Экологические факторы, их классификация и виды воздействия на организмы
Общие закономерности действия экологических факторов. Понятие о среде обитания и условиях существования живых организмов. Паразитизм и симбиотические взаимоотношения между ними. Кругооборот воды в природе. Экологические группы почвенных животных.
Рубрика | Экология и охрана природы |
Вид | курс лекций |
Язык | русский |
Дата добавления | 26.01.2015 |
Размер файла | 791,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Экологические факторы, их классификация и виды воздействия на организмы
Разнообразие экологических факторов
Любой организм в природе испытывает на себе воздействие самых разнообразных компонентов внешней среды. Экологическими факторами называют любые внешние факторы, оказывающие прямое или опосредованное влияние на численность (обилие) и географическое распространение животных и растений.
Экологические факторы очень многообразны как по своей природе, так и по воздействию на живые организмы. Условно все факторы среды подразделяют на три большие группы - абиотические, биотические и антропогенные.
Абиотические факторы - это факторы неживой природы, прежде всего климатические (солнечный свет, температура, влажность воздуха), и местные (рельеф, свойства почвы, соленость, течения, ветер, радиация и т.п.). Эти факторы могут влиять на организм прямо (непосредственно), как свет и тепло, либо косвенно, как, например, рельеф местности, который обусловливает действие прямых факторов (освещенности, увлажнения, ветра и др.).
Биотические факторы - это всевозможные формы влияния живых организмов друг на друга (например, опыление насекомыми растений, поедание одних организмов другими, конкуренция между ними за те или иные виды ресурсов - пищу, пространство, свет и т.д. - паразитизм и многое другое). Биотические взаимоотношения имеют чрезвычайный сложный и своеобразный характер и также могут быть прямыми и косвенными.
Антропогенные факторы - это те формы деятельности человека, которые, воздействуя на окружающую среду, изменяют условия живых организмов или непосредственно влияют на отдельные виды растений и животных. Одним из наиболее важных антропогенных факторов является загрязнение.
Виды воздействия экологических факторов на организмы
Экологические факторы оказывают на живые организмы воздействия разного рода. Они могут являться:
раздражителями, которые способствуют появлению приспособительных (адаптивных) физиологических и биохимических изменений (зимняя спячка, фотопериодизм);
ограничителями, изменяющими географическое распространение организмов из-за невозможности существования в данных условиях;
модификаторами, которые вызывают морфологические и анатомические изменения организмов;
сигналами, свидетельствующими об изменениях других факторов среды.
Общие закономерности действия экологических факторов
В связи с чрезвычайным разнообразием экологических факторов различные виды организмов, испытывая их влияние, отвечают на него по-разному, тем не менее, можно выявить ряд общих законов (закономерностей) действия экологических факторов. Остановимся на некоторых из них.
1. Закон оптимума выражается в том, что любой экологический фактор имеет пределы положительного влияния на живые организмы.
Сила воздействия экологических факторов постоянно меняется. Лишь в определенных местах планеты значения некоторых из них более или менее постоянны (константны). Например, на дне океанов, в глубинах пещер сравнительно постоянны температурный и водный режимы, режим освещения.
Рассмотри действие закона оптимума на конкретном примере: животные и растения плохо переносят и сильную жару, и сильные морозы, оптимальными для них являются средние температуры - так называемая зона оптимума. Чем сильнее отклонения от оптимума, тем в большей степени данный экологический фактор угнетает жизнедеятельность организма. Эта зона носит название зоны пессимума. В ней имеются критические точки - "максимальное значение фактора" и "минимальное значение фактора"; за их пределами наступает гибель организмов. Расстояние между минимальным и максимальным значениями фактора называют экологической валентностью или толерантностью организма (рис. 3).
Рис. 3. Схема действия факторов среды на живые организмы
Пример проявления данного закона: яйца аскарид развиваются при , а оптимальной для их развития является . То есть экологическая толерантность аскарид по температурному режиму составляет от до .
По характеру толерантности выделяют следующие виды:
эврибионтные - имеющие широкую экологическую валентность по отношению к абиотическим факторам среды; делятся на эвритермные (выносящие значительные колебания температур), эврибатные (выносящие широкий диапазон показателей давления), эвригалинные (выносящие разную степень засоленности среды).
