Специфика адаптации гидробионтов

Экологические зоны Мирового океана. Основные свойства водной среды. Специфика приспособлений к жизни в пересыхающих водоемах. Способы ориентации животных в водной среде. Фильтрация как тип питания, не требующий больших затрат энергии на поиски добычи.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 29.10.2015
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Специфика адаптаций гидробионтов

Тематический реферат по учебной дисциплине

«Экология организмов»

Томск 2015

Введение

На нашей планете живые организмы освоили четыре основные среды обитания. Первой стала водная, в которой возникла и распространилась жизнь. Далее организмы овладели наземно-воздушной, создали и заселили почву и сами стали четвертой специфической средой жизни.

Вода как среда обитания имеет ряд специфических свойств, таких как большая плотность, сильные перепады давления, малое содержание кислорода, сильное поглощение солнечных лучей. Кроме того, водоемы и их отдельные участки различаются солевым режимом, скоростью течений, содержанием взвешенных частиц. Для некоторых организмов имеют значение также свойства грунта, режим разложения органических остатков и т.д. Поэтому наряду с адаптациями к общим свойствам водной среды ее обитатели должны быть приспособлены и к разнообразным частным условиям. Все обитатели водной среды получили в экологии комплексное название гидробионтов. Гидробионты населяют Мировой океан, континентальные водоемы и подземные воды.Поскольку биосфера характеризуется огромным видовым разнообразием растительных и животных организмов, не достаточно знать только морфологических и анатомических особенностей обитателей различных сред обитания, в том числе и гидробионтов. Необходимо детально рассматривать их этологию и механизмы приспособлений к в водной среде на различных ступенях развития и уровнях организации с учетом таксономической принадлежности.

Цель: изучение адаптаций организмов к обитанию в водной среде.

Для достижения цели реализованы следующие задачи:

1. Изучить экологические зоны Мирового океана;

2. Рассмотреть свойства водной среды обитания;

3. Изучить экологические группы гидробионтов;

4. Проанализировать специфические приспособления представителей гидробионтов.

1. Экологические зоны Мирового океана

В океане и входящих в него морях различают прежде всего две экологические области: толщу воды - пелагиаль и дно - бенталь (рис.1). В зависимости от глубины бенталь делится на сублиторальную зону - область плавного понижения суши до глубины примерно 200 м, батиальную- область крутого склона и абиссальную зону - область океанического ложа со средней глубиной 3-6 км. Еще более глубокие области бентали, соответствующие впадинам океанического ложа, называют ультраабиссалью. Кромка берега, заливаемая во время приливов, называется литоралью. Выше уровня приливов часть берега, увлажняемая брызгами прибоя, получила название супралиторали.

Рисунок 1 - Экологические зоны Мирового океана

Естественно, что, например, обитатели сублиторали живут в условиях относительно невысокого давления, дневного солнечного освещения, часто довольно значительных изменений температурного режима. Обитатели абиссальных и ультраабиссальных глубин существуют во мраке, при постоянной температуре и чудовищном давлении в несколько сотен, а иногда и около тысячи атмосфер. Поэтому одно лишь указание на то, в какой зоне бентали обитает тот или иной вид организмов, уже говорит о том, какими общими экологическими свойствами он должен обладать. Все население дна океана получило название бентоса[1].

Организмы, обитающие в толще воды, или пелагиали, относятся к пелагосу. Пелагиаль также делят на вертикальные зоны, соответствующие по глубине зонам бентали: эпипелагиаль, батипелагиаль, абиссопелагиаль. Нижняя граница эпипелагиали (не более 200 м) определяется проникновением солнечного света в количестве, достаточном для фотосинтеза. Фотосинтезирующие растения глубже этих зон существовать не могут. В сумеречных батиальных и полных мрака абиссальных глубинах обитают лишь микроорганизмы и животные. Разные экологические зоны выделяются и во всех других типах водоемов: озерах, болотах, прудах, реках и т. д. Разнообразие гидробионтов, освоивших все эти места обитания, очень велико.

1.1 Основные свойства водной среды

Плотность воды - это фактор, определяющий условия передвижения водных организмов и давление на разных глубинах. Для дистиллированной воды плотность равна 1 г/см3 при 4 °C. Плотность природных вод, содержащих растворенные соли, может быть больше, до 1,35 г/см3. Давление возрастает с глубиной примерно в среднем на 1 · 105 Па (1 атм) на каждые 10 м.

