (1990), экосистема -- это любое сообщество живых существ и его среда обитания, объединенные в единое функциональное целое, возникающее на основе взаимозависимости и причинно-следственных связей, существующих между отдельными экологическими компонентами. Следует подчеркнуть, что совокупность специфического физико-химического окружения (биотопа) с сообществом живых организмов (биоценозом) и образует экосистему. А. Тенсли (1935) предложил следующее соотношение:

Экосистема = Биотоп + Биоценоз

В отечественной литературе широко применяется термин «биогеоценоэ», предложенный в 1940 г. В. Н. Сукачевым. По его определению, биогеоценоз -- «это совокупность на известном 1 протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, почвы и гидрологических условий), имеющая свою особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и другими явлениями природы и представляющая собой внутренне противоречивое диалектическое единство, находящееся в постоянном движении, развитии». Существует мнение, будто содержание «биогеоценоз» в значительно большей степени отражает структурные характеристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается прежде всего ее функциональная сущность. Фактически же между этими терминами различий нет.

Помимо известных концепций экосистемы А. Тенсли и био-геоценоза В. Н. Сукачева была выдвинута точка зрения, а точнее, сформулировано правило Ф. Эванса (1956), предложившего использовать термин «экосистема» абсолютно «безразмерно» для обозначения любой надорганизменной живой системы, взаимодействующей с окружением. Такой подход с точки зрения общей теории систем вполне логичен. Однаког многие авторы термину «экосистема» придали значение именно биогеоценоза, т. е. элементарной экосистемы и одновременно более высоких по иерархии надбиогеоценотических образований вплоть до экосистемы биосферы.

2. Классификация экосистем

Существующие на Земле экосистемы разнообразны. Выделяют микроэкосистемы (например, ствол гниющего дерева), мезоэкосистемы (лес, пруд и т. д.), макроэкосистемы (континент, океан и др.) и глобальную -- биосфера.

Крупные наземные экосистемы называют биомами. Каждый биом включает в себя целый ряд меньших по размерам, связанных друг с другом экосистем. Существует несколько классификаций экосистем. Например, одна из них, основанная на особенностях макроструктуры, приведена в табл. 1

Таблица 1. Основные типы природных экосистем и биомов (по Ю. Одуму, 1986)

Наземные биомы

Вечнозеленый тропический дождевой лес

Полувечнозелеиый тропический лес: выраженный влажный и сухой сезоны

Пустыня: травянистая и кустарниковая

Чапараль -- районы с дождливой зимой и засушливым летом

Тропические грасленц и саванна

Степь умеренной зоны

Листопадный лес умеренной зоны

Бореальные хвойные леса

Тундра: арктическая и альпийская

Типы пресноводных экосистем

Ленточные (стоячие воды): озера, пруды и т. д.

Логические (текучие воды): реки, ручьи и т. д.

Заболоченные угодья: болота и болотистые леса

Типы морских экосистем

Открытый океан (пелагическая)

Воды континентального шельфа (прибрежные воды)

Районы апвеллинга (плодородные районы с продуктивным рыболовством)

Эстуарии (прибрежные бухты, проливы, устья рек, соленые марши и т.д)

Наземные биомы здесь выделены по естественным или исходным чертам растительности, а типы водных экосистем по геологическим и физическимособенностям. Перечисленные в табл. 1 16 основных типов экосистем представляют собой ту среду, на которой развилась человеческая цивилизация, представляют основные биотические сообщества, поддерживающие жизнь на Земле.

3. Зональность макроэкосистем

Изучение географического распределения экосистем может быть предпринято только на уровне крупных экологических единиц -- макроэкосистем, которые рассматриваются в континентальном масштабе. Экосистемы не разбросаны в беспорядке, наоборот, сгруппированы в достаточно регулярных зонах как по горизонтали (по широте), так и по вертикали (по высоте). Это подтверждается периодическим законом географической зональности А. А. Григорьева -- М. И. Будыко: со сменой физико-географических поясов Земли аналогичные ландшафтные зоны и их некоторые общие свойства периодически повторяются. Об этом шла речь и при рассмотрении наземно-воздушной среды жизни. Установленная законом периодичность проявляется в том, что величины индекса сухости меняются в разных зонах от 0 до 4--5, трижды между полюсами и экватором они близки к 1. Этим значениям соответствует наибольшая биологическая продуктивность ландшафтов (рис. 1).

Рис. 1. Периодический закон географической зональности А. А. Григорьева -- М. И. Будыко (по Н. Ф. Реймерсу, 1994). 1 -- радиационный индекс сухости (отношение радиационного баланса к количеству тепла, необходимому для испарения годовой суммы осадков). Диаметры кружков пропорциональны биологической продуктивности ландшафтов

Периодическое повторение свойств в рядах систем одного иерархического уровня, вероятно, является общим законом мироздания, сформулированного как закон периодичности строения системных совокупностей, или системно-периодический закон -- конкретные природные системы одного уровня (подуровня) организации составляют периодический или повторяющийся ряд морфологически аналогичных структур в пределах верхних и нижних системных пространственно-временных границ, за которые ми существование систем данного уровня делается невозможным. Они переходят в неустойчивое состояние или превращаются в иную системную структуру, в том числе другого уровня организации.

Два абиотических фактора -- температура и количество осадков -- определяют размещение по земной поверхности основных наземных биомов. Режим температуры и осадков на некоторой территории в течение достаточно долгого периода времени и есть то, что мы называем климатом. Климат в разных районах земного шара неодинаков. Годовая сумма осадков меняется от 0 до 2500 мм и более. При этом они выпадают равномерно в течение года или их основная доля приходится на определенный период -- влажный сезон. Среднегодовая температура также варьирует от отрицательных величин до 38°С. Температуры могут быть практически постоянными в течение всего года (у экватора) или меняться по сезонам. Следует отметить, что режимы температуры и осадков сочетаются между собой весьма неодинаковым образом.

Специфика климатических условий в свою очередь определяет развитие того или иного биома (рис. 2).