стенобионтные - неспособные переносить значительные колебания фактора (например, стенотермными являются белые медведи, ластоногие млекопитающие, обитающие при низком температурном режиме).
2. Закон экологической индивидуальности видов был сформулирован в 1924 г. русским ботаником Л.Г. Раменским: экологические спектры (толерантность) разных видов не совпадает, каждый вид специфичен по своим экологическим возможностям. Иллюстрацией указанного закона может служить рис. 4 [перейти].
3. Закон ограничивающего (лимитирующего) фактора гласит, что наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. Закон был установлен в 1905 г. английским ученым Блеккером.
Именно от этого, минимально (или максимально) представленного в данный конкретный момент экологического фактора зависит выживание организма. В другие отрезки времени ограничивающим могут быть другие факторы. В течение жизни особи видов встречаются с самыми разными ограничениями своей жизнедеятельности. Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова; бабочки озимой совки (вредителя овощных и зерновых культур) - зимняя температура и т. д.
Это закон учитывается в практике сельского хозяйства. Немецкий химик Ю. Либих установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента), который представлен в почве наиболее слабо. Например, если фосфора в почве лишь 20 % от необходимой нормы, а кальция - 50 % от нормы, то ограничивающим фактором будет недостаток фосфора; необходимо в первую очередь внести в почву именно фосфорсодержащие удобрения.
Это правило Ю. Либих назвал "правилом минимума", так как изучал влияние недостаточных доз удобрений. Позднее выяснилось, что избыток минеральных солей в почве тоже снижает урожайность, так как при этом нарушается способность корней всасывать растворы солей.
Рис. 4. Иллюстрация экологической индивидуальности различных видов по отношению к температурным показателям
4. Закон неоднозначного действия - действие каждого экологического фактора неоднозначно на разных стадиях развития организма.
Примерами её проявления могут служить следующие данные:
для развития головастиков вода жизненно необходима, а для взрослой лягушки она не является жизненно важным условием;
критическая минимальная температура для взрослых особей бабочки огневки мельничной , а для гусениц бабочки этого вида критической является .
5. Закон: экологические факторы по воздействию на организмы делят на прямые и косвенные. Прямые экологические факторы действуют на организмы непосредственно, прямо (ветер, дождь или снег, состав минеральных компонентов почвы и т. п.).
Косвенные экологические факторы действуют опосредованно, перераспределяя прямые факторы. Например: рельеф (косвенный фактор) "перераспределяет" действие таких прямых факторов, как ветер, осадки, питательные вещества; физические свойства почвы (механический состав, влагоемкость и др.) как косвенные факторы "перераспределяют" действие прямых факторов - химических свойств.
6. Закон взаимодействия экологических факторов: оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору могут смещаться в зависимости от того, в сочетании с какими другими факторами осуществляется воздействие.
Так, жару легче переносить в сухом, а не во влажном воздухе; мороз хуже переносится в сочетании с ветренной погодой и т. п.
Данную закономерность учитывают в сельскохозяйственной практике для поддержания оптимальных условий жизнедеятельности культурных растений. Например, при угрозе заморозков на почве, которые случаются в средней полосе даже в мае, растения на ночь обильно поливают.
Классификация экологических факторов
Экологические факторы - это любой элементокружающей среды, способный оказывать прямое или косвенное воздействие на живой организм хотя бы на одном из этапов его индивидуального развития или любое условие среды, на которое организм отвечает приспособительными реакциями.
Фактор - это движущая сила какого-либо процесса или влияющее на организм условие.
Каждый живой организм в течение всей своей жизни находится под воздействием множества экологических факторов, различающихся происхождением, качеством, количеством, временем воздействия, т.е. режимом. Окружающая среда - это фактически набор действующих на организм экологических факторов.
Классификация экологических факторов:
Абиотические (абиогенные) - факторы неживой природы.
Биотические (биогенные) - факторы живой природы.
По своему происхождению обе группы могут быть как природными, так и антропогенными. Человек в ходе своей деятельности не только меняет режим природных экол. факторов, но и создаёт новые, синтезируя новые хим. соединения, ядохимикаты, удобрения, лекарства, синтетические материалы.
К абиотическим факторам относятся:
Физические (космические, климатические, геоморфологические, почвенные).