В связи с резким градиентом давления в водоемах гидробионты в целом значительно более эврибатны по сравнению с сухопутными организмами. Некоторые виды, распространенные на разных глубинах, переносят давление от нескольких до сотен атмосфер. Например, голотурии рода Elpidia, черви Priapulus caudatus обитают от прибрежной зоны до ультраабиссали. Даже пресноводные обитатели, например инфузории-туфельки, сувойки, жуки-плавунцы и др., выдерживают в опыте до 6 · 107 Па (600 атм).

Однако многие обитатели морей и океанов относительно стенобатны и приурочены к определенным глубинам. Стенобатность чаще всего свойственна мелководным и глубоководным видам. Только на литорали обитают кольчатый червь пескожил Arenicola, моллюски морские блюдечки (Patella). Многие рыбы, например из группы удильщиков, головоногие моллюски, ракообразные, погонофоры, морские звезды и др. встречаются лишь на больших глубинах при давлении не менее 4 · 107- 5 · 107 Па (400-500 атм).

Плотность воды обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм. Плотность среды служит условием парения в воде, и многие гидробионты приспособлены именно к этому образу жизни. Взвешенные, парящие в воде организмы объединяют в особую экологическую группу гидробионтов - планктон («планктос» - парящий).

Рисунок 1.1 - Увеличение относительной поверхности тела у планктонных организмов (по С. A. Зернову, 1949):

A - палочковидные формы:

1- диатомея Synedra;

2- цианобактерия Aphanizomenon;

3- перидинеевая водоросль Amphisolenia;

4- Euglena acus;

5- головоногий моллюск Doratopsis vermicularis;

6- веслоногий рачок Setella;

7- личинка Porcellana (Decapoda)

Б - расчлененные формы:

1- моллюск Glaucus atlanticus;

2- червь Tomopetris euchaeta;

3- личинка рака Palinurus;

4- личинка рыбы морского черта Lophius;

5- веслоногий рачок Calocalanus pavo

В составе планктона - одноклеточные и колониальные водоросли, простейшие, медузы, сифонофоры, гребневики, крылоногие и киленогие моллюски, разнообразные мелкие рачки, личинки донных животных, икра и мальки рыб и многие другие (рис.1.1). Планктонные организмы обладают многими сходными адаптациями, повышающими их плавучесть и препятствующими оседанию на дно. К таким приспособлениям относятся: 1) общее увеличение относительной поверхности тела за счет уменьшения размеров, сплющенности, удлинения, развития многочисленных выростов или щетинок, что увеличивает трение о воду; 2) уменьшение плотности за счет редукции скелета, накопления в теле жиров, пузырьков газа и т. п. У диатомовых водорослей запасные вещества отлагаются не в виде тяжелого крахмала, а в виде жировых капель. Ночесветка Noctiluca отличается таким обилием газовых вакуолей и капелек жира в клетке, что цитоплазма в ней имеет вид тяжей, сливающихся только вокруг ядра. Воздухоносные камеры есть и у сифонофор, ряда медуз, планктонных брюхоногих моллюсков и др.

Водоросли (фитопланктон) парят в воде пассивно, большинство же планктонных животных способно к активному плаванию, но в ограниченных пределах. Планктонные организмы не могут преодолевать течения и переносятся ими на большие расстояния. Многие виды зоопланктона способны, однако, к вертикальным миграциям в толще воды на десятки и сотни метров как за счет активного передвижения, так и за счет регулирования плавучести своего тела. Особую разновидность планктона составляет экологическая группа нейстона («нейн» - плавать) - обитатели поверхностной пленки воды на границе с воздушной средой[1].

Плотность и вязкость воды сильно влияют на возможность активного плавания. Животных, способных к быстрому плаванию и преодолению силы течений, объединяют в экологическую группу нектона («нектос» - плавающий). Представители нектона - рыбы, кальмары, дельфины. Быстрое движение в водной толще возможно лишь при наличии обтекаемой формы тела и сильно развитой мускулатуры. Торпедовидная форма вырабатывается у всех хороших пловцов независимо от их систематической принадлежности и способа движения в воде: реактивного, за счет изгибания тела, с помощью конечностей.

