Круговорот веществ на Земле. Малый и большой круг обмена веществ

Принципиальная схема биологического круговорота. Биохимический круговорот воды, кислорода и углекислого газа. Фотосинтез у растений, водорослей и бактерий. Показатели биологического круговорота в разных природных зонах. Круговорот азота и фосфора.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 04.05.2015
Размер файла 4,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ

Кафедра неорганической и аналитической химии

КОНТРОЛЬНАЯ РАБОТА

ПО ЭКОЛОГИИ

Тема 28

Круговорот веществ на Земле. Малый и большой круг обмена веществ

курс 2 факультет ТМ

специальность 260800 ЗФО

Москва 2013 г.

Большой, малый круговорот веществ

Солнечная энергия на Земле вызывает два круговорота веществ: большой, или геологический круговорот веществ, наиболее ярко проявляющийся в круговороте воды и циркуляции атмосферы, и малый, биологический круговорот веществ (биотический), развивающийся на основе большого и состоящий в непрерывном, циклическом, но неравномерном во времени и пространстве, и сопровождающийся более или менее значительными потерями закономерного перераспределения вещества, энергии и информации в пределах экологических систем различного уровня организации большой круговорот веществ и малый круговорот веществ взаимосвязаны и представляют как бы единый процесс.

Принципиальная схема биологического (биотического) круговорота (по К.Ф. Реймерсу, 1990)

Подсчитано, что весь кислород, содержащийся в атмосфере, оборачивается через организмы (связывается при дыхании и высвобождается при фотосинтезе) за 2000 лет, углекислота атмосферы совершает круговорот в обратном направлении за 300 лет, а все воды на Земле разлагаются и воссоздаются путем фотосинтеза и дыхания за 2 000 000 лет (рис. 12.8).

Биохимические круговороты

Взаимодействие абиотических факторов и живых организмов экосистемы сопровождается непрерывным круговоротом вещества между биотопом и биоценозом в виде чередующихся то органических, то минеральных соединений. Обмен химических элементов между живыми организмами и неорганической средой, различные стадии которого происходят внутри экосистемы, называют биогеохимическим круговоротом, или биогеохимическим циклом.

Существование подобных круговоротов создает возможность для саморегуляции (гомеостаза) системы, что придает экосистеме устойчивость: удивительное постоянство процентного содержания различных элементов. Здесь действует принцип функционирования экосистем: получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов.

Рассмотрим более подробно основные биохимические круговороты.

Круговороты воды, кислорода и углекислого газа (по П. Клауду и А. Джибору, 1972)

Круговорот воды

Самый значительный по переносимым массам и по затратам энергии круговорот на Земле -- это планетарный гидрологический цикл -- круговорот воды

Общая схема круговорота воды (по Ф. Рамаду, 1981). Примечание: цифры -- толщина слоя в метрах

Каждую секунду в него вовлекается 16,5 млн м3 воды и тратится на это более 40 млрд МВт солнечной энергии (Т.А. Акимова, В.В. Хаскин, 1994). Но данный круговорот -- это не только перенос водных масс. Это фазовые превращения, образование растворов и взвесей, выпадение осадков, кристаллизация, процессы фотосинтеза, а также разнообразные химические реакции. В этой среде возникла и продолжается жизнь. Вода -- основной элемент, необходимый для жизни. Количественно это самая распространенная неорганическая составляющая живой материи. У человека вода составляет 63% массы тела, грибов -- 80%, растений -- 80--90%, а у некоторых медуз -- 98%.

Вода, как мы увидим несколько позднее, участвующая в биологическом круговороте и служащая источником водорода и кислорода, составляет лишь небольшую часть своего общего объема.

В жидком, твердом и парообразном состояниях вода присутствует во всех трех главных составных частях биосферы: атмосфере, гидросфере, литосфере. Все воды объединяются общим понятием «гидросферы». Составные части гидросферы связаны между собой постоянным обменом и взаимодействием. Вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образует малый круговорот. Когда водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. При этом часть осадков испаряется и поступает обратно в атмосферу, другая -- питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоками, завершая тем самым большой круговорот.

Над океанами выпадает 7/9 общего количества осадков, а над континентами 2/9. Замкнутая, бессточная часть суши в 3,5 раза беднее осадками, чем периферийная часть суши. Вода, выпавшая на сушу, в процессе фильтрации через почву обогащается минеральными и органическими веществами, образуя подземные воды. Вместе с поверхностными стоками она поступает в реки, а затем в океаны. Поступление воды в Мировой океан (осадки, приток речных вод) и испарение с его поверхности составляет 1260 мм в год.