Химические (компоненты воздуха, воды, кислотность и др. хим. свойства почвы, примеси промышленного происхождения).
К биотическим факторам относятся:
Зоогенные (влияние животных),
Фитогенные (влияние растений),
Микробиогенные (влияние микроорганизмов).
Абиотические космические экологические факторы. Космические. Биосфера как среда обитания живых организмов не изолирована от сложных процессов, протекающих в космическом пространстве, причём связанных непосредственно на только с солнцем. На землю попадает космическая пыль, метеоритное вещество. Земля периодически сталкивается с астероидами, сближается с кометами. Через галактику проходят вещества и волны, возникшие в результате вспышек сверхновых звёзд. Наиболее тесно наша планета связана с процессами, происходящими на солнце, с т.н. солнечной активностью. Суть этого явления состоит в превращении энергии, накапливаемой в магнитных полях солнца, в энергию движения газовых масс, быстрых частиц коротковолнового электромагнитного излучения. Наиболее интенсивные процессы наблюдаются в центрах активности называемых активными областями, в которых наблюдается усиление магнитного поля, возникают области повышенной яркости, а также т.н. солнечные пятна. В активных областях может происходить взрывоподобное выделение энергии, сопровождающееся выбросами плазмы, внезапным появлением солнечных космических лучей, усилением коротковолнового и радиоизлучения. Изменение уровня вспышечной активности имеет циклический характер с циклом равным 22 годам. Солнечная активность влияет на ряд жизненных процессов на земле от возникновения эпидемий и всплесков рождаемости до крупных климатических преобразований. Это было показано русским учёным Чижевским, основателем гелиобиологии. К числу важных космических факторов относится электромагнитное излучение солнца с широким диапазоном длин волн. Поглощение атмосферой земли коротковолнового излучения приводит к образованию защитных оболочек, например, озонового слоя. Из других космических факторов следует назвать корпускулярное излучение солнца. Верхняя часть солнечной атмосферы, т.н. солнечная корона, состоящая в основном из ионизированных атомов водорода с примесью гелия, непрерывно расширяется. Покидая корону, этот поток водородной плазмы распространяется в радиальном направлении и достигает земли. Его называют солнечным ветром. Он заполняет всю область солнечной системы и постоянно обтекает землю, взаимодействуя с её магнитным полем. Это связано с динамикой магнитной активности (например, магнитные бури) и непосредственно сказывается на жизни на земле. В настоящее время наукой накоплено много фактических материалов, иллюстрирующих влияние космических факторов на биосферные процессы. Доказано влияние солнечной активности на нервную и сердечно-сосудистую систему человека, на динамику наследственных, онкологических, инфекционных заболеваний.
Абиотические факторы:
Космические и земные (наземные и водные); природные и антропогенные.
Абиотические факторы наземной среды.
Лучистая энергия солнца - энергия солнечного излучения распространяется в пространстве в виде электромагнитных волн, из них: 99 % длинных (?=170-4000нм), 48 % - видимая часть спектра, 45 % - инфракрасные волны, ок. 7 % - ультрафиолетовые волны. В процессе фотосинтеза наиболее важную роль играет фотосинтетическая активная радиация (?=380-710 нм). Количество солнечного излучения, поступающего к верхней границе атмосферы, практически постоянно и оценивается 8,3 Дж/(см 2*мин.) и называется солнечной постоянной. Поступление энергии солнечного излучения к поверхности самой земли существенно колеблется, в зависимости от ряда условий: высота солнца от горизонта, широты, состояния атмосферы и т.д. Наибольшее количество солнечной энергии поглощается в низких широтах экваториального пояса, где температура воздуха у поверхности больше, чем в средних и высоких широтах. Поступление солнечной энергии в разные районы земного шара и её перераспределение определяют климатические условия этих районов. Проходя через атмосферу, солнечное излучение рассеивается на молекулы газа, на взвешенные примеси, поглощаемые водяными парами, озоном, диоксидом углерода, поливидными частицами. Рассеянное солнечное излучение частично доходит до земной поверхности. Его видимая часть создаёт свет днём при отсутствии прямых солнечных лучей (например, при сильной облачности). Общий приход теплоты зависит от суммы прямого и рассеянного излучения, который увеличивается от полюсов к экватору: полярные широты - 46*105Дж/год; тропические широты - (116-120)*105Дж/год. Энергия солнечного излучения не только поглощается поверхностью земли, но и отражается ею в виде потока длинноволнового излучения. Светлые поверхности отражают свет более интенсивно, чем тёмные. Отношение отражаемого поверхностью потока солнечного излучения к поступившему называют
Альбедо=Фотр/Фпост.