Рис. 2. Абиотические факторы и основные биомы (по Б. Небелу, 1993)

От экватора к полюсам видна определенная симметрия в распределении биомов различных полушарий.

1. Дождевые тропические леса (север Южной Америки, Центральная Америка, западная и центральная части экваториальной Африки, Юго-Восточная Азия, прибрежные районы северо-запада Австралии, острова Индийского и Тихого океанов). Климат -- без смены сезонов (близость к экватору), температура -- среднегодовая выше 17°С (обычно 28°С), осадки -- среднегодовое количество превышает 2400 мм.

Растительность: господствуют леса. Насчитываются сотни видов деревьев высотой до 60 м. На их стволах и ветвях -- растения-эпифиты, корни которых не достигают почвы, и деревянистые лианы, укореняющиеся в почве и взбирающиеся по деревьям до их вершин. Все это образует густой полог.

Животный м и р: видовой состав богаче, чем во всех других биомах вместе взятых. Особенно многочисленны земноводные, пресмыкающиеся и птицы (лягушки, ящерицы, змеи, попугаи), обезьяны и другие мелкие млекопитающие, экзотические насекомые с яркой окраской, в водоемах -- ярко окрашенные рыбы.

Прочие особенности: почвы, как правило, маломощные и бедные, большая часть питательных веществ содержится в биомассе поверхности укорененной растительности.

2. Саванны (субэкваториальная Африка, Южная Америка, значительная часть южной Индии). Климат-- сухой и жаркий большую часть года. Обильные дожди в течение влажного сезона. Температура-- среднегодовая высокая. Осадки -- 750--1650 мм/год, главным образом во время сезона дождей. Растительность: мятликовые (злаковые) растения с редкими листопадными деревьями. Животный мир: крупные растительноядные млекопитающие, такие, как антилопы, зебры, жирафы, носороги, из хищников -- львы, леопарды, гепарды.

3. Пустыни (некоторые районы Африки, например Сахара; Ближнего Востока и Центральной Азии, Большой Бассейн и юго-запад США и север Мексики и др.). Климат -- очень сухой. Температура -- жаркие дни и холодные ночи. Осадки -- менее 250 мм/год. Растительно с т ь: редкостойный кустарник, нередко колючий, иногда -- кактусы и низкие травы, быстро покрывающие землю цветущим ковром после редких дождей. Корневые системы у растений обширные поверхностные, перехватывающие влагу редких осадков, а также стержневые корни, проникающие в землю до уровня грунтовых вод (30 м и глубже). Животный мир: разнообразные грызуны (кенгуровая крыса и др.), жабы, ящерицы, змеи и другие пресмыкающиеся, совы, орлы, грифы, мелкие птицы и насекомые в большом количестве.

4. Степи (центр Северной Америки, Россия, отдельные районы Африки и Австралии, юго-восток Южной Америки). Климат -- сезонный. Температура -- летние от умеренного теплого до жаркого, зимние температуры ниже 0°С. Осадки -- 750--2000 мм/год. Растительность: господствуют мятликовые (злаковые) высотой до 2 м и выше в некоторых прериях Северной Америки или до 50 см, например, в степях России, с отдельными деревьями и кустарниками на влажных участках. Животный мир: крупные растительноядные млекопитающие -- бизоны, вилорогие антилопы (Северная Америка), дикие лошади (Евразия), кенгуру (Австралия), жирафы, зебры, белые носороги, антилопы (Африка); из хищников -- койоты, львы, леопарды, гепарды, гиены, разнообразные птицы и мелкие роющие млекопитающие, такие, как кролик, суслик, трубкозуб.

5. Леса умеренного пояса (Западная Европа, Восточная Азия, восток США). Климат-- сезонный с зимними температурами ниже 0°С. Осадки-- 750--2000 мм/год. Растительность: господствуют леса из широколиственных листопадных пород деревьев высотой до 35--45 м (дуб, гикори, клен), кустарниковый подлесок, мхи, лишайники. Животный мир: млекопитающие (белохвостый олень, дикобраз, енот, опоссум, белка, кролик, землеройки), птицы (славки, дятлы, дрозды, совы, соколы), змеи, лягушки, саламандры, рыбы (форель, окунь, сом и др.), обильная почвенная микрофауна.

Биота адаптирована к сезонному климату: спячка, миграции, состояние покоя в зимние месяцы.

6. Хвойные леса, тайга (северные районы Северной Америки, Европы и Азии). Климат -- долгая и холодная зима, много осадков выпадает в виде снега. Растительность: господствуют вечнозеленые хвойные леса, большей частью еловые, сосновые, пихтовые. Животный мир: крупные травоядные копытные (олень-мул, северный олень), мелкие растительноядные млекопитающие (заяц-беляк, белка, грызуны), волк, рысь, лисица, черный медведь, гризли, росомаха, норка и другие хищники, многочисленные кровососущие насекомые во время короткого лета.

Множество болот и озер. Толстая лесная подстилка.

7. Тундра (в северном полушарии к северу от тайги). Климат -- очень холодный с полярным днем и полярной ночью. Температура -- среднегодовая ниже -- 5°С. За несколько недель короткого лета земля оттаивает не более 1 м в глубину. Осадки -- менее 250 мм/год. Растительность: господствуют медленно растущие лишайники, мхи, злаки и осоки, карликовые кустарники. Животный мир: крупные травоядные копытные (северный олень, мускусный бык), мелкие роющие млекопитающие (кругаогодично, например, лемминги), хищники, приобретающие зимой маскирующую белую окраску (песец, рысь, горностай, полярная сова).

В тундре коротким летом гнездится большое число перелетных птиц, среди них особенно много водоплавающих, которые питаются имеющимися здесь в изобилии насекомыми и пресноводными беспозвоночными.

Вертикальная зональность экосистем суши, особенно в местах с резко выраженным рельефом, также весьма четкая. Высотная ярусность сообществ живых организмов во многих отношениях сходна с широтным распределением крупных биомов.