Кислородный режим. В насыщенной кислородом воде содержание его не превышает 10 мл в 1 л, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания гидробионтов значительно усложнены. Кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние слои водной толщи, как правило, богаче этим газом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается. В слоях, сильно заселенных животными и бактериями, может создаваться резкий дефицит О2 из-за усиленного его потребления. Например, в Мировом океане богатые жизнью глубины от 50 до 1000 м характеризуются резким ухудшением аэрации - она в 7-10 раз ниже, чем в поверхностных водах, населенных фитопланктоном. Около дна водоемов условия могут быть близки к анаэробным.

Среди водных обитателей много видов, способных переносить широкие колебания содержания кислорода в воде, вплоть до почти полного его отсутствия (эвриоксибионты - «окси» - кислород, «бионт» - обитатель). К ним относятся, например, пресноводные олигохеты Tubifex tubifex, брюхоногие моллюски Viviparus viviparus. Среди рыб очень слабое насыщение воды кислородом могут выдерживать сазан, линь, караси. Вместе с тем ряд видов стеноксибионтны - они могут существовать лишь при достаточно высоком насыщении воды кислородом (радужная форель, кумжа, гольян, ресничный червь Planaria alpina, личинки поденок, веснянок и др.). Многие виды способны при недостатке кислорода впадать в неактивное состояние - аноксибиоз - и таким образом переживать неблагоприятный период.

Дыхание гидробионтов осуществляется либо через поверхность тела, либо через специализированные органы - жабры, легкие, трахеи. При этом покровы могут служить дополнительным органом дыхания. Например, рыба вьюн через кожу потребляет в среднем до 63 % кислорода. Если через покровы тела происходит газообмен, то они очень тонки. Дыхание облегчается также увеличением поверхности. Это достигается в ходе эволюции видов образованием различных выростов, уплощением, удлинением, общим уменьшением размеров тела. Некоторые виды при недостатке кислорода активно изменяют величину дыхательной поверхности. Черви Tubifex tubifex сильно вытягивают тело в длину; гидры и актинии - щупальцы; иглокожие - амбулакральные ножки. Многие сидячие и малоподвижные животные обновляют вокруг себя воду, либо создавая ее направленный ток, либо колебательными движениями способствуя ее перемешиванию. Двустворчатым моллюскам для этой цели служат реснички, выстилающие стенки мантийной полости; ракообразным - работа брюшных или грудных ножек. Пиявки, личинки комаров-звонцов (мотыль), многие олигохеты колышут тело, высунувшись из грунта.

У некоторых видов встречается комбинирование водного и воздушного дыхания. Таковы двоякодышащие рыбы, сифонофоры дискофанты, многие легочные моллюски, ракообразные Gammarus lacustris и др. Вторичноводные животные сохраняют обычно атмосферный тип дыхания как более выгодный энергетически и нуждаются поэтому в контактах с воздушной средой, например ластоногие, китообразные, водяные жуки, личинки комаров и др.

Нехватка кислорода в воде приводит иногда к катастрофическим явлениям - заморам, сопровождающимся гибелью множества гидробионтов. Зимние заморы часто вызываются образованием на поверхности водоемов льда и прекращением контакта с воздухом; летние- повышением температуры воды и уменьшением вследствие этого растворимости кислорода.

Частая гибель рыб и многих беспозвоночных зимой характерна, например, для нижней части бассейна реки Оби, воды которой, стекающие из заболоченных пространств Западно-Сибирской низменности, крайне бедны растворенным кислородом. Иногда заморы возникают и в морях.

Кроме недостатка кислорода, заморы могут быть вызваны повышением концентрации в воде токсичных газов - метана, сероводорода, СО2 и др., образующихся в результате разложения органических материалов на дне водоемов.

Солевой режим. Поддержание водного баланса гидробионтов имеет свою специфику. Если для наземных животных и растений наиболее важно обеспечение организма водой в условиях ее дефицита, то для гидробионтов не менее существенно поддержание определенного количества воды в теле при ее избытке в окружающей среде. Излишнее количество воды в клетках приводит к изменению в них осмотического давления и нарушению важнейших жизненных функций.