Несмотря на относительно малую толщину слоя водяного пара в атмосфере (0,03 м), именно атмосферная влага играет основную роль в циркуляции воды и ее биогеохимическом круговороте. В целом для всего земного шара существует один источник притока воды -- атмосферные осадки и один источник расхода -- испарение, составляющее 1030 мм в год. В жизнедеятельности растений огромная роль воды принадлежит осуществлению процессов фотосинтеза (важнейшее звено биологического круговорота) и транспирации. Подсчитано, что 1 га елового леса на влажной почве за год транспирирует около 4000 м3 воды, что эквивалентно 378 мм осадков. Суммарное испарение, или масса воды, испаряемой древесной или травянистой растительностью, испарившейся с поверхности почвы, играет важную роль в круговороте воды на континентах. Грунтовые воды, проникая сквозь ткани растений в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.

Данные по круговороту воды на земном шаре позволяют вычислить активность водообмена в различных частях гидросферы

Активность водообмена в гидросфере

Часть гидросферы

Объем (с округлением), тыс. км3

Активность водообмена, число лет

Океан

Подземные воды

В т. ч. зоны активного водообмена

Полярные ледники

Поверхностные воды суши

Реки

Почвенная влага

Пары атмосферы

1370000

60000

4000

24000

280

1,2

80

14

3000

5000

300

8000

7

0,03

1

0,027

Вся гидросфера

1454000

2800

Наиболее замедленной частью круговорота воды является деятельность полярных ледников. Круговорот воды здесь совершается за 8,0 тыс. лет, что отражает медленное движение и процесс таяния ледниковых масс. Подземные воды обновляются за 5,0 тыс. лет, воды океанов -- за 3,0 тыс. лет, атмосферные воды -- за 10 суток. Наибольшей активностью обмена, после атмосферной влаги, отличаются речные воды, которые сменяются в среднем каждые 11 суток. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре. Происходящий в природе круговорот самоочищающейся воды -- вечное движение, обеспечивающее жизнь на Земле.

Пресной воды на Земле очень мало. Вместе с зоной активного водоснабжения подземными водами это лишь 300 млн км3, причем 97% находится в ледниках Антарктиды, Гренландии, в полярных зонах и горах. Однако естественный круговорот воды гарантирует, что без воды Земля не останется.

Биотический (биологический) круговорот

Под биотическим (биологическим) круговоротом понимается циркуляция веществ между почвой, растениями, животными и микроорганизмами (рис. 12.10). По определению Н.П. Ремезова, Л.Е. Родина и Н.И. Базилевич, биотический (биологический) круговорот -- это поступление химических элементов из почвы, воды и атмосферы в живые организмы, превращение в них поступающих элементов в новые сложные соединения и возвращение их обратно в процессе жизнедеятельности с ежегодным опадом части органического вещества или с полностью отмершими организмами, входящими в состав экосистемы (Н.Ф. Реймерс, 1990).

Биотический (биологический) круговорот веществ в экосистеме (по А.И. Воронцову, Н.3. Харитоновой, 1979)

Сейчас же мы представим биотический круговорот в циклической форме

круговорот биологический фотосинтез

Структурные циклы биотического круговорота (по Т.А. Акимовой, В.В. Хаскину, 1994)

Пояснения: внутреннее малое кольцо -- первичный биотический круговорот с участием примитивных продуцентов (П) и редуцентов-деструкторов (Д); Р -- растения; Т -- первичные консументы (растительноядные животные); X, и X, -- вторичные и третичные консументы (хищники). Все циклы замыкаются редуцентами

Первичный биотический круговорот по Т.А. Акимовой, В.В. Хаскину (1994) состоял из примитивных одноклеточных продуцентов (П) и редуцентов-деструкторов (Д). Микроорганизмы способны быстро размножаться и приспосабливаться к разным условиям, например, использовать в своем питании всевозможные субстраты -- источники углерода. Высшие организмы такими способностями не обладают. В целостных экосистемах они могут существовать в виде надстройки на фундаменте микроорганизмов.

Вначале развиваются многоклеточные растения (Р) -- высшие продуценты. Вместе с одноклеточными они создают в процессе фотосинтеза органическое вещество, используя энергию солнечного излучения. В дальнейшем подключаются первичные консументы -- растительноядные животные (Т), а затем и плотоядные консументы. Нами был рассмотрен биотический круговорот суши. Это в полной мере относится и к биотическому круговороту водных экосистем, например океана.