Влажность является основным фактором, определяющим тип биома. При достаточно большом количестве осадков, как правило, развивается лесная растительность. Температура при этом определяет тип леса. Точно так же обстоит дело в биомах степи и пустыни. Смена типов растительности в холодных регионах происходит при меньших годовых суммах осадков, так как при низких температурах меньше воды теряется на испарение. Температурный фактор становится главным только в очень холодных условиях с вечной мерзлотой. Так, в тундре тепла хватает лишь на то, чтобы сошел снег и оттаяли самые верхние горизонты почвы. Ниже в ней постоянно сохраняется лед. Это явление и называется вечной мерзлотой. Она ограничивает распространение на север еловых и пихтовых лесов из-за препятствия глубокому проникновению в почву их корневой системы и в то же время не мешает произрастанию карликовых морозоустойчивых растений тундры.

При дальнейшем понижении температуры карликовая морозоустойчивая растительность тундры сменяется полярными пустынями.

Каждый биом характеризуется специфическим составом не только растений, но и животных. Так, белый полярный медведь водится только во льдах Арктики. Почему бы ему не жить в других биомах? Причина в том, что белый медведь приспособился к определенному комплексу условий. Он живет только там, где одновременно есть холодная вода, соответствующая пища (питается он в первую очередь тюленями, молодыми моржами, рыбой и выброшенными на мель китами) и дрейфующие льды. Там, где хоть одно из этих трех условий отсутствует, нет и медведей.

Таким образом, сложение экосистем в значительной мере зависит от их функциональной «предназначенности» и наоборот. По Н. Ф. Реймерсу (1994), это находит отражение в принципе экологической комплементарности (дополнительности): никакая функциональная часть экосистемы (экологический компонент, элемент и т. д.) не может существовать без других функционально дополняющих частей. Близок к нему и расширяющий его принцип экологической конгруэнтности (соответствия): функционально дополняя друг друга, живые составляющие экосистемы вырабатывают для этого соответствующие приспособления, скоординированные с условиями абиотической среды, в значительной мере преобразуемой теми же организмами (биоклимат и т. д.), т. е. наблюдается двойной ряд соответствия -- между организмами и средой их обитания -- внешней и создаваемой ценозом. Например, виды, составляющие экосистемы пустыни, приспособлены^ одной стороны, к ее климатическим и другим абиотическим условиям, а с другой -- к среде экосистемы и друг к другу. Это же характерно для организмов любого биома и другого более низко или высоко стоящего в иерархии систем подразделения биосферы. В связи с этим здесь уместно привести принцип (закон) формирования экосистемы (функционально-пространственной экологической целостности, связи биотоп -- биоценоз): длительное существование организмов возможно лишь в рамках экологических систем, где их компоненты и элементы дополняют друг друга и соответственно приспособлены друг к другу, что обеспечивает воспроизводство среды обитания каждого вида и относительно неизменное существование всех экологических компонентов. Совершенно очевидно, чти принцип формирования экосистемы есть суммарное отражение принципа экологической комплементарности (дополнительности и принципа экологической конгруэнтности (соответствия),

4. Структура экосистем

Как уже было отмечено ранее, в каждой экосистеме два основных компонента: организмы и факторы окружающей их неживой среды. Совокупность организмов (растений, животных, микробов) называют биотоп экосистемы. Пути взаимодействия разных категорий организмов -- это ее биотическая структура.

С точки зрения трофической структуры (от греч. trophe -- питание), экосистему можно разделить на два яруса. 1. Верхний -- автотрофный (самостоятельно питающийся) ярус, или «зеленый пояс», включающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии счета, использование простых неорганических соединений. 2. Нижний--гетеро-трофный (питаемый другими) ярус, или «коричневый пояс» почв и осадков, разлагающихся веществ, корней и т. д., в котором преобладают использование, трансформация и разложение сложных соединений (рис. 3).

Рис. 3. Общая структура наземной (лугопастбищной) и водной (озерной или морской) экосистем (по Ю. Одуму, 1986): I -- автотрофы: А -- трава; В -- фитопланктон. II -- растительные животные: А -- насекомые и млекопитающие лугопастбищного сообщества; В -- зоопланктон в толще воды. III -- детритоядные: А -- почвенные беспозвоночные на суше; В -- донные беспозвоночные в воде. IV -- хищники: А -- птицы и другие животные на суше; В -- рыбы в воде. V -- сапротрофы: разлагающие бактерии и грибы

С биологической точки зрения, в составе экосистемы выделяют следующие компоненты: 1) неорганические вещества (С, N, СО2, Н2О и др.), включающиеся в круговороты; 2) органические соединения (белки, углеводы, липиды, гумусовые вещества и т. д.), связывающие биотическую и абиотические части; 3) воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы; 4) продуцентов, автотрофных организмов (зеленые растения, сине-зеленые водоросли, фото- и хемосинтезирующие бактерии), производящих пищу из простых неорганических веществ (рис. 4).

Рис. 4. Продуценты (по Б. Небелу, 1993)

5) консументов, или фаготрофов (от греч. phagos -- пожиратель), -- гетеротрофных организмов, главным образом животных, питающихся другими организмами или частицами органического вещества; 6) редуцентов и детритофагов -- гетеротрофных организмов, в основном бактерий и грибов, получающих энергию либо путем разложения мертвых тканей, либо путем поглощения растворенного органического вещества, выделяющегося самопроизвольно или извлеченного сап-рофитами из растений и других организмов (рис. 5).

Рис. 5. Категории организмов экосистемы

Консументы питаются живым (биофаги) или мертвым (сапрофаги) органическим материалом. Среди биофагов могут быть выделены расти-'тельноядные организмы или фитофаги (первичные консументы, к ним относятся и повреждающие растения вирусы, грибы и паразитические сосудистые растения), хищники (вторичные консументы, в том числе и паразиты первичных консументов) и конечные потребители -- вершинные хищники (третичные консументы).

В экосистеме пищевые и энергетические связи между категориями всегда однозначны и идут в направлении:

автотрофы гетеротрофы.