Большинство водных обитателей пойкилосмотичны: осмотическое давление в их теле зависит от солености окружающей воды. Поэтому для гидробионтов основной способ поддерживать свой солевой баланс - это избегать местообитаний с неподходящей соленостью. Пресноводные формы не могут существовать в морях, морские - не переносят опреснения. Если соленость воды подвержена изменениям, животные перемещаются в поисках благоприятной среды. Например, при опреснении поверхностных слоев моря после сильных дождей радиолярии, морские рачки Calanus и другие спускаются на глубину до 100 м. Позвоночные животные, высшие раки, насекомые и их личинки, обитающие в воде, относятся к гомойосмотическим видам, сохраняя постоянное осмотическое давление в теле независимо от концентрации солей в воде[2].

У пресноводных видов соки тела гипертоничны по отношению к окружающей воде. Им угрожает излишнее обводнение, если не препятствовать поступлению или не удалять избыток воды из тела. У простейших это достигается работой выделительных вакуолей, у многоклеточных - удалением воды через выделительную систему. Некоторые инфузории каждые 2-2,5 мин выделяют количество воды, равное объему тела. На «откачку» избыточной воды клетка затрачивает очень много энергии. С повышением солености работа вакуолей замедляется. Так, у туфелек Paramecium при солености воды 2,5%о вакуоль пульсирует с интервалом в 9 с, при 5%о - 18 с, при 7,5%о - 25 с. При концентрации солей 17,5%о вакуоль перестает работать, так как разница осмотического давления между клеткой и внешней средой исчезает.

Если вода гипертонична по отношению к жидкостям тела гидробионтов, им грозит обезвоживание в результате осмотических потерь. Защита от обезвоживания достигается повышением концентрации солей также в теле гидробионтов. Обезвоживанию препятствуют непроницаемые для воды покровы гомойосмотических организмов - млекопитающих, рыб, высших раков, водных насекомых и их личинок.

Многие пойкилосмотические виды переходят к неактивному состоянию - анабиозу в результате дефицита воды в теле при возрастании солености. Это свойственно видам, обитающим в лужах морской воды и на литорали: коловраткам, жгутиковым, инфузориям, некоторым рачкам, черноморским полихетам Nereis divesicolor и др. Солевой анабиоз- средство переживать неблагоприятные периоды в условиях переменной солености воды.

Истинно эвригалинных видов, способных в активном состоянии обитать как в пресной, так и в соленой воде, среди водных обитателей не так много. В основном это виды, населяющие эстуарии рек, лиманы и другие солоноватоводные водоемы.

Температурный режим водоемов более устойчив, чем на суше. Это связано с физическими свойствами воды, прежде всего высокой удельной теплоемкостью, благодаря которой получение или отдача значительного количества тепла не вызывает слишком резких изменений температуры. Испарение воды с поверхности водоемов, при котором затрачивается около 2263,8 Дж/г, препятствует перегреванию нижних слоев, а образование льда, при котором выделяется теплота плавления (333,48 Дж/г), замедляет их охлаждение.

Амплитуда годовых колебаний температуры в верхних слоях океана не более 10-15 °C, в континентальных водоемах - 30-35 °C. Глубокие слои воды отличаются постоянством температуры. В экваториальных водах среднегодовая температура поверхностных слоев +(26-27) °С, в полярных - около 0 °C и ниже. В горячих наземных источниках температура воды может приближаться к +100 °C, а в подводных гейзерах при высоком давлении на дне океана зарегистрирована температура +380 °C.

Таким образом, в водоемах существует довольно значительное разнообразие температурных условий. Между верхними слоями воды с выраженными в них сезонными колебаниями температуры и нижними, где тепловой режим постоянен, существует зона температурного скачка, или термоклина. Термоклин резче выражен в теплых морях, где сильнее перепад температуры наружных и глубинных вод.

В связи с более устойчивым температурным режимом воды среди гидробионтов в значительно большей мере, чем среди населения суши, распространена стенотермность. Эвритермные виды встречаются в основном в мелких континентальных водоемах и на литорали морей высоких и умеренных широт, где значительны суточные и сезонные колебания температуры.