Все организмы занимают определенное место в биотическом круговороте и выполняют свои функции по трансформации достающихся им ветвей потока энергии и по передаче биомассы. Всех объединяет, обезличивает их вещества и замыкает общий круг система одноклеточных редуцентов (деструкторов). В абиотическую среду биосферы они возвращают все элементы, необходимые для новых и новых оборотов.

Следует подчеркнуть наиболее важные особенности биотического круговорота.

Фотосинтез относится к мощному естественному процессу, вовлекающему ежегодно в круговорот огромные массы вещества биосферы и определяющему ее высокий кислородный потенциал. Он выступает регулятором основных геохимических процессов в биосфере и фактором, определяющим наличие свободной энергии верхних оболочек земного шара. Фотосинтез представляет собой химическую реакцию, которая протекает, как известно, за счет солнечной энергии при участии хлорофилла зеленых растений:

nCO2 + nH2О + энергия = СnH2nOn + nO2

За счет углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Прямыми продуктами фотосинтеза являются различные органические соединения, а в целом процесс фотосинтеза носит довольно сложный характер.

Глюкоза является простейшим продуктом фотосинтеза, образование которой совершается следующим путем:

6СО2 + 6Н2O = С6Н12O6 + 6O2.

Помимо фотосинтеза с участием кислорода (так называемый кислородный фотосинтез) следует остановиться и на бескислородном фотосинтезе, или хемосинтезе (рис. 12.12).

К хемосинтезирующим организмам относятся нитрификаторы, карбоксидобактерии, серобактерии, тионовые железобактерии, водородные бактерии. Они называются так по субстратам окисления, которыми могут быть NH3, NO2, CO, H2S, S, Fe2+, H2. Некоторые виды -- облигатные хемолитоавтотрофы, другие -- факультативные. К последним относятся карбоксидобактерии и водородные бактерии. Хемосинтез характерен для глубоководных гидротермальных источников.

Схема фотосинтеза у растений, водорослей и бактерий

Фотосинтез происходит за немногим исключением на всей поверхности Земли, создает огромный геохимический эффект и может быть выражен как количество всей массы углерода, вовлекаемой ежегодно в построение органического -- живого вещества всей биосферы. В общий круговорот материи, связанной с построением путем фотосинтеза органического вещества, вовлекаются и такие химические элементы, как N, P, S, а также металлы -- К, Са, Mg, Na, Al.

При гибели организма происходит обратный процесс -- разложение органического вещества путем окисления, гниения и т. д. с образованием конечных продуктов разложения. Следовательно, общую реакцию фотосинтеза можно выразить в глобальном масштабе следующим образом:

mCO2 + nH2O <=> Cm?n(H2O) + mO2

В биосфере Земли этот процесс приводит к тому, что количество биомассы живого вещества приобретает тенденцию к определенному постоянству. Биомасса экосферы (2?1012 т) на семь порядков меньше массы земной коры (2?1019 т). Растения Земли ежегодно продуцируют органическое вещество, равное 1,6?1011 т, или 8% биомассы экосферы. Деструкторы, составляющие менее 1% суммарной биомассы организмов планеты, перерабатывают массу органического вещества, в 10 раз превосходящую их собственную биомассу. В среднем период обновления биомассы равен 12,5 годам. Допустим, что масса живого вещества и продуктивность биосферы были такими же от кембрия до современности (530 млн лет), то суммарное количество органического вещества, которое прошло через глобальный биотический круговорот и было использовано жизнью на планете, составит

2?1012?5,3?108/12,5 =8,5?1019 т,

что в 4 раза больше массы земной коры. По поводу данных расчетов Н. С. Печуркин (1988) писал: «Мы можем утверждать, что атомы, составляющие наши тела, побывали в древних бактериях, и в динозаврах, и в мамонтах».

Закон биогенной миграции атомов В. И. Вернадского гласит: «Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (О2, СО2, Н2 и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей геологической истории».

В. И. Вернадский в 1928--1930 гг. в своих глубоких обобщениях относительно процессов в биосфере дал представление о пяти основных биогеохимических функциях живого вещества.

Первая функция -- газовая. Большинство газов верхних горизонтов планеты порождено жизнью. Подземные горючие газы являются продуктами разложения органических веществ растительного происхождения, захороненных ранее в осадочных толщах. Наиболее распространенный -- это болотный газ -- метан (СН4,).