Или в более полном виде:

автотрофы консументы редуценты (деструкторы).

Организмы, участвующие в различных процессах круговорота, частично разделены в пространстве. Автотрофные процессы наиболее активно протекают в верхнем ярусе («зеленом поясе»), где доступен солнечный свет. Гетеротрофные процессы наиболее интенсивно протекают в нижнем ярусе («коричневом поясе»), где в почвах и осадках накапливаются органические вещества. Основные функции компонентов экосистемы отчасти разделены и во времени, так как возможен значительный разрыв во времени между продуцированном органического вещества автотроф-ными организмами и его потребление гетеротрофами. В целом же три живых компонента экосистем (продуценты, консументы и редуценты) можно рассматривать как три функциональных царства природы, так как их разделение основано на типе питания и используемом источнике энергии.

5. Солнце как источник энергии

Первоисточником энергии для экосистем служит Солнце. Поток энергии по данным Т.А. Акимовой, В.В. Хаскина (1994), посылаемый солнцем к планете Земля, превышает 20 млн ЭДж в год. Из-за шарообразности земли к границе всей атмосферы подходит только четверть этого потока. Из нее около 70% отражается, поглощается атмосферой, излучается в виде длинноволнового инфракрасного излучения. Падающая на поверхность Земли солнечная радиация составляет 1,54 млн. ЭДж в год. Это огромное количество энергии в 5000 раз превышает всю энергетику человечества конца XX столетия и в 5,5 раза -- энергию всех доступных ресурсов ископаемого топлива органического происхождения, накопленных в течение, как минимум, 100 млн. лет.

Поток солнечной энергии на Земле и ее трансформации показаны на рис. 6.

Рис. 6. Поток солнечной энергии на Земле и ее трансформации (по Т. А. Акимовой, В. В. Хаскину, 1994) Примечание: энергия выражена в ЭДж/год. 1 ЭДж = 1018 Дж; горизонтальное сечение потока энергии -- логарифмическое. На каждом из этапов трансформации большая часть энергии теряется

Большая часть солнечной энергии, достигающей поверхности планеты, превращается непосредственно в тепло, нагревая воду или почву, от которых в свою очередь нагревается воздух. Это тепло служит движущей силой круговорота воды, воздушных потоков и океанических течений, определяющих погоду, постепенно отдается в космическое пространство, где и теряется.

Для определения места экосистем в этом природном потоке энергии важно представлять, что как бы протяженны и сложны они ни были, ими используется лишь небольшая его часть. Отсюда следует один из основных принципов функционирования экосистем: они существуют за счет не загрязняющей среду и практически вечной солнечной энергии, количество которой относительно постоянно и избыточно. Дадим более детально каждую из перечисленных характеристик солнечной энергии.

1. Избыток. Растения используют около 0,5% ее количества, достигающею Земли. Если бы люди существовали только за счет солнечной энергии, то они бы использовали еще меньшую ее часть. Следовательно, ее поступающего на землю количества достаточно для удовлетворения потребностей человечества, а так как солнечная энергия в конце концов превращается в тепло, то увеличение ее использования не должно оказывать влияния на динамику биосферы.

2. Чистота. Солнечная энергия -- «чистая», хотя ядерные реакции, идущие в недрах Солнца и служащие источником ею энергии, и сопровождаются радиоактивным загрязнением, все оно остается в 150 млн км от Земли. В этом ее отличие от энергии, получаемой путем сжигания ископаемого топлива или на атомных электростанциях.

3. Постоянство. Солнечная энергия всегда будет доступна в одинаковом, безграничном количестве.

4. Вечность Ученые считают, что Солнце через несколько миллиардов лет погаснет. Однако для нас это не имеет практического значения, так как люди, по современным данным, существуют только около 3 млн лет. Это всего 0,3% миллиарда. Отсюда, если даже через 1 млрд лет жизнь на Земле станет невозможной, у человечества в запасе еще 99,7% этого срока, или каждые 100 лет он будет уменьшаться всего на 0',00001 %.

6. Круговороты веществ

Солнечная энергия на Земле вызывает два круговорота веществ: большой, или геологический, наиболее ярко проявляющийся в круговороте воды и циркуляции атмосферы, и малый, биологический (биотический), развивающийся на основе большого и состоящий в непрерывном, циклическом, но неравномерном во времени и пространстве, и сопровождающийся более или менее значительными потерями закономерного перераспределения вещества, энергии и информации в пределах экологических систем различного уровня организации (рис. 7).

Рис. 7. Принципиальная схема биологического (биотического) круговорота (по К. Ф. Реймерсу, 1990)

Оба круговорота взаимно связаны и представляют как бы единый процесс. Подсчитано, что весь кислород, содержащийся в атмосфере, оборачивается через организмы (связывается при дыхании и высвобождается при фотосинтезе) за 2000 лет, углекислота атмосферы совершает круговорот в обратном направлении за 300 лет, а все воды на Земле разлагаются и воссоздаются путем фотосинтеза и дыхания за 2 000 000 лет (рис. 8).

Взаимодействие абиотических факторов и живых организмов экосистемы сопровождается непрерывным круговоротом вещества между биотопом и биоценозом в виде чередующихся то органических, то минеральных соединений. Обмен химических элементов между живыми организмами и неорганической средой, различные стадии которого происходят внутри экосистемы, называют биогеохимическим круговоротом, или биогеохимическим циклом.

Существование подобных круговоротов создает возможность для саморегуляции (гомеостаза) системы, что придает экосистеме устойчивость: удивительное постоянство процентного содержания различных элементов. Здесь действует принцип функционирования экосистем: получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов.

Рассмотрим более подробно основные биохимические круговороты.

Рис. 8. Круговороты воды, кислорода и углекислого газа (по П. Клауду и А. Джибору, 1972)

Круговорот воды. Самый значительный по переносимым массам и по затратам энергии круговорот на Земле -- это планетарный гидрологический цикл -- круговорот воды (рис. 9).