Световой режим. Света в воде гораздо меньше, чем в воздухе. Часть падающих на поверхность водоема лучей отражается в воздушную среду. Отражение тем сильнее, чем ниже положение Солнца, поэтому день под водой короче, чем на суше. Например, летний день около острова Мадейра на глубине 30 м - 5 ч, а на глубине 40 м всего 15 мин. Быстрое убывание количества света с глубиной связано с поглощением его водой. Лучи с разной длиной волны поглощаются неодинаково: красные исчезают уже недалеко от поверхности, тогда как сине-зеленые проникают значительно глубже. Сгущающиеся с глубиной сумерки в океане имеют сначала зеленый, затем голубой, синий и сине-фиолетовый цвет, сменяясь наконец постоянным мраком. Соответственно сменяют друг друга с глубиной зеленые, бурые и красные водоросли, специализированные на улавливании света с разной длиной волны.

Окраска животных меняется с глубиной так же закономерно. Наиболее ярко и разнообразно окрашены обитатели литоральной и сублиторальной зон. Многие глубинные организмы, подобно пещерным, не имеют пигментов. В сумеречной зоне широко распространена красная окраска, которая является дополнительной к сине-фиолетовому свету на этих глубинах. Дополнительные по цвету лучи наиболее полно поглощаются телом. Это позволяет животным скрываться от врагов, так как их красный цвет в сине-фиолетовых лучах зрительно воспринимается как черный. Красная окраска характерна для таких животных сумеречной зоны, как морской окунь, красный коралл, различные ракообразные и др.

У некоторых видов, обитающих у поверхности водоемов, глаза разделяются на две части с разной способностью к преломлению лучей. Одна половина глаза видит в воздухе, другая - в воде. Такая «четырехглазость» характерна для жуков-вертячек, американской рыбки Anableps tetraphthalmus, одного из тропических видов морских собачек Dialommus fuscus. Эта рыбка при отливах сидит в углублениях, выставляя часть головы из воды (см. рис. 26).

Поглощение света тем сильнее, чем меньше прозрачность воды, которая зависит от количества взвешенных в ней частиц.

Прозрачность характеризуют предельной глубиной, на которой еще виден специально опускаемый белый диск диаметром около 20 см (диск Секки). Самые прозрачные воды - в Саргассовом море: диск виден до глубины 66,5 м. В Тихом океане диск Секки виден до 59 м, в Индийском - до 50, в мелких морях - до 5-15 м. Прозрачность рек в среднем 1-1,5 м, а в самых мутных реках, например в среднеазиатских Амударье и Сырдарье, всего несколько сантиметров. Граница зоны фотосинтеза поэтому сильно варьирует в разных водоемах. В самых чистых водах эуфотическая зона, или зона фотосинтеза, простирается до глубин не свыше 200 м, сумеречная, или дисфотическая, зона занимает глубины до 1000-1500 м, а глубже, в афотическую зону, солнечный свет не проникает совсем.

Количество света в верхних слоях водоемов сильно меняется в зависимости от широты местности и от времени года. Длинные полярные ночи сильно ограничивают время, пригодное для фотосинтеза, в арктических и приантарктических бассейнах, а ледовый покров затрудняет доступ света зимой во все замерзающие водоемы.

В темных глубинах океана в качестве источника зрительной информации организмы используют свет, испускаемый живыми существами. Свечение живого организма получило название биолюминесценции. Светящиеся виды есть почти во всех классах водных животных от простейших до рыб, а также среди бактерий, низших растений и грибов. Биолюминесценция, по-видимому, многократно возникала в разных группах на разных этапах эволюции.

Химия биолюминесценции сейчас довольно хорошо изучена. Реакции, используемые для генерации света, разнообразны. Но во всех случаях это окисление сложных органических соединений (люциферинов) с помощью белковых катализаторов (люцифераз). Люциферины и люциферазы у разных организмов имеют неодинаковую структуру. В ходе реакции избыточная энергия возбужденной молекулы люциферина выделяется в виде квантов света. Живые организмы испускают свет импульсами, обычно в ответ на раздражения, поступающие из внешней среды[3].

Свечение может и не играть особой экологической роли в жизни вида, а быть побочным результатом жизнедеятельности клеток, как, например, у бактерий или низших растений. Экологическую значимость оно получает только у животных, обладающих достаточно развитой нервной системой и органами зрения. У многих видов органы свечения приобретают очень сложное строение с системой отражателей и линз, усиливающих излучение (рис. 1.2). Ряд рыб и головоногих моллюсков, неспособных генерировать свет, используют симбиотических бактерий, размножающихся в специальных органах этих животных.