Вторая функция -- концентрационная. Организмы накапливают в своих телах многие химические элементы. Среди них на первом месте стоит углерод. Содержание углерода в углях по степени концентрации в тысячи раз больше, чем в среднем для земной коры. Нефть -- концентратор углерода и водорода, так как имеет биогенное происхождение. Среди металлов по концентрации первое место занимает кальций. Целые горные хребты сложены остатками животных с известковым скелетом. Концентраторами кремния являются диатомовые водоросли, радиолярии и некоторые губки, йода -- водоросли ламинарии, железа и марганца -- особые бактерии. Позвоночными животными накапливается фосфор, сосредотачиваясь в их костях.

Третья функция -- окислительно-восстановительная. В истории многих химических элементов с переменной валентностью она играет важную роль. Организмы, обитающие в разных водоемах, в процессе своей жизнедеятельности и после гибели регулируют кислородный режим и тем самым создают условия, благоприятные для растворения или же осаждения ряда металлов с переменной валентностью (V, Mn, Fe).

Четвертая функция -- биохимическая. Она связана с ростом, размножением и перемещением живых организмов в пространстве. Размножение приводит к быстрому распространению живых организмов, «расползанию» живого вещества в разные географические области.

Пятая функция -- это биогеохимическая деятельность человечества, охватывающая все возрастающее количество вещества земной коры для нужд промышленности, транспорта, сельского хозяйства. Данная функция занимает особое место в истории земного шара и заслуживает внимательного отношения и изучения. Таким образом, все живое население нашей планеты -- живое вещество -- находится в постоянном круговороте биофильных химических элементов. Биологический круговорот веществ в биосфере связан с большим геологическим круговоротом

Взаимосвязь малого биологического круговорота веществ в биосфере с большим геологическим круговоротом

Поскольку речь идет о колоссальном числе индивидуальных участников этих процессов, которые не сопряжены жесткими функциональными связями, то пригнанность компонентов биотического круговорота -- явление совершенно исключительное. Круговорот полностью замкнут (Т.А. Акимова, В.В. Хаскин, 1994), когда существует точное равенство сумм прямых и обратных расходов:

Если же в каком-то из процессов наблюдаются прирост или утечка («дефект замкнутости») ?q, то замкнутость круговорота выражается так:

Величина разомкнутости круговорота:

Эти величины можно выразить и иначе, сопоставляя продолжительность поддержания равенства расходов Т со временем исчерпания резервуара ?Т при полной остановке процесса наполнения:

Соответственно:

Несомненно, высокий уровень системной организации и регуляции мог быть выработан и отшлифован миллиардолетней эволюцией.

Биологический круговорот различается в разных природных зонах и классифицируется по комплексу показателей: биомассе растений, опаду, подстилке, количеству закрепленных в биомаcсе элементов и т. д.

Показатели биологического круговорота в разных природных зонах

Показатели

Тундра арктическая

Тундра кустарничковая

Лесная зона ельники

Лесная зона дубравы

Степи луговые

Степи сухие

Пустыни полукустарничковые

Пустыни эфемерово-полукустарничковые

Биомасса, ц/га

Доля подземных органов, %

Опад, зеленые части, ц/га

Подстилка, войлок, ц/га

Подстилочно-опадочный коэффициент (ПОК)

50

70-

2,6

35

14

280

-83

9

35

92

3000

22-

30

300

10

4000

-24

40

150

4

250

68-

80

120

1,5

100

-85

15

15

1

43

до 95

1

--

--

125

до 95

18

--

--

Общая биомасса наиболее высока в лесной зоне, а доля подземных органов в лесах наименьшая. Это подтверждает индекс интенсивности биологического круговорота -- величина отношения массы подстилки к той части опада, которая ее формирует

Индекс интенсивности биологического круговорота

Тип экосистемы

Индекс скорости круговорота

Заболоченные леса

Кустарничковые тундры

Темнохвойные леса

Широколиственные леса

Саванны

Влажные тропические леса

>50

20--50

10--17

3--4

Не>0,2

Не>0,1

Круговорот углерода

Из всех биогеохимических циклов круговорот углерода, без сомнения, самый интенсивный. С высокой скоростью углерод циркулирует между различными неорганическими средствами и через посредство пищевых сетей внутри сообществ живых организмов

Круговорот углерода (по И.П. Герасимову, 1980)

В круговороте углерода определенную роль играют СО и СО2. Часто в биосфере Земли углерод представлен наиболее подвижной формой СО2. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная вековой дегазацией мантии и нижних горизонтов земной коры.

Миграция СО2 в биосфере протекает двумя путями.

