Захоронение РАО в горных породах

Пути саморегуляции природы с точки зрения их использования в качестве методов обезвреживания отходов техногенной деятельности. Захоронение радиоактивных отходов в стабильных блоках земной коры. Иммобилизации радионуклидов с помощью матричных материалов.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 10.03.2016
Размер файла 9,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Захоронение РАО в горных породах

На сегодняшний день всеобще признано что наиболее эффективным и безопасным решением проблемы окончательного захоронения РАО является их захоронение в могильниках на глубине не менее 300-500 м в глубинных геологических формациях с соблюдением принципа многобарьерной защиты и обязательным переводом ЖРО в отвержденное состояние. Опыт проведения подземных ядерных испытаний доказал, что при определенном выборе геологических структур не происходит утечки радионуклидов из подземного пространства в окружающую среду.

Таким образом, при решении проблемы обезвреживания радиоактивных отходов использование “опыта, накопленного природой”, прослеживается особенно наглядно. Недаром именно специалисты в области экспериментальной петрологии оказались едва ли не первыми, кто оказался готов решать возникшую проблему.

Они позволяют выделять из смеси элементов радиоактивных отходов отдельные группы, близкие по своим геохимическим характеристикам, а именно: радионуклид матричный захоронение

щелочные и щелочноземельные элементы;

галогениды;

редкоземельные элементы;

актиниды.

Для этих групп элементов можно попытаться найти породы и минералы, перспективные для их связывания.

Природные химические (и, даже, ядерные) реакторы, производящие токсичные вещества, - не новость в геологической истории Земли. В качестве примера можно привести месторождение Окло, где ~ 200 млн. лет назад в течение 500 тыс. лет на глубине ~ 3,5 км действовал природный реактор, прогревавший окружающие породы до 600°С. Сохранение большинства радиоизотопов на месте их образования обеспечивалось их изоморфным вхождением в уранинит. Растворению же последнего, препятствовала восстановительная обстановка. Тем не менее около 3 млрд. лет назад на планете зародилась, успешно сосуществует рядом с очень опасными веществами и развивается жизнь.

Рассмотрим основные пути саморегуляции природы с точки зрения их использования в качестве методов обезвреживания отходов техногенной деятельности человечества. Намечаются четыре таких принципа.

а) Изоляция - вредные вещества концентрируются в контейнерах и защищаются специальными барьерными веществами. Природным аналогом контейнеров могут служить слои водоупоров. Однако, это - не слишком надежный способ обезвреживания отходов: при хранении в изолированном объеме опасные вещества сохраняют свои свойства и при нарушении защитного слоя могут вырываться в биосферу, убивая все живое. В природе разрыв таких слоев приводит к выбросам ядовитых газов (вулканическая активность, сопровождающаяся взрывами и выбросами газов, раскаленного пепла, выбросы сероводорода при бурении скважин на газ - конденсат). При хранении опасных веществ в специальных хранилищах также иногда происходит нарушение изолирующих оболочек с катастрофическими последствиями. Печальный пример из техногенной деятельности человека - челябинский выброс радиоактивных отходов в 1957 году из-за разрушения контейнеров - хранилищ. Изоляция применяется для временного хранения радиоактивных отходов; в будущем необходимо реализовать принцип многобарьерной защиты при их захоронении, одним из составных элементов этой защиты будет слой изоляции.

б) Рассеяние - разбавление вредных веществ до уровня, безопасного для биосферы. В природе действует закон всеобщего рассеяния элементов В.И. Вернадского. Как правило, чем меньше кларк, тем опаснее для жизни элемент или его соединения (рений, свинец, кадмий). Чем больше кларк элемента, тем он безопаснее - биосфера к нему "привыкла". Принцип рассеяния широко используется при сбросе техногенных вредных веществ в реки, озера, моря и океаны, а также в атмосферу - через дымовые трубы. Рассеяние использовать можно, но видимо, только для тех соединений, время жизни которых в природных условиях невелико, и которые не смогут дать вредных продуктов распада. Кроме того, их не должно быть много. Так, например, СО2 - вообще говоря, не вредное, а иногда даже полезное соединение. Однако, возрастание концентрации углекислоты во всей атмосфере ведет к парниковому эффекту и тепловому загрязнению. Особенно страшную опасность могут представлять вещества (например, плутоний), получаемые искусственно в больших количествах. Рассеяние до сих пор применяется для удаления отходов малой активности и, исходя из экономической целесообразности, будет еще долго оставаться одним из методов для их обезвреживания. Однако в целом в настоящее время возможности рассеивания в основном исчерпаны и надо искать другие принципы.