Рисунок 1.2 - Органы свечения водных животных (по С. А. Зернову, 1949):

1- глубоководный удильщик с фонариком над зубатой пастью;

2- распределение светящихся органов у рыбы сем. Mystophidae;

3- светящийся орган рыбы Argyropelecus affinis:

а - пигмент, б - рефлектор, в - светящееся тело, г - линза

Биолюминесценция имеет в жизни животных в основном сигнальное значение. Световые сигналы могут служить для ориентации в стае, привлечения особей другого пола, подманивания жертв, для маскировки или отвлечения. Вспышка света может быть защитой от хищника, ослепляя или дезориентируя его. Например, глубоководные каракатицы, спасаясь от врага, выпускают облако светящегося секрета, тогда как виды, обитающие в освещенных водах, используют для этой цели темную жидкость. У некоторых донных червей - полихет - светящиеся органы развиваются к периоду созревания половых продуктов, причем светятся ярче самки, а глаза лучше развиты у самцов. У хищных глубоководных рыб из отряда удильщиковидных первый луч спинного плавника сдвинут к верхней челюсти и превращен в гибкое «удилище», несущее на конце червеобразную «приманку» - железу, заполненную слизью со светящимися бактериями. Регулируя приток крови к железе и, следовательно, снабжение бактерии кислородом, рыба может произвольно вызывать свечение «приманки», имитируя движения червя и подманивая добычу.

2. Специфические приспособления гидробионтов

2.1 Способы ориентации животных в водной среде

Жизнь в постоянных сумерках или во мраке сильно ограничивает возможности зрительной ориентации гидробионтов. В связи с быстрым затуханием световых лучей в воде даже обладатели хорошо развитых органов зрения ориентируются при их помощи лишь на близком расстоянии.

Звук распространяется в воде быстрее, чем в воздухе. Ориентация на звук развита у гидробионтов в целом лучше, чем зрительная. Ряд видов улавливает даже колебания очень низкой частоты (инфразвуки), возникающие при изменении ритма волн, и заблаговременно спускается перед штормом из поверхностных слоев в более глубокие (например, медузы). Многие обитатели водоемов - млекопитающие, рыбы, моллюски, ракообразные - сами издают звуки. Ракообразные осуществляют это трением друг о друга различных частей тела; рыбы - с помощью плавательного пузыря, глоточных зубов, челюстей, лучей грудных плавников и другими способами. Звуковая сигнализация служит чаще всего для внутривидовых взаимоотношений, например для ориентации в стае, привлечения особей другого пола и т. п., и особенно развита у обитателей мутных вод и больших глубин, живущих в темноте[4].

Ряд гидробионтов отыскивает пищу и ориентируется при помощи эхолокации- восприятия отраженных звуковых волн (китообразные). Многие воспринимают отраженные электрические импульсы, производя при плавании разряды разной частоты. Известно около 300 видов рыб, способных генерировать электричество и использовать его для ориентации и сигнализации. Пресноводная рыбка водяной слон (Mormyrus kannume) посылает до 30 импульсов в секунду, обнаруживая беспозвоночных, которых она добывает в жидком иле без помощи зрения. Частота разрядов у некоторых морских рыб доходит до 2000 импульсов в секунду. Ряд рыб использует электрические поля также для защиты и нападения (электрический скат, электрический угорь и др.).

Для ориентации в глубине служит восприятие гидростатического давления. Оно осуществляется при помощи статоцистов, газовых камер и других органов.

Наиболее древний способ ориентации, свойственный всем водным животным, - восприятие химизма среды. Хеморецепторы многих гидробионтов обладают чрезвычайной чувствительностью. В тысячекилометровых миграциях, которые характерны для многих видов рыб, они ориентируются в основном по запахам, с поразительной точностью находя места нерестилищ или нагула. Экспериментально доказано, например, что лососи, искусственно лишенные обоняния, не находят устья своей реки, возвращаясь на нерест, но никогда не ошибаются, если могут воспринимать запахи. Тонкость обоняния чрезвычайно велика у рыб, совершающих особенно далекие миграции.

2.2 Специфика приспособлений к жизни в пересыхающих водоемах

На Земле существует много временных, неглубоких водоемов, возникающих после разлива рек, сильных дождей, таяния снега и т. п. В этих водоемах, несмотря на краткость их существования, поселяются разнообразные гидробионты[5].