Первый путь заключается в поглощении его в процессе фотосинтеза с образованием глюкозы и других органических веществ, из которых построены все растительные ткани. В дальнейшем они переносятся по пищевым цепям и образуют ткани всех остальных живых существ экосистемы. Следует заметить, что вероятность отдельно взятого углерода «побывать» в течение одного цикла в составе многих организмов мала, потому что при каждом переходе с одного трофического уровня на другой велика возможность, что содержащая его органическая молекула будет расщеплена в процессе клеточного дыхания для получения энергии. Атомы углерода при этом вновь поступают в окружающую среду в составе углекислого газа, таким образом, завершив один цикл и приготовившись начать следующий. В пределах суши, где имеется растительность, углекислый газ атмосферы в процессе фотосинтеза поглощается в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием СО2.

Атомы углерода возвращаются в атмосферу и при сжигании органического вещества. Важная и интересная особенность круговорота углерода состоит в том, что в далекие геологические эпохи, сотни миллионов лет назад, значительная часть органического вещества, созданного в процессах фотосинтеза, не использовалась ни консументами, ни редуцентами, а накапливалась в литосфере в виде ископаемого топлива; нефти, угля, горючих сланцев, торфа и др. Это ископаемое топливо добывается в огромных количествах для обеспечения энергетических потребностей нашего индустриального общества. Сжигая его, мы в определенном смысле завершаем круговорот углерода.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где СО2 переходит в Н2СО3, НСО13, СО23. С помощью растворенного в воде кальция (или магния) происходит осаждение карбонатов (СаСО3) биогенным и абиогенным путями. Образуются мощные толщи известняков. По А. Б. Ронову, отношение захороненного углерода в продуктах фотосинтеза к углероду в карбонатных породах составляет 1:4. Существует наряду с большим круговоротом углерода и ряд малых его круговоротов на поверхности суши и в океане.

В целом же без антропогенного вмешательства содержание углерода в биогеохимических резервуарах: биосфере (биомасса+почва и детрит), осадочных породах, атмосфере и гидросфере, -- сохраняется с высокой степенью постоянства. По Т.А. Акимовой, В.В. Хаскину (1994), постоянный обмен углеродом, с одной стороны, между биосферой, а с другой -- между атмосферой и гидросферой, обусловлен газовой функцией живого вещества -- процессами фотосинтеза, дыхания и деструкции, и составляет около 6?1010 т/год. Существует поступление углерода в атмосферу и гидросферу и при вулканической деятельности в среднем 4,5?106 т/год. Общая масса углерода в ископаемом топливе (нефть, газ, уголь и др.) оценивается в 3,2?1015 т, что соответствует средней скорости накопления 7 млн т/год. Это количество по сравнению с массой циркулирующего углерода незначительное и как бы выпадало из круговорота, терялось в нем. Отсюда степень разомкну-гости (несовершенства) круговорота составляет 10-4, или 0,01%, а соответственно степень замкнутости -- 99,99%. Это означает, с одной стороны, что каждый атом углерода принимал участие в цикле десятки тысяч раз, прежде чем выпал из круговорота, оказался в недрах. А с другой стороны -- потоки синтеза и распада органических веществ в биосфере с очень высокой точностью подогнаны друг к другу.

В.Г. Горшковым (1988) на основе расчетов делается важное заключение: «Потоки синтеза и разложение органических веществ совпадают с точностью 10"4 и скоррелированы с точностью 10-4. Скоррелированность потоков синтеза и распада с указанной точностью доказывает наличие биологической регуляции окружающей среды, ибо случайная связь величин с такой точностью в течение миллионов лет невероятна».

В постоянном круговороте находится 0,2% мобильного запаса углерода. Углерод биомассы обновляется за 12, атмосферы -- за восемь лет. Огромный контраст между краткостью данных периодов, постоянством и возрастом биосферы подтверждает высочайшую сбалансированность «мира углерода».

Круговорот кислорода

Кислород (О2) играет важную роль в жизни большинства живых организмов на нашей планете. В количественном отношении это главная составляющая живой материи. 349

Например, если учитывать воду, которая содержится в тканях, то тело человека содержит 62,8% кислорода и 19,4% углерода. В целом в биосфере этот элемент по сравнению с углеродом и водородом является основным среди простых веществ. В пределах биосферы происходит быстрый обмен кислорода с живыми организмами или их остатками после гибели. Растения, как правило, производят свободный кислород, а животные являются его потребителями путем дыхания. Будучи самым распространенным и подвижным элементом на Земле, кислород не лимитирует существование и функции экосферы, хотя доступность кислорода для водных организмов может временно и ограничиться. Круговорот кислорода в биосфере необычайно сложен, так как с ним в реакцию вступает большое количество органических и неорганических веществ. В результате возникает множество эпициклов, происходящих между литосферой и атмосферой или между гидросферой и двумя этими средами. Круговорот кислорода в некотором отношении напоминает обратный круговорот углекислого газа. Движение одного происходит в направлении, противоположном движению другого.