в) Существование вредных веществ в природе в химически устойчивых формах. Минералы в земной коре сохраняются сотни миллионов лет. Распространенные акцессорные минералы (циркон, сфен и другие титано- и цирконосиликаты, апатит, монацит и другие фосфаты и т.д.) обладают большой изоморфной емкостью по отношению к многим тяжелым и радиоактивным элементам и устойчивы практически во всем интервале условий петрогенезиса. Имеются данные о том, что цирконы из россыпей, испытавшие вместе с вмещающей породой процессы высокотемпературного метаморфизма и даже гранитообразования, сохраняли свой первичный состав.

г) Минералы, в кристаллических решетках которых находятся подлежащие обезвреживанию элементы, в природных условиях находятся в равновесии с окружающей средой. Реконструкция условий древних процессов, метаморфизма и магматизма, имевших место много миллионов лет назад, возможна благодаря тому, что в кристаллических горных породах на протяжении длительного по геологическим масштабам времени сохраняются особенности состава образовавшихся при этих условиях и находившихся между собой в термодинамическом равновесии минералов.

Описанные выше принципы (особенно последние два) находят применение при обезвреживании радиоактивных отходов.

Существующие разработки МАГАТЭ рекомендуют захоронение отвержденных радиоактивных отходов в стабильных блоках земной коры. Матрицы должны минимально взаимодействовать с вмещающей породой и не растворяться в поровых и трещинных растворах. Требования, которым должны удовлетворять матричные материалы для связывания осколочных радионуклидов и малых актинидов, можно сформулировать следующим образом:

Способность матрицы связывать и удерживать в виде твердых растворов возможно большее число радионуклидов и продуктов их распада в течение длительного (по геологическим масштабам) времени.

Быть устойчивым материалом по отношению к процессам физико-химического выветривания в условиях захоронения (длительного хранения).

Обладать термической устойчивостью при высоких содержаниях радионуклидов.

Обладать комплексом физико-механических свойств, которые необходимо иметь любому матричному материалу для обеспечения процессов транспортировки, захоронения и пр.:

o механической прочностью,

o высокой теплопроводностью,

o малыми коэффициентами теплового расширения,

o устойчивостью к радиационным повреждениям.

· Иметь простую технологическую схему производства

· Производиться из исходного сырья, сравнительно низкой стоимости.

Современные матричные материалы подразделяются по своему фазовому состоянию на стеклообразные (боросиликатные и алюмофосфатные стекла) и кристаллические - как полиминеральные (синроки) так и мономинеральные (цирконий-фосфаты, титанаты, цирконаты, алюмосиликаты и т.п.).