Влажность воздуха - это содержание в воздухе водяного пара. Больше всего влаги в нижних слоях атмосферы до высоты 1,5-2 км, где концентрируется 50 % всей влаги. Содержание водяного пара в воздухе зависит от температуры воздуха, при каждой конкретной температуре существует определённый предел насыщения воздуха парами. Обычно содержание паров воды в воздухе не достигает возможного max и разница между max возможным и данным конкретным насыщением называют дефицитом влажности или недостатком насыщения. Абсолютная влажность - фактическое содержание водяных паров в воздухе в данный момент времени, выраженное в Паскалях или в мм рт ст. Относительная влажность - отношение фактического содержания водяных паров в воздухе к max возможному, выраженное в %.
Осадки. Атмосферные осадки - это вода в жидком или твёрдом состоянии, выпадающая на земную поверхность из облаков или непосредственно из воздуха в случае сгущения водяного пара. Из облаков может выпадать дождь, снег, морось, ледяной дождь, снежные зёрна, ледяная крупа, град. Количество выпавших осадков измеряется толщиной слоя выпавших осадков в мм. Осадки тесно связаны с влажностью воздуха и представляют собой результат конденсации ледяных паров. В случае конденсации в приземном слое воздуха образуются росы, туманы, а при низких температурах наблюдается кристаллизация влаги - иней. Конденсация и кристаллизация паров воды в более высоких слоях атмосферы образует облака различной структуры и является причиной атмосферных осадков. Осадки - важное звено в круговороте воды на земле, причём в разных широтах количество осадков резко колеблется. Выделяют влажные (гумидные) и сухие (аридные) зоны земного шара. Max количество осадков выпадает в зоне тропических лесов - до 2000 мм/год, наименьшее - в пустынях - 0,18 мм/год. Атмосферные осадки - важный фактор, определяющий процессы загрязнения природной среды. Загрязняющие вещества могут вымываться из атмосферы и выпадать на поверхность суши и океанов. Типичным примером являются кислотные дожди.
Движение воздушных масс или ветер. Причиной образования ветровых потоков и перемещения воздушных масс является неравномерное нагревание разных участков земной поверхности, связанное с перепадами да?ления. Ветровой поток направляется в сторону меньшего давления, но и вращение земли также влияет на циркуляцию воздушных масс в глобальном масштабе. В приземном слое воздуха движение воздушных масс оказывает влияние на все метеорологические факторы окружающей среды, т.е. на климат, включая режимы температуры, влажность, испарение с поверхности суши и моря. Ветровые потоки - важнейший фактор переноса, рассеивания и выпадения загрязняющих веществ. Сила и направление ветра определяют режимы загрязнённости окр. среды.
Давление атмосферы. Нормальным давлением принято считать 101,3 Па или 760 мм рт ст. В пределах земного шара существуют постоянные области высокого и низкого давления, причём наблюдаемый сезонный и суточный min и max давления в одних и тех же точках. Различают также морской и континентальный типы динамики атмосферного давления. Периодическое возникновение области низкого давления характеризуется мощными потоками воздуха, движущимися и перемещающимися в пространстве к центру, которые называются циклоны. Циклоны связаны с неустойчивой погодой и большим количеством осадков. В противоположность им антициклоны характеризуются устойчивой погодой, низкими скоростями ветра, в ряде случаев температурными инверсиями. При антициклонах могут возникать неблагоприятные с точки зрения переноса и рассеивания примесей метеорологические условия.