Рис. 9. Общая схема круговорота воды (по Ф. Рамаду, 1981) Примечание: цифры -- толщина слоя в метрах

Каждую секунду в него вовлекается 16,5 млн м3 воды и тратится на это более 40 млрд МВт солнечной энергии (Т. А. Акимова, В.В. Хас-кин, 1994). Но данный круговорот -- это не только перенос водных масс. Это фазовые превращения, образование растворов и взвесей, выпадение осадков, кристаллизация, процессы фотосинтеза, а также разнообразные химические реакции. В этой среде возникла и продолжается жизнь. Вода -- основной элемент, необходимый для жизни. Количественно это самая распространенная неорганическая составляющая живой материи. У человека вода составляет 63% массы тела, грибов -- 80%, растений -- 80--90%, а у некоторых медуз -- 98%.

Вода, как мы увидим несколько позднее, участвующая в биологическом круговороте и служащая источником водорода и кислорода, составляет лишь небольшую часть своего общего объема.

В жидком, твердом и парообразном состояниях вода присутствует во всех трех главных составных частях биосферы: атмосфере, гидросфере, литосфере. Все воды объединяются общим понятием «гидросферы». Составные части гидросферы связаны между собой постоянным обменом и взаимодействием. Вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образует малый круговорот. Когда водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. При этом часть осадков испаряется и поступает обратно в атмосферу, другая -- питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоками, завершая тем самым большой круговорот.

Над океанами выпадает 7/9 общего количества осадков, а над континентами 2/9. Замкнутая, бессточная часть суши в 3,5 раза беднее осадками, чем периферийная часть суши. Вода, выпавшая на сушу, в процессе фильтрации через почву обогащается минеральными и органическими веществами, образуя подземные воды. Вместе с поверхностными стоками она поступает в реки, а затем в океаны. Поступление воды в Мировой океан (осадки, приток речных вод) и испарение с его поверхности составляет 1260 мм в год.

Несмотря на относительно малую толщину слоя водяного пара в атмосфере (0,03 м), именно атмосферная влага играет основную роль в циркуляции воды и ее биогеохимическом круговороте. В целом для всего земного шара существует один источник притока воды -- атмосферные осадки и один источник расхода -- испарение, составляющее 1030 мм в год. В жизнедеятельности растений огромная роль воды принадлежит осуществлению процессов фотосинтеза (важнейшее звено биологического круговорота) и транспирации. Подсчитано, что 1 га елового леса на влажной почве за год транспирирует около 4000 м3 воды, что эквивалентно 378 мм осадков. Суммарное испарение, или масса воды, испаряемой древесной или травянистой растительностью, испарившейся с поверхности почвы, играет важную роль в круговороте воды на континентах. Грунтовые воды, проникая сквозь ткани растений в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.

Данные по круговороту воды на земном шаре позволяют вычислить активность водообмена в различных частях гидросферы (табл. 2).

Таблица 2. Активность водообмена в гидросфере (по М. И. Львовичу, 1986)

Часть гидросферы

Объем (с округлением), тыс. км3

Активность водообмена, число лет

Океан

Подземные воды

В т. ч. зоны активного водообмена

Полярные ледники

Поверхностные воды суши

Реки

Почвенная влага

Пары атмосферы

1370000

60000

4000

24000

280

1,2

80

14

3000

5000

300

8000

7

0,03

1

0,027

Вся гидросфера

1454000

2800

Наиболее замедленной частью круговорота воды является деятельность полярных ледников. Круговорот здесь совершается за 8,0 тыс. лет, что отражает медленное движение и процесс таяния ледниковых масс. Подземные воды обновляются за 5,0 тыс. лет, воды океанов -- за 3,0 тыс. лет, атмосферные воды -- за 10 суток. Наибольшей активностью обмена, после атмосферной влаги, отличаются речные воды, которые сменяются в среднем каждые 11 суток. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре. Происходящий в природе круговорот самоочищающейся воды -- вечное движение, обеспечивающее жизнь на Земле.

Пресной воды на Земле очень мало. Вместе с зоной активного водоснабжения подземными водами это лишь 300 млн км3, причем 97% находится в ледниках Антарктиды, Гренландии, в полярных зонах и горах. Однако естественный круговорот воды гарантирует, что без воды Земля не останется.

Биотический (биологический) круговорот. Под биотическим (биологическим) круговоротом понимается циркуляция веществ между почвой, растениями, животными и микроорганизмами (рис. 10). По определению Н. П. Ремезова, Л. Е. Родина и Н. И. Базилевич, биотический (биологический) круговорот -- это поступление химических элементов из почвы, воды и атмосферы в живые организмы, превращение в них поступающих элементов в новые сложные соединения и возвращение их обратно в процессе жизнедеятельности с ежегодным опадом части органического вещества или с полностью отмершими организмами, входящими в состав экосистемы (Н. Ф. Реймерс, 1990).

Рис. 10. Биотический (биологический) круговорот веществ в экосистеме (по А. И. Воронцову, Н. 3. Харитоновой, 1979)

Сейчас же мы представим биотический круговорот в циклической форме (рис. 11).

Рис. 10. Структурные циклы биотического круговорота (по Т. А. Акимовой, В. В. Хаскину, 1994). Пояснения: внутреннее малое кольцо -- первичный биотический круговорот с участием примитивных продуцентов (П) и редуцентов-деструкторов (Д); Р -- растения; Т -- первичные консументы (растительноядные животные); X, и X, -- вторичные и третичные консументы (хищники). Все циклы замыкаются редуцентами

Первичный биотический круговорот по Т.А. Акимовой, В.В. Хаскину (1994) состоял из примитивных одноклеточных продуцентов (П) и редуцентов-деструкторов (Д). Микроорганизмы способны быстро размножаться и приспосабливаться к разным условиям, например, использовать в своем питании всевозможные субстраты -- источники углерода. Высшие организмы такими способностями не обладают. В целостных экосистемах они могут существовать в виде надстройки на фундаменте микроорганизмов.