Традиционно для иммобилизации радионуклидов применяли стекольные матрицы (боросиликатные и алюмофосфатные по составу). Эти стекла по своим свойствам близки к алюмосиликатным, только в первом случае алюминий заменен бором, а во втором - кремний фосфором. Эти замены вызваны необходимостью снижения температуры плавления расплавов и уменьшения энергоемкости технологии. В стекольных матрицах достаточно надежно удерживается 10-13мас.% элементов радиоактивных отходов. В конце 70-х годов были разработаны первые кристаллические матричные материалы - синтетические горные породы (синрок). Эти материалы состоят из смеси минералов - твердых растворов на основе титанатов и цирконатов и гораздо более устойчивы к процессам выщелачивания, чем стекольные матрицы. Стоит отметить, что наилучшие матричные материалы - синроки - были предложены петрологами (Рингвуд и др.). Способы остекловывания радиоактивных отходов, используемые в странах с развитой ядерной энергетикой (США, Франция, Германия), не отвечают требованиям их длительного безопасного хранения в связи со спецификой стекла как метастабильной фазы. Как показали исследования, даже наиболее устойчивые к процессам физико-химического выветривания алюмофосфатные стекла, оказываются малостабильными при условиях захоронения в земной коре. Что же касается боросиликатных стекол, то согласно экспериментальным исследованиям, в гидротермальных условиях при 350оС и 1 кбар они полностью кристаллизуются с выносом элементов радиоактивных отходов в раствор. Тем не менее, стеклование радиоактивных отходов с последующим хранением стекольных матриц в специальных хранилищах является пока единственным методом промышленного обезвреживания радионуклидов.

Размещено на Allbest.ru


Подобные документы

  • Условия, которые предъявляются к устройству полигонов для обезвреживания и захоронения промышленных отходов. Методика выбора и обоснования участка под полигон и рациональной технологической схемы обезвреживания и захоронения промышленных отходов.

    реферат [724,9 K], добавлен 16.04.2015

  • Классификация отходов, их сбор и промежуточное хранение. Технологии изоляции отходов, не подлежащих дальнейшему использованию; мусоросжигание, рециклинг. Экономическая и экологическая эффективность способов захоронения. Тепловая энергия планеты и океана.

    презентация [1,1 M], добавлен 25.01.2016

  • Радиация или ионизирующее излучение в общем смысле. Воздействие радиации на человека. Понятие про отработавшее ядерное топливо. Отличие ядерного топлива от радиоактивных отходов. Международные примеры технологий в области захоронения ядерных отходов.

    реферат [201,1 K], добавлен 24.12.2010

  • Воздействие твердых промышленных и бытовых отходов на природную среду, способы классификации. Механизмы экологического нормирования. Задача санитарной очистки местности. Современное состояние проблемы отходов в России. Захоронение, сжигание и рециклинг.

    курсовая работа [94,5 K], добавлен 18.11.2009

  • Изучение теории о происхождения жизни на Земле. Проблема загрязнения Мирового океана нефтепродуктами. Сброс, захоронение (дампинг) в море различных материалов и веществ, отходов промышленности, строительного мусора, химических и радиоактивных веществ.

    презентация [6,6 M], добавлен 09.10.2014

  • Опасность радиации для окружающей среды и человека. Анализ деятельности и стратегий обращения с РАО в странах Евросоюза и Америки. Экологическое законодательство в области обращения, хранения и захоронения радиоактивных отходов в Российской Федерации.

    дипломная работа [1,4 M], добавлен 13.06.2014

  • Характеристика загрязнения вод нефтепродуктами, ионами тяжелых металлов, нарушающими жизнедеятельность водных организмов и человека. Исследование последствий захоронения на морском дне радиоактивных отходов и сброса в море жидких радиоактивных отходов.

    презентация [733,3 K], добавлен 18.01.2012

  • Накопление отходов в результате деятельности человека. Способы и проблемы утилизации твердых бытовых отходов. Этапы складирования отходов, сжигания мусора, сливания отходов в водоёмы. Правила захоронения отходов. Функционирование полигонов захоронения.

    дипломная работа [1,2 M], добавлен 22.10.2015

  • Классификация радиоактивных отходов. Развитие технологий обращения с радиоактивными отходами. Факторы, влияющие на безопасность и соответствие хранилищ интересам устойчивого развития. Геологические условия и результаты эксплуатации систем захоронения.

    курсовая работа [43,0 K], добавлен 28.11.2012

  • Жидкие, твердые и газообразные отходы, содержащие радиоактивные изотопы в концентрациях, превышающих безопасные нормы. Проблема утилизации радиоактивных отходов. Состав и свойства стекол для иммобилизации эксплуатационных радиоактивных отходов АЭС.

    отчет по практике [1,2 M], добавлен 23.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.