Общими особенностями обитателей пересыхающих бассейнов являются способности давать за короткие сроки многочисленное потомство и переносить длительные периоды без воды. Представители многих видов при этом закапываются в ил, переходя в состояние пониженной жизнедеятельности - гипобиоза. Так ведут себя щитни, ветвистоусые рачки, планарии, малощетинковые черви, моллюски и даже рыбы - вьюн, африканский протоптерус и южноамериканский лепидосирен из двоякодышащих. Многие мелкие виды образуют цисты, выдерживающие засуху, - таковы солнечники, инфузории, корненожки, ряд веслоногих рачков, турбеллярий, нематоды рода Rhabditis. Другие переживают неблагоприятный период в стадии высокоустойчивых яиц. Наконец, некоторым мелким обитателям пересыхающих водоемов присуща уникальная способность высыхать до состояния пленки, а при увлажнении возобновлять рост и развитие. Способность переносить полное обезвоживание организма выявлена у коловраток родов Callidina, Philodina и др., тихоходок Macrobiotus, Echiniscus, нематод родов Tylenchus, Plectus, Cephalobus и др. Эти животные населяют микроводоемы в подушках мхов и лишайников и адаптированы к резким изменениям режима влажности.

2.3 Фильтрация как тип питания

Многие гидробионты обладают особым характером питания - это отцеживание или осаждение взвешенных в воде частиц органического происхождения и многочисленных мелких организмов (рис. 2.1).

Рисунок 2.1 - Состав планктонной пищи асцидии из Баренцева моря (по С. А. Зернову, 1949) адаптация гидробионт водный питание фильтрация

Такой способ питания, не требующий больших затрат энергии на поиски добычи, характерен для пластинчатожаберных моллюсков, сидячих иглокожих, полихет, мшанок, асцидий, планктонных рачков и др. (рис. 2.2). Животные-фильтраторы выполняют важнейшую роль в биологической очистке водоемов. Мидии, обитающие на площади 1 м2, могут прогонять через мантийную полость 150-280 м3 воды за сутки, осаждая взвешенные частицы. Пресноводные дафнии, циклопы или самый массовый в океане рачок Calanus finmarchicus отфильтровывают в день до 1,5 л воды на особь. Литоральная зона океана, особенно богатая скоплениями фильтрующих организмов, работает как эффективная очистительная система.

Рисунок 2.2 - Фильтровальные аппараты гидробионтов (по С. А. Зернову, 1949):

1- личинки мошек Simulium на камне (а) и их фильтровальные придатки

2- фильтрующая ножка рачка Diaphanosoma brachyurum;

3- жаберные щели асцидии Phasullia;

4- рачок Bosmina с отфильтрованным содержимым кишечника;

5- пищевой ток инфузории Bursaria

Свойства среды во многом определяют пути адаптации ее обитателей, их образ жизни и способы использования ресурсов, создавая цепи причинно-следственных зависимостей. Так, высокая плотность воды делает возможным существование планктона, а наличие парящих в воде организмов - предпосылка для развития фильтрационного типа питания, при котором возможен и сидячий образ жизни животных. В результате формируется мощный механизм самоочищения водоемов биосферного значения. В нем участвует огромное количество гидробионтов, как бентосных, так и пелагиальных, от одноклеточных простейших до позвоночных животных. По расчетам, вся вода в озерах умеренного пояса пропускается через фильтрационные аппараты животных от нескольких до десятков раз в течение вегетационного сезона, а весь объем Мирового океана профильтровывается в течение нескольких суток. Нарушение деятельности фильтраторов различными антропогенными воздействиями создает серьезную угрозу в поддержании чистоты вод.

Заключение

На нашей планете обитает большое количество видов растений и животных, для которых вода является непосредственной средой обитания. Водная среда обитания организма - это совокупность абиотических и биотических условий его жизни. Свойства водной среды постоянно меняются, и любое существо, чтобы выжить, приспосабливается к этим изменениям. Все многообразие растительных и животных организмов, населяющих Мировой океан приспособились к среде в которой они живут. Адаптации гидробионтов могут быть физиологическими, морфо-анатомическими, поведенческими либо онтогенетическими. Все эти механизмы адаптации направлены на выживание организма. Несмотря на то, что толща воды огромна, живые организмы обитают на всей её протяженности, начиная с самой поверхности и заканчивая немыслимыми глубинами с чудовищными условиями существования.