Вначале развиваются многоклеточные растения (Р) -- высшие продуценты. Вместе с одноклеточными они создают в процессе фотосинтеза органическое вещество, используя энергию солнечного излучения. В дальнейшем подключаются первичные консументы -- растительноядные животные (Т), а затем и плотоядные консументы. Нами был рассмотрен биотический круговорот суши. Это в полной мере относится и к биотическому круговороту водных экосистем, например океана.

Все организмы занимают определенное место в биотическом круговороте и выполняют свои функции по трансформации достающихся им ветвей потока энергии и по передаче биомассы. Всех объединяет, обезличивает их вещества и замыкает общий круг система одноклеточных редуцентов (деструкторов). В абиотическую среду биосферы они возвращают все элементы, необходимые для новых и новых оборотов.

Следует подчеркнуть наиболее важные особенности биотического круговорота.

Фотосинтез относится к мощному естественному процессу, вовлекающему ежегодно в круговорот огромные массы вещества биосферы и определяющему ее высокий кислородный потенциал. Он выступает регулятором основных геохимических процессов в биосфере и фактором, определяющим наличие свободной энергии верхних оболочек земного шара. Фотосинтез представляет собой химическую реакцию, которая протекает, как известно, за счет солнечной энергии при участии хлорофилла зеленых растений:

nCO2 + nH2О + энергия СnH2nOn + nO2

За счет углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Прямыми продуктами фотосинтеза являются различные органические соединения, а в целом процесс фотосинтеза носит довольно сложный характер.

Глюкоза является простейшим продуктом фотосинтеза, образование которой совершается следующим путем:

6СО2 + 6Н2O С6Н12O6 + 6O2.

Помимо фотосинтеза с участием кислорода (так называемый кислородный фотосинтез) следует остановиться и на бескислородном фотосинтезе, или хемосинтезе (рис. 12).

К хемосинтезирующим организмам относятся нитрификато-ры, карбоксидобактерии, серобактерии, тионовые железобактерии, водородные бактерии. Они называются так по субстратам окисления, которыми могут быть NH3, NO2, CO, H2S, S, Fe2+, H2. Некоторые виды -- облигатные хемолитоавтотрофы, другие -- факультативные. К последним относятся карбоксидобактерии и водородные бактерии. Хемосинтез характерен для глубоководных гидротермальных источников.

Рис. Схема фотосинтеза у растений, водорослей и бактерий

Фотосинтез происходит за немногим исключением на всей поверхности Земли, создает огромный геохимический эффект и может быть выражен как количество всей массы углерода, вовлекаемой ежегодно в построение органического -- живого вещества всей биосферы. В общий круговорот материи, связанной с построением путем фотосинтеза органического вещества, вовлекаются и такие химические элементы, как N, P, S, а также металлы -- К, Са, Mg, Na, Al.

При гибели организма происходит обратный процесс -- разложение органического вещества путем окисления, гниения и т. д. с образованием конечных продуктов разложения. Следовательно, общую реакцию фотосинтеза можно выразить в глобальном масштабе следующим образом:

mCO2 + nH2O Cmn(H2O) + mO2.

В биосфере Земли этот процесс приводит к тому, что количество биомассы живого вещества приобретает тенденцию к определенному постоянству. Биомасса экосферы (21012 т) на семь порядков меньше массы земной коры (21019 т). Растения Земли ежегодно продуцируют органическое вещество, равное 1,61011 т, или 8% биомассы экосферы. Деструкторы, составляющие менее 1% суммарной биомассы организмов планеты, перерабатывают массу органического вещества, в 10 раз превосходящую их собственную биомассу. В среднем период обновления биомассы равен 12,5 годам. Допустим, что масса живого вещества и продуктивность биосферы были такими же от кембрия до современности (530 млн лет), то суммарное количество органического вещества, которое прошло через глобальный биотический круговорот и было использовано жизнью на планете, составит 210125,3108/12,5 =8,51019 т, что в 4 раза больше массы земной коры. По поводу данных расчетов Н. С. Печуркин (1988) писал: «Мы можем утверждать, что атомы, составляющие наши тела, побывали в древних бактериях, и в динозаврах, и в мамонтах».

Закон биогенной миграции атомов В. И. Вернадского гласит: «Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (О2, СО2, Н2 и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей геологической истории».

В. И. Вернадский в 1928--1930 гг. в своих глубоких обобщениях относительно процессов в биосфере дал представление о пяти основных биогеохимических функциях живого вещества.

Первая функция -- газовая. Большинство газов верхних горизонтов планеты порождено жизнью. Подземные горючие газы являются продуктами разложения органических веществ растительного происхождения, захороненных ранее в осадочных толщах. Наиболее распространенный -- это болотный газ -- метан (СН4,).

Вторая функция -- концентрационная. Организмы накапливают в своих телах многие химические элементы. Среди них на первом месте стоит углерод. Содержание углерода в углях по степени концентрации в тысячи раз больше, чем в среднем для земной коры. Нефть -- концентратор углерода и водорода, так как имеет биогенное происхождение. Среди металлов по концентрации первое место занимает кальций. Целые горные хребты сложены остатками животных с известковым скелетом. Концентраторами кремния являются диатомовые водоросли, радиолярии и некоторые губки, йода -- водоросли ламинарии, железа и марганца -- особые бактерии. Позвоночными животными накапливается фосфор, сосредотачиваясь в их костях.

Третья функция -- окислительно-восстановительная. В истории многих химических элементов с переменной валентностью она играет важную роль. Организмы, обитающие в разных водоемах, в процессе своей жизнедеятельности и после гибели регулируют кислородный режим и тем самым создают условия, благоприятные для растворения или же осаждения ряда металлов с переменной валентностью (V, Mn, Fe).

Четвертая функция -- биохимическая. Она связана с ростом, размножением и перемещением живых организмов в пространстве. Размножение приводит к быстрому распространению живых организмов, «расползанию» живого вещества в разные географические области.