Потребление атмосферного кислорода и его возмещение первичными продуцентами происходит сравнительно быстро. Так, для полного обновления всего атмосферного кислорода требуется 2000 лет. В наше время фотосинтез и дыхание в природных условиях, без учета деятельности человека, с большой точностью уравновешивают друг друга. В связи с этим накопления кислорода в атмосфере не происходит, и его содержание (20,946%) остается постоянным.

Круговорот кислорода (по Е.А. Криксунову и др., 1995)

В верхних слоях атмосферы при действии ультрафиолетовой радиации на кислород образуется озон -- О3:

hv ? О2 ? 2О; О + О ? О3; ?Н = +141,9 кДж/моль.

Здесь hv -- квант света с длиной волны не более 225 нм.

На образование озона тратится около 5% поступающей к Земле солнечной энергии -- около 8,6?1015 Вт. Реакции легко обратимы. При распаде озона эта энергия выделяется, за счет чего в верхних слоях атмосферы поддерживается высокая температура. Средняя концентрация озона в атмосфере составляет около 10-6 об. %; максимальная концентрация О3 --до 4?10-6 об. % достигается на высотах 20--25 км (ТА. Акимова, В.В. Хаскин (1998).

Озон служит своеобразным УФ-фильтром: задерживает значительную часть жестких ультрафиолетовых лучей. Вероятно, образование озонового слоя было одним из условий выхода жизни из океана и заселения суши.

Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, окислов железа и т. п. Эта масса составляет 590?1014 т пpoтив39?1014 т киcлopoдa, который циркулирует в биосфере в виде газа или сульфатов, растворенных в континентальных и океанических водах.

Круговорот азота

Азот -- незаменимый биогенный элемент, так как он входит в состав белков и нуклеиновых кислот. Круговорот азота один из самых сложных, поскольку включает как газовую, так и минеральную фазу, и одновременно самых идеальных круговоротов

Круговорот азота (по Ф. Рамаду, 1981)

Круговорот азота тесно связан с круговоротом углерода. Как правило, азот следует за углеродом, вместе с которым он участвует в образовании всех протеиновых веществ.

Атмосферный воздух, содержащий 78% азота, является неисчерпаемым резервуаром. Однако основная часть живых организмов не может непосредственно использовать этот азот. Он должен быть предварительно связан в виде химических соединений. Например, для усвоения азота растениями необходимо, чтобы он входил в состав ионов аммония (NH4+) или нитрата (NO3-).

Газообразный азот непрерывно поступает в атмосферу в результате работы денитрофицирующих бактерий, а бактерии-фиксаторы вместе с сине-зелеными водорослями (цианофитами) постоянно поглощают его, преобразуя в нитраты.

Важную роль в превращении газообразного азота в аммонийную форму в ходе, так называемой азотофиксации играют бактерии из рода Rhizobium, живущие в клубеньках на корнях бобовых растений. Растения обеспечивают бактерий местообитанием и пищей (сахара), получая взамен от них доступную форму азота. По пищевым цепям органический (входящий в состав органических молекул) азот передается от бобовых другим организмам экосистемы. В процессе клеточного дыхания белки и другие содержащие азот органические соединения расщепляются, азот выделяется в среду большей частью в аммонийной форме (NH4+). Некоторые бактерии способны переводить ее и в нитратную (NO3-) форму. Отметим, что обе эти формы азота усваиваются любыми растениями. Азот, таким образом, совершает круговорот как минеральный биоген. Однако такая минерализация обратима, так как почвенные бактерии постоянно превращают нитраты снова в газообразный азот.

В водной среде также существуют различные виды нитрофицирующих бактерий, но главная роль в фиксации атмосферного азота здесь принадлежит многочисленным видам способных к фотосинтезу сине-зеленых водорослей из родов Anabaena, Nostoc, Frichodesmium и др.

Круговорот азота четко прослеживается и на уровне деструкторов. Протеины и другие формы органического азота, содержащиеся в растениях и животных после их гибели, подвергаются воздействию гетеротрофных бактерий, актиномицетов, грибов (биоредуцирующих микроорганизмов), которые вырабатывают необходимую им энергию восстановлением этого органического азота, преобразуя его, таким образом, в аммиак.