Список использованных источников

Чернова, Н.М., Былова А.М. Экология/ В.Л.Шило. - М.: Дрофа,2004. - 407 с.

Степановских, А.С. Общая экология/ А.С. Степановских. - М.: Юнити,2005.-687 с.

Водная среда жизни[Электронный ресурс].- Режим доступа: http://ecology-education.ru/index.php?action=full&id=262(дата обращения: 20.02.2015)

Зилов, Е.А. Гидробиология и водная экология (организация, функционирование и загрязнение водных экосистем): учебное пособие/ Е. А. Зилов. - Иркутск: Издательство Иркутского государственного университета, 2009. - 147 с.

Физико-химические явления в водоемах// Геоприрода мира[Электронный ресурс] : http://geopriroda.ru/water/328-fiziko-ximicheskie-yavleniya-v-vodoemax.html (дата обращения: 20.02.2015).

Размещено на Allbest.ru


Подобные документы

  • Водная и наземно-воздушная среды жизни. Почва как среда жизни. Роль эдафических факторов в распределении растений и животных. Живые организмы как среда обитания. Адаптация животных к водной среде. Экологическая пластичность организмов водной среды.

    курсовая работа [48,2 K], добавлен 11.07.2015

  • Проблема загрязнения водной среды. Количество воды во Вселенной, водород и кислород - исходные элементы для ее образования. Строение молекулы воды, ее уникальные свойства. Дефицит пресной воды на планете, последствия загрязнения Мирового океана.

    презентация [2,3 M], добавлен 14.05.2012

  • Угрожающие масштабы загрязнения мирового океана нефтью и нефтепродуктами. Источник загрязнения водной среды. Основные методы управления качеством атмосферного воздуха. Управление отходами, их санитарное очищение и удаление. Виды экологических налогов.

    реферат [26,5 K], добавлен 07.11.2014

  • Особенности использования водной среды в качестве основного фактора релаксации и рекреации в течение всей жизни, начиная с появления человека на свет. Роль школы аквакультуры, основанной И.Б. Чарковским, для поддержания здоровья и бодрости духа.

    контрольная работа [16,9 K], добавлен 26.06.2013

  • Основные пути загрязнения гидросферы Земли. Источники засорения поверхностных, подземных вод, рек, озер и мирового океана. Методы их очистки и охраны от истощения. Проникновение вредных веществ в круговорот воды. Изучение способов самоочищения водоемов.

    презентация [1,3 M], добавлен 29.11.2014

  • Значение Мирового океана для человека и всего живого. Важнейшая палеогеографическая роль Мирового океана. Деятельность человека, влияющая на состояние вод океанов. Нефть и пестициды как главное бедствие для Мирового океана. Охрана водных ресурсов.

    контрольная работа [32,2 K], добавлен 26.05.2010

  • Представление о физико-химической среде обитания организмов; особенности водной, почвенной и воздушной сред. Увеличение количества СО2, метана, паров воды в атмосфере. Парниковый эффект, кислотные дожди и закисление почв. Специфика городской среды.

    контрольная работа [138,6 K], добавлен 28.08.2013

  • Биологическое значение тяжелых металлов и микроэлементов для различных видов растений. Накопление тяжелых металлов в водной среде и в почве. Изучение состава прибрежно-водной растительности исследуемых озер города Гомеля и озер Мозырского района.

    дипломная работа [1,5 M], добавлен 15.12.2016

  • Тяжелые металлы в водной среде. Действие оксидов тяжелых металлов на организм некоторых пресноводных животных. Поглощение и распределение тяжелых металлов в гидрофитах. Влияние оксидов тяжелых металлов в наноформе на показатели роста и смертности гуппи.

    дипломная работа [987,3 K], добавлен 09.10.2013

  • Понятие о Мировом океане. Богатства Мирового океана. Минеральные, энергетические и биологические виды ресурсов. Экологические проблемы Мирового океана. Загрязнения сточными водами промышленности. Нефтяные загрязнения морских вод. Методы очистки вод.

    презентация [3,4 M], добавлен 21.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.