Пятая функция -- это биогеохимическая деятельность человечества, охватывающая все возрастающее количество вещества земной коры для нужд промышленности, транспорта, сельского хозяйства. Данная функция занимает особое место в истории земного шара и заслуживает внимательного отношения и изучения. Таким образом, все живое население нашей планеты -- живое вещество -- находится в постоянном круговороте биофильных химических элементов. Биологический круговорот веществ в биосфере связан с большим геологическим круговоротом (рис. 13).

Рис. 13. Взаимосвязь малого биологического круговорота веществ в биосфере с большим геологическим круговоротом

Поскольку речь идет о колоссальном числе индивидуальных участников этих процессов, которые не сопряжены жесткими функциональными связями, то пригнанность компонентов биотического круговорота -- явление совершенно исключительное. Круговорот полностью замкнут (Т.А. Акимова, В.В. Хаскин, 1994), когда существует точное равенство сумм прямых и обратных расходов: . Если же в каком-то из процессов наблюдаются прирост или утечка («дефект замкнутости») q, то замкнутость круговорота выражается так:

(1)

Величина разомкнутости круговорота:

(2)

Эти величины можно выразить и иначе, сопоставляя продолжительность поддержания равенства расходов Т со временем исчерпания резервуара Т при полной остановке процесса наполнения:

. (3)

Соответственно:

(4)

Несомненно, высокий уровень системной организации и регуляции мог быть выработан и отшлифован миллиардолетней эволюцией.

Биологический круговорот различается в разных природных зонах и классифицируется по комплексу показателей: биомассе растениq, опаду, подстилке, количеству закрепленных в биомаcсе элементов и т. д. (табл. 3.)

Таблица 3. Показатели биологического круговорота в разных природных зонах (по Родину и Базилевич, 1965)

Показатели

Тундра

Лесная зона

Степи

Пустыни

арктическая

кустарничковая

ельники

дубравы

луговые

сухие

полукустарничковые

эфемеровополукустарнич-ковые

Биомасса, ц/га

Доля подземных органов, %

Опад, зеленые части, ц/га

Подстилка, войлок, ц/га

Подстилочно-опадочный коэффициент (ПОК)

50

70-

2,6

35

14

280

-83

9

35

92

3000

22-

30

300

10

4000

-24

40

150

4

250

68-

80

120

1,5

100

-85

15

15

1

43

до 95

1

--

--

125

до 95

18

--

--

Общая биомасса наиболее высока в лесной зоне, а доля подземных органов в лесах наименьшая. Это подтверждает индекс интенсивности биологического круговорота -- величина отношения массы подстилки к той части опада, которая ее формирует (табл. 4).

Таблица 4 Индекс интенсивности биологического круговорота

Тип экосистемы

Индекс скорости круговорота

Заболоченные леса

Кустарничковые тундры

Темнохвойные леса

Широколиственные леса

Саванны

Влажные тропические леса

>50

20--50

10--17

3--4

Не>0,2

Не>0,1

Круговорот углерода. Из всех биогеохимических циклов круговорот углерода, без сомнения, самый интенсивный. С высокой скоростью углерод циркулирует между различными неорганическими средствами и через посредство пищевых сетей внутри сообществ живых организмов (рис. 14).

Рис. 14. Круговорот углерода (по И. П. Герасимову, 1980)

В круговороте углерода определенную роль играют СО и СО2. Часто в биосфере Земли углерод представлен наиболее подвижной формой СО2. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная вековой дегазацией мантии и нижних горизонтов земной коры.

Миграция СО2 в биосфере протекает двумя путями.

Первый путь заключается в поглощении его в процессе фотосинтеза с образованием глюкозы и других органических веществ, из которых построены все растительные ткани. В дальнейшем они переносятся по пищевым цепям и образуют ткани всех остальных живых существ экосистемы. Следует заметить, что вероятность отдельно взятого углерода «побывать» в течение одного цикла в составе многих организмов мала, потому что при каждом переходе с одного трофического уровня на другой велика возможность, что содержащая его органическая молекула будет расщеплена в процессе клеточного дыхания для получения энергии. Атомы углерода при этом вновь поступают в окружающую среду в составе углекислого газа, таким образом завершив один цикл и приготовившись начать следующий. В пределах суши, где имеется растительность, углекислый газ атмосферы в процессе фотосинтеза поглощается в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием СО2.

Атомы углерода возвращаются в атмосферу и при сжигании органического вещества. Важная и интересная особенность круговорота углерода состоит в том, что в далекие геологические эпохи, сотни миллионов лет назад, значительная часть органического вещества, созданного в процессах фотосинтеза, не использовалась ни консументами, ни редуцентами, а накапливалась в литосфере в виде ископаемого топлива; нефти, угля, горючих сланцев, торфа и др. Это ископаемое топливо добывается в огромных количествах для обеспечения энергетических потребностей нашего индустриального общества. Сжигая его, мы в определенном смысле завершаем круговорот углерода.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где СО2 переходит в Н2СО3, НСО13, СО23. С помощью растворенного в воде кальция (или магния) происходит осаждение карбонатов (СаСО3) биогенным и абиогенным путями. Образуются мощные толщи известняков. По А. Б. Ронову, отношение захороненного углерода в продуктах фотосинтеза к углероду в карбонатных породах составляет 1:4. Существует наряду с большим круговоротом углерода и ряд малых его круговоротов на поверхности суши и в океане.

В целом же без антропогенного вмешательства содержание углерода в биогеохимических резервуарах: биосфере (биомасса+почва и детрит), осадочных породах, атмосфере и гидросфере, -- сохраняется с высокой степенью постоянства. По Т.А. Акимовой, В.В. Хаскину (1994), постоянный обмен углеродом, с одной стороны, между биосферой, а с другой -- между атмосферой и гидросферой, обусловлен газовой функцией живого вещества -- процессами фотосинтеза, дыхания и деструкции, и составляет около 61010 т/год. Существует поступление углерода в атмосферу и гидросферу и при вулканической деятельности в среднем 4,5106 т/год. Общая масса углерода в ископаемом топливе (нефть, газ, уголь и др.) оценивается в 3,21015 т, что соответствует средней скорости накопления 7 млн т/год. Это количество по сравнению с массой циркулирующего углерода незначительное и как бы выпадало из круговорота, терялось в нем. Отсюда степень разомкну-гости (несовершенства) круговорота составляет 10-4, или 0,01%, а соответственно степень замкнутости -- 99,99%. Это означает, с одной стороны, что каждый атом углерода принимал участие в цикле десятки тысяч раз, прежде чем выпал из круговорота, оказался в недрах. А с другой стороны -- потоки синтеза и распада органических веществ в биосфере с очень высокой точностью подогнаны друг к другу.