В почвах происходит процесс нитрификации, состоящий из цепи реакций, где при участии микроорганизмов осуществляется окисление иона аммония (МН4+) до нитрита (NO2-) или нитрита до нитрата (NО3-). Восстановление нитритов и нитратов до газообразных соединений молекулярного азота (N2) или окиси азота (N2O) составляет сущность процесса денитрификации.

Образование нитратов неорганическим путем в небольших количествах постоянно происходит и в атмосфере: путем связывания атмосферного азота с кислородом в процессе электрических разрядов во время гроз, а затем выпадением с дождями на поверхность почвы.

Еще одним источником атмосферного азота являются вулканы, компенсирующие потери азота, выключенного из круговорота при седиментации или осаждении его на дно океанов.

В целом же среднее поступление нитратного азота абиотического происхождения при осаждении из атмосферы в почву не превышает 10 кг (год/га), свободные бактерии дают 25 кг (год/га), в то время как симбиоз Rhizobium с бобовыми растениями в среднем продуцирует 200 кг (год/га). Преобладающая часть связанного азота перерабатывается денитрифицирующими бактериями в N и вновь возвращается в атмосферу. Лишь около 10% аммонифицированного и нитрифицированного азота поглощается из почвы высшими растениями и оказывается в распоряжении многоклеточных представителей биоценозов.

Круговорот фосфора

Круговорот фосфора в биосфере связан с процессами обмена веществ в растениях и животных. Этот важный и необходимый элемент протоплазмы, содержащийся в наземных растениях и водорослях 0,01--0,1%, животных от 0,1% до нескольких процентов, циркулирует, постепенно переходя из органических соединений в фосфаты, которые снова могут использоваться растениями Круговорот фосфора (по Ф. Рамаду, 1981)Однако фосфор в отличие от других биофильных элементов в процессе миграции не образует газовой формы. Резервуаром фосфора является не атмосфера, как у азота, а минеральная часть литосферы. Основными источниками неорганического фосфора являются изверженные породы (апатиты) или осадочные породы (фосфориты). Из пород неорганический фосфор вовлекается в циркуляцию выщелачиванием и растворением в континентальных водах. Попадая в экосистемы суши, почву, фосфор поглощается растениями из водного раствора в виде неорганического фосфат-иона (РО43-) и включается в состав различных органических соединений, где он выступает в форме органического фосфата. По пищевым цепям фосфор переходит от растений к другим организмам экосистемы. Химически связанный фосфор попадает с остатками растений и животных в почву, где вновь подвергается воздействию микроорганизмов и превращается в минеральные ортофосфаты, а в дальнейшем происходит повторение цикла. В водные экосистемы фосфор переносится текучими водами. Реки непрерывно обогащают фосфатами океаны. В соленых морских водах фосфор переходит в состав фитопланктона, служащего пищей другим организмам моря, в последующем накапливаясь в тканях морских животных, например рыб. Часть соединений фосфора мигрирует в пределах небольших глубин, потребляясь организмами, другая часть теряется на больших глубинах. Отмершие остатки организмов приводят к накоплению фосфора на разных глубинах. Отсюда следует, что фосфор, попадая в водоемы тем или иным путем, насыщает, а нередко и перенасыщает их экосистемы. Частичный возврат фосфатов на сушу связан с поднятием земной коры выше уровня моря. Определенное количество фосфора переносится на сушу морскими птицами, а также благодаря рыболовству. Птицы отлагают фосфор на отдельных островах в виде гуано. При рассмотрении круговорота фосфора в масштабе биосферы за сравнительно короткий период можно отметить, что он полностью не замкнут. Механизм возвращения фосфора из океанов на сушу в естественных условиях совершенно не способен компенсировать потери этого элемента на седиментацию.

Круговорот серы

Существуют многочисленные газообразные соединения серы, такие, как сероводород H-S и сернистый ангидрид SO2. Однако преобладающая часть круговорота этого элемента имеет осадочную природу и происходит в почве и воде.

Основной источник серы, доступный живым организмам, -- сульфаты (SO4,). Доступ неорганической серы в экосистеме облегчает хорошая растворимость многих сульфатов в воде. Растения, поглощая сульфаты, восстанавливают их и вырабатывают серосодержащие аминокислоты (метионин, цистеин, цистин), играющие важную роль в выработке третичной структуры протеинов при формировании дисульфидных мостиков между различными зонами полипептидной цепи.

Подробная схема круговорота серы.

Здесь хорошо просматриваются многие основные черты биогеохимического круговорота.

1. Обширный резервный фонд в почве и отложениях, меньший в атмосфере.