Геоморфологические факторы - факторы рельефа. Эти факторы имеют, преимущественно, косвенное значение, т.к. высота местности, например, экол. фактором не является, но от высоты, от степени крутизны склона, горы или холма, ориентации склона относительно сторон света, общей структуре рельефа, зависит весь комплекс микроклиматических и почвенных факторов. Кроме того, крутизна склона и особенности его поверхности могут сказываться на развитии корневых систем растений, их внешнем строении. Рельеф оказывает влияние на процессы почвообразования, причём почвы на склонах особенно ранимы и уничтожение растительности или усиленный выпас скота вызывает эрозию почв. От рельефа местности зависит перенос, рассеивание и накопление вредных примесей в атмосферном воздухе. Расположенные в низинах населённые пункты в зонах рассеивания промышленных выбросов подвергаются сильному застойному загрязнению, а растительность - угнетению вплоть до гибели. Различают: макрорельеф (крупные формы рельефа, связанные с процессом горообразования), мезорельеф (форма в колебаниями высоты от 1 до 10 метров), микрорельеф (форма с перепадами в пределах десятков см). в условиях пересечённого рельефа с вытянутыми элементами (ущельями, каньонами), образуются своего рода трубы, через которые вредные примеси могут переноситься на десятки км.
Абиотические факторы водной среды. Подвижность - постоянное перемещение и перемешивание водных масс в пространстве, способствующее поддержанию относительной однородности физических и химических характеристик.
Температурная стратификация - изменение температуры воды по глубине водного объекта. В летний период поверхностные воды нагреваются сильнее, чем глубинные. Т.к. более тёплая вода является менее вязкой, то её циркуляция происходит в поверхностном, нагретом слое, и с более вязкой холодной водой она не перемешивается. Между тёплым и холодным слоем образуется промежуточная зона с резким градиентом температур, которая называется термоклина. Температурная стратификация воды оказывает решающее влияние на размещение в воде живых организмов и на перенос и рассеивание антропогенных примесей.
Общетемпературный режим водного объекта связан с периодическими, годовыми, сезонными, суточными изменениями температуры.
Прозрачность воды. Определяет проникновение в её толщу солнечного света и световой режим. От прозрачности и её обратной характеристики - мутности - зависит фотосинтез фитопланктонов, высших водных растений, а, следовательно, и накопление биомассы, которое возможно лишь в пределах т.н. эвфотической зоны, т.е. в освещённой толще воды, где процессы фотосинтеза преобладают над процессами дыхания.
Мутность связана с содержанием в воде взвешенных веществ, в т.ч. и поступающих в водные объекты с промышленными и иными стоками.
Солёность связана с содержанием в воде растворённой соли. Например: открытый океан (35 г/л), Чёрное море (19 г/л), Каспийское море (13 г/л), Мёртвое море (260 г/л).
Растворённые газы. Первоочередное значение имеют кислород и углекислый газ, от которых зависит фотосинтез и дыхание водообитающих организмов.
Кислотность. Каждый вид гидробионта адаптирован к определённому значению ph: одни предпочитают кислую среду, другие щелочную, третьи - нейтральную. Промышленные, бытовые и с/х стоки существенно изменяют эти показатели, что приводит к смене одних групп водных обитателей другими.
Биотические факторы. Это совокупность влияния жизнедеятельности одних организмов на другие. В целом, взаимоотношения между организмами можно разделить на прямые (заключаются в трофических или пищевых цепях) и опосредованные (заключаются в том, что одни организмы являются средообразователями по отношению к другим, например, леса). Взаимодействие между организмами в наземной и водной среде: 1.взаимодействия между живыми организмами классифицируется с точки зрения их взаимных реакций. Эти реакции могут быть гомотипическими (взаимодействие между особями и группами особей одного и того же вида) и гетеротипическими (взаимодействие между особями разных видов). 2.по фактору питания: монофаги (виды, способные питаться только одним видом пищи), олигофаги (виды, способные питаться на более или менее широком круге источников пищи; бывают широкие и узкие), полифаги (способны питаться на многих видах пищи, используют как растительную, так и животную пищу).
Гетеротипические реакции:
Хищничество - непосредственное преследование и поедание одних видов другими.
Паразитизм - обычно организм-паразит постоянно обитает на поверхности или внутри тела другого животного или растения, т.е. хозяина, и живёт за счёт его питательных веществ. Такой паразитизм называется истинным, при котором организм-паразит не убивает хозяина. Однако многие паразиты лишь периодически обитают в хозяине. Паразит откладывает яйца в животное-хозяина. Родившаяся личинка съедает хозяина изнутри. Такие паразиты называются ложными паразитами или паразитоидами.