В. Г. Горшковым (1988) на основе расчетов делается важное заключение: «Потоки синтеза и разложение органических веществ совпадают с точностью 10"4 и скоррелированы с точностью 10-4. Скоррелированность потоков синтеза и распада с указанной точностью доказывает наличие биологической регуляции окружающей среды, ибо случайная связь величин с такой точностью в течение миллионов лет невероятна».

В постоянном круговороте находится 0,2% мобильного запаса углерода. Углерод биомассы обновляется за 12, атмосферы -- за восемь лет. Огромный контраст между краткостью данных периодов, постоянством и возрастом биосферы подтверждает высочайшую сбалансированность «мира углерода».

Круговорот кислорода. Кислород (О2) играет важную роль в жизни большинства живых организмов на нашей планете. В количественном отношении это главная составляющая живой материи. 349

Например, если учитывать воду, которая содержится в тканях, то тело человека содержит 62,8% кислорода и 19,4% углерода. В целом в биосфере этот элемент по сравнению с углеродом и водородом является основным среди простых веществ. В пределах биосферы происходит быстрый обмен кислорода с живыми организмами или их остатками после гибели. Растения, как правило, производят свободный кислород, а животные являются его потребителями путем дыхания. Будучи самым распространенным и подвижным элементом на Земле, кислород не лимитирует существование и функции экосферы, хотя доступность кислорода для водных организмов может временно и ограничиться. Круговорот кислорода в биосфере необычайно сложен, так как с ним в реакцию вступает большое количество органических и неорганических веществ. В результате возникает множество эпициклов, происходящих между литосферой и атмосферой или между гидросферой и двумя этими средами. Круговорот кислорода в некотором отношении напоминает обратный круговорот углекислого газа. Движение одного происходит в направлении, противоположном движению другого (рис. 15).

Потребление атмосферного кислорода и его возмещение первичными продуцентами происходит сравнительно быстро. Так, для полного обновления всего атмосферного кислорода требуется 2000 лет. В наше время фотосинтез и дыхание в природных условиях, без учета деятельности человека, с большой точностью уравновешивают друг друга. В связи с этим накопления кислорода в атмосфере не происходит, и его содержание (20,946%) остается постоянным.

Рис. 15. Круговорот кислорода (по Е. А. Криксунову и др., 1995)

В верхних слоях атмосферы при действии ультрафиолетовой радиации на кислород образуется озон -- О3:


Подобные документы

  • Экосистема как совокупность физико-химических и биологических компонентов. Осуществление биотического круговорота веществ, благодаря направленному потоку энергии. Разделение экосистемы на блоки, характер связей в ней. Продуктивность трофических уровней.

    реферат [736,6 K], добавлен 08.09.2009

  • Понятие, структура и виды экосистем. Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах. Особенности циркуляции солнечной энергии. Биосфера как глобальная экосистема; взаимодействие живого и неживого, биогенная миграция атомов.

    курсовая работа [67,1 K], добавлен 10.07.2015

  • Правило экологической пирамиды. Пирамида энергии, чисел и массы. Количество пищевых цепей в БГЦ. Продукция природных и искусственных сообществ как основной источник запасов пищи для человечества. Расчеты потока энергии, масштабов продуктивности экосистем.

    презентация [1,3 M], добавлен 11.05.2011

  • История, концепция и понятие "экосистемы" (биогеоценоза). Ее основные компоненты, строение и механизмы функционирования. Пространственные, временные границы и ранжирование экосистемы (хорологический аспект). Искусственные экосистемы, созданные человеком.

    презентация [1,6 M], добавлен 01.02.2012

  • Принципиальная разница в поведении энергии и вещества в экосистеме. Основные биоценотические связи и отношения. Сохранение стационарного состояния естественных природных замкнутых открытых систем, их устойчивость. Роль биогеохимических циклов в биосфере.

    реферат [35,3 K], добавлен 10.10.2015

  • Эффекты воздействия токсичных веществ на экосистемы и их круговорот в биосфере. Источники поступления токсикантов в биосистемы. Токсические эффекты действия химических веществ на живые организмы. Устойчивость биосистем к токсическому загрязнению.

    контрольная работа [28,7 K], добавлен 13.09.2013

  • Понятие экологической ниши. Экологические группы: продуценты, консументы и редуценты. Биогеоценоз и экосистема и их структура. Трофические цепи, сети и уровни как пути передачи веществ и энергии. Биологическая продуктивность экосистем, правила пирамид.

    курсовая работа [1,4 M], добавлен 19.05.2015

  • Поток энергии и элементов питания в экосистеме. Абиотические и биотические факторы среды. Угроза экологического кризиса. Источники поступления в атмосферу веществ, разрушающих озоновый слой. Загрязнение биосферы от АЭС.

    контрольная работа [29,7 K], добавлен 10.09.2007

  • Биологическое разнообразие планеты, функциональные блоки биосферы как самой большой экосистемы; цианеи, растения, бактерии, животные. Основные циклы и кругообороты веществ в биосфере. Глобальные нарушения в результате хозяйственной деятельности человека.

    реферат [18,0 K], добавлен 10.01.2010

  • Создание и существование биомассы. Биогеохимические круговороты в биосфере. Световое и тепловое излучение Солнца - первичный источник внешней энергии. Понятие большого (геологического) и малого (биогенного и биохимического) круговорота веществ в природе.

    реферат [20,6 K], добавлен 16.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.