2. Ключевую роль в быстро обменивающемся фонде играют специализированные микроорганизмы, выполняющие определенные реакции окисления или восстановления. Благодаря процессам окисления и восстановления происходит обмен серы между доступными сульфатами (SO4) и сульфидами железа, находящимися глубоко в почве и осадках. Специализированные микроорганизмы выполняют реакции: H2S ? S ? SO4 -- бесцветные, зеленые и пурпурные серобактерии; SO4 ?? H2S (анаэробное восстановление сульфата) -- Desulfovibrio; H2S ? SO4 (аэробное окисление сульфида) -- тиобациллы; органическая S в SO4 и H2S -- аэробные и анаэробные гетеротрофные микроорганизмы соответственно. Первичная продукция обеспечивает включение сульфата в органическое вещество, а экскреция животными служит путем возвращения сульфата в круговорот.

3. Микробная регенерация из глубоководных отложений, приводящая к движению вверх газовой фазы H2S.

Круговорот серы (по Ф. Рамаду, 1981)4. Взаимодействие геохимических и метеорологических процессов -- эрозия, осадкообразование.

Список литературы

1. Балашова Т.А. Общая экология - М.: ЮНИТИ-ДАНА, 2008.

2.. Николайкин Н. И., Николайкина О. П., Мелихова О. П. Экология. - М.: Дрофа, 2003.

3. Общая экология / Авт.-сост. Степановских А.С. - М.: ЮНИТИ-ДАНА, 2007.

Размещено на Allbest.ru


Подобные документы

  • Основные этапы полного цикла биологического круговорота химических элементов на суше. Изучение антропогенного воздействия на потоки энергии, круговороты воды, кислорода, углерода, азота, фосфора, серы. Отличительные черты техногенного массообмена.

    реферат [33,7 K], добавлен 26.11.2011

  • Кругооборот химических веществ из неорганической среды. Сущность большого (геологического) круговорота. Описание циркуляции веществ в биосфере на примере углерода, азота, кислорода, фосфора и воды. Антропогенные воздействия на окружающую природную среду.

    реферат [201,9 K], добавлен 17.12.2011

  • Пути миграции углекислого газа в биосфере Земли. Процессы, возмещающие потери азота. Особенности миграции углекислого газа. Организмы биосферы участвующие в круговороте веществ. Формы проявления серы в почве. Роль фотосинтеза в круговороте веществ.

    презентация [667,7 K], добавлен 17.02.2013

  • Понятие круговорота веществ как ключевого понятия биогеохимии. Общие сведения о кислороде как химическом элементе: нахождение в природе, химические и физические свойства, применение. Круговорот кислорода в различных видах и его роль в жизни природы.

    реферат [430,8 K], добавлен 10.11.2012

  • Роль человеческого фактора в решении проблем экологии. Интенсивная эксплуатация природных богатств. Схема круговорота и перемещения фосфорсодержащих соединений и фосфора в масштабе биосферы. Где может накапливаться фосфор. Природные фосфориты и апатиты.

    реферат [29,0 K], добавлен 26.02.2009

  • Характеристика большого и малого круговоротов (воды, углерода, кислорода, азота, фосфора, серы, неорганических катионов), их особенности, взаимосвязи, структура потоков и их значение. Антропогенный круговорот ксенобиотиков (ртути, свинца, хрома).

    реферат [42,3 K], добавлен 10.03.2012

  • Азот как один из наиболее распространенных элементов на Земле, его значение и круговорот в природе. Биологическая фиксация - важнейший источник поступления азота на земную поверхность. Влияние хозяйственной деятельности человека на круговорот азота.

    реферат [30,8 K], добавлен 27.02.2011

  • Источники и резервы углерода на Земле. Влияние круговорота углерода на глобальный климат. Способы понижения концентрации углекислого газа в атмосфере. Парниковый эффект и климат. Концентрация углерода в системе литосфера - гидросфера - атмосфера.

    дипломная работа [1,1 M], добавлен 12.06.2011

  • Из каких частей состоит биогеохимический круговорот веществ? Какие опасные ущербообразующие геохимические процессы Вы знаете? Что общего можно найти между функциональной структурой экологической системы и организацией хозяйства.

    контрольная работа [30,2 K], добавлен 05.01.2003

  • Вода в атмосфере, на поверхности и в глубине земли, ее физическое состояние: испарение, конденсация и экологическая очистка. Зависимость человека от круговорота воды и его влияние на этот процесс. Этапы стандартной очистки и дезинфекции сточных вод.

    курсовая работа [5,7 M], добавлен 29.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.