Опыление растений насекомыми.
Форезия - перенос одними видами других, например: семян растений птицами и млекопитающими.
Комменсализм = сотрудничество - одни организмы питаются остатками пищи других.
Синойкия - использование одними животными мест обитания (нор, гнёзд) других животных.
Нейтрализм - взаимонезависимость разных видов, обитающих на общей территории.
Биотические факторы почвы. Зеленые растение извлекают из почв питательные химические вещества и возвращают их обратно вместе с отмирающими тканями. Питательные вещества из почвы поступают в растения через корневые окончания в ионной форме. Растения извлекают из почвы соединения азота, серы, фосфора, соли калия, кальция (а потом возвращают это в почву). В процессах почвообразования важную роль играют населяющие почву живые организмы, микробы, беспозвоночные и др. Микроорганизмам принадлежит ведущая роль в трансформации химических соединений, миграции химических элементов, питании растений. экологический фактор среда обитание
Первичное разрушение мертвой органики осуществляют беспозвоночные животные (черви, моллюски, насекомые) в процессе питания и выделения в почву продуктов пищеварения. Почвенные микроорганизмы осуществляют основное разрушение минералов и приводят к образованию органических и минеральных кислот, щелочей, выделяют ферменты, полисахариды, фенольные соединения.
Экология - жизненно важная для человека наука, изучающая его непосредственное природное окружение. Человек, наблюдая природу и присущую ей гармонию, невольно стремился внести эту гармонию в свою жизнь. Это желание стало особенно острым лишь сравнительно недавно, после того как сделались очень заметными последствия неразумной хозяйственной деятельности, приводящие к разрушению природной среды. А это в конечном итоге оказало неблагоприятное влияние на самого человека.
Следует помнить, что экология - фундаментальная научная дисциплина, идеи которой имеют очень важное значение. И если мы признаем важность этой науки, нам надо научиться правильно пользоваться ее законами, понятиями, терминами. Ведь они помогают людям определять свое место в окружающей их среде, правильно и рационально использовать природные богатства. Доказано, что использование человеком природных богатств при полном незнании законов природы часто приводит к тяжелым, непоправимым последствиям.
Понятие о среде обитания и условиях существования, характеристика сред жизни
Среда - это все, что окружает организм и прямо или косвенно влияет на его состояние, развитие, рост, выживаемость, размножение и т. д. Среда каждого организма слагается из множества элементов неорганической и органической природы и элементов, привносимых человеком, его деятельностью. При этом одни элементы могут быть необходимы организму, другие почти или полностью безразличны для него, третьи оказывают вредное воздействие. Среда обитания организма (организмов) представляет собой окружающую среду. Условия существования, или условия жизни, - это совокупность необходимых для организма элементов среды, с которыми он находится в неразрывном единстве и без которых существовать не может. Организмом является любое живое существо, обладающее совокупностью основных жизненных свойств. Главная и важная закономерность в системе "среда-организм" - это неразрывная связь и взаимное влияние среды и организма. Как организм испытывает воздействие среды (действие комплекса экологических факторов), так и среда претерпевает изменения в результате воздействия живых организмов. Облик нашей планеты был бы совсем иным, если бы на планете не было жизни (в атмосфере не было бы кислорода, не было бы такого явления как почва и др.). Указанная закономерность системы "среда-организм" была сформулирована В.И. Вернадским и получила название закона единства организма и среды его обитания: жизнь развивается в результате постоянного обмена веществом и информацией на базе потока энергии в совокупном единстве среды и населяющих ее организмов. Из данного закона следует эволюционно-экологический принцип, согласно которому вид организмов может существовать до тех пор и постольку, поскольку окружающая его среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям. Воздействие вида на среду эволюционно возрастает, что является важной экологической закономерностью. Согласно ей, любая биологическая система, находясь в подвижном равновесии с окружающей ее природной средой и эволюционно развиваясь, увеличивает свое воздействие на среду. Давление на среду растет до тех пор, пока не будет строго ограничено внешними факторами.
Различают абиотическую, биотическую, антропогенную среду. Абиотическая среда - совокупность факторов неживой природы (температура, влажность, радиация и др.), в которых существует данный организм. Биотическая среда - совокупность живых организмов, с которыми взаимодействует данный организм. Антропогенная среда - природная среда, непосредственно или косвенно измененная человеком. На Земле выделяют 4 среды жизни: водную, наземно-воздушную, почвенную (почву) и живые организмы (рисунок 2.1). В процессе длительного исторического развития живой материи и формирования все более совершенных форм живых существ организмы, осваивая новые места обитания, распределились на Земле соответственно ее минеральным оболочкам - гидросфере, литосфере, атмосфере и приспособились к существованию в строго определенных условиях. Первой средой жизни стала вода. Именно в ней возникла жизнь. По мере исторического развития организмы начали заселять наземно-воздушную среду. В результате появились наземные растения и животные, которые эволюционировали, адаптируясь к новым условиям существования. В процессе функционирования живого вещества на суше поверхностный слой литосферы постепенно преобразовался в почву. Ее стали заселять водные и наземные организмы, создавая специфический комплекс обитателей. Некоторые низкоорганизованные животные и все растения попадают в свою среду обитания пассивно и выживают, если они к ней приспособлены. Большинство же животных активно выбирают подходящую им среду или даже иногда сами ее создают (например, бобры строят плотины для повышения уровня воды).
Водная среда жизни имеет ряд особенностей. Характерной чертой ее является подвижность - она ясно выражена в проточных, быстро текущих реках, ручьях и даже в стоячих водоемах это имеет место. В морях и океанах наблюдаются приливы и отливы, мощные течения, штормы; в озерах вода перемещается под действием ветра и температуры. Движение воды обеспечивает снабжение водных организмов кислородом и питательными веществами, приводит к выравниванию температуры во всем водоеме.
Рисунок 2.1. Основные среды жизни (по А.С. Степановских, 2003)
В жизни водных организмов большую роль играет вертикальное перемещение воды. В летнее время наиболее теплые слои воды располагаются у поверхности, а холодные - у дна. Зимой, с понижением температуры, поверхностные холодные воды с температурой ниже 4° С располагаются над сравнительно теплыми. В результате нарушается вертикальная циркуляция воды. Весной поверхностная вода вследствие нагревания до 4° С становится более плотной и погружается вглубь, а на ее место с глубины поднимается более теплая вода. В результате такой вертикальной циркуляции в водоеме на определенное время температура всей водной массы выравнивается. С дальнейшим повышением температуры верхние слои воды становятся все менее плотными и уже не опускаются, возникает температурное расслоение. Осенью поверхностный слой охлаждается, становится более плотным и опускается вглубь, вытесняя на поверхность более теплую воду. Это происходит до наступления осеннего вертикального выравнивания воды. При охлаждении поверхностных вод ниже 4 °С они снова становятся менее плотными и опять остаются на поверхности. В результате прекращается циркуляция воды и вновь наступает температурное расслоение. В озерах тропических широт температура воды на поверхности не опускается ниже 4 °С, и температурный градиент в них четко выражен до самых глубинных слоев. Перемешивание воды, как правило, происходит здесь нерегулярно в наиболее холодное время года.
Вода как среда жизни обладает особыми физико-химическими свойствами. Температурный режим ее коренным образом отличается от такового в других средах. В Мировом океане амплитуда колебаний (различия между крайними значениями) составляет примерно 38° С, при самой низкой около - 2° С, а самой высокой +36° С. В пресных внутренних водоемах умеренных широт температура поверхностных слоев воды колеблется от - 0,9 до +25° С. Особо благоприятные условия для жизни создают такие термодинамические свойства водной среды как высокая удельная теплоемкость, большая теплопроводность, расширение при замерзании. Эти условия обеспечиваются и высокой скрытой теплотой плавления воды, в результате чего подо льдом температура не бывает ниже точки замерзания ее (для пресных вод около 0° С). Так как наибольшей плотностью вода обладает при 4° С, а при замерзании расширяется, то зимой лед образуется лишь сверху, основная же толща воды не промерзает, что обеспечивает сохранение жизни в водоемах подо льдом. Воде свойственны значительная плотность (в 800 раз больше, чем воздушной среды), вязкость. На растениях эти особенности сказываются в том, что у них слабо или совсем не развивается механическая ткань, поэтому стебли их очень эластичны и легко изгибаются. Большое влияние на водные организмы оказывает свет и световой режим. Особенно он сказывается на распространении растений. Световой режим обусловливается закономерным убыванием с глубиной, так как вода поглощает свет. Он зависит от мутности воды, которая связана с количеством взвешенных в воде частиц. Световой режим изменяется по сезонам года. Существенную роль в жизни водных организмов играет соленость воды. Разные водоемы имеют определенный химический состав. Наибольшее значение имеют карбонаты, сульфаты, хлориды. Количество растворенных солей в 1 л воды в пресных водах не превышает 0,5 г, в океанах и морях оно достигает 35 г. Одним из важнейших газов, содержащихся в воде, является кислород. Основной источник кислорода - фотосинтетическая деятельность зеленых растений, он также поступает из атмосферы. Различные животные проявляют неодинаковую потребность в кислороде. Например, форель очень чувствительна к его дефициту, а плотва и сазан неприхотливы в этом отношении. Углекислый газ, содержащийся в воде, обеспечивает фотосинтез водных растений, а также принимает участие в формировании скелетных образований животных. Содержание углекислого газа в воде в 700 раз больше, чем в атмосфере. Большое значение в жизни водных организмов имеет концентрация водородных ионов (рН). Пресноводные бассейны с рН = 3,7-4,7 считаются кислыми, 6,95-7,30 - нейтральными, с рН больше 7,8 - щелочными. Концентрация водородных ионов играет важную роль в распределении гидробионтов. Большинство пресноводных рыб выдерживают рН от 5 до 9. Если водородный показатель меньше 5, наблюдается массовая гибель рыб, а при величине выше 10 погибают многие рыбы и другие животные. Водная среда заселена многими видами растений и животных - от микроскопических организмов до самых крупных, представленных в современную эпоху.
В водной среде обитает примерно 150 000 видов животных, или около 7 % общего их количества (рисунок 2.2) и 10 000 видов растений (8 %).
Особенностью наземно-воздушной среды является то, что организмы, обитающие здесь, окружены воздухом, который представляет собой смесь газов, а не их соединения. Воздух как экологический фактор характеризуется постоянством состава - азота в нем содержится 78,08 %, кислорода - около 20,9 %, аргона - около 1 %, углекислого газа - 0,03 %.
Рисунок 2.2. Распределение основных классов животных по средам обитания (по Г.В. Войткевич, В.А. Вронскому, 1989)
За счет диоксида углерода и воды синтезируется органическое вещество и выделяется кислород. При дыхании происходит реакция, обратная фотосинтезу - потребление кислорода. Кислород появился на Земле примерно 2 млрд. лет назад, когда происходило формообразование поверхности нашей планеты при активной вулканической деятельности. Постепенное увеличение содержания кислорода происходило в течение последних 20 млн. лет. Главную роль в этом играло развитие растительного мира суши и океана. Без воздуха не могут существовать ни растения, ни животные, ни аэробные микроорганизмы. Большинство животных в этой среде передвигаются по твердому субстрату - почве, а растения укореняются в ней. Воздух как газообразная среда жизни характеризуется низкими показателями влажности, плотности и давления, а также высоким содержанием кислорода. Действующие в наземно-воздушной среде экологические факторы отличаются рядом специфических особенностей: свет здесь по сравнению с другими средами интенсивнее, температура претерпевает более сильные колебания, влажность значительно изменяется в зависимости от географического положения, сезона и времени суток. Воздействие почти всех этих факторов тесно связано с движением воздушных масс - ветра. Воздух, как и другие факторы среды, оказывает на организмы прямое и косвенное действие. При прямом воздействии он имеет небольшое экологическое значение. Косвенное влияние воздуха осуществляется через ветры, которые меняют характер таких важных факторов, как температура и влажность, оказывают механическое действие на организмы. Нередко сильные ветры, дующие в одном направлении, изгибают ветви и стволы деревьев в подветренную сторону, что служит причиной появления флагообразных форм кроны. Ветер вызывает изменение интенсивности транспирации у растений. Это особенно сильно проявляется при суховеях, иссушающих воздух и часто вызывающих гибель растений. Определенную роль играет ветер в опылении растений-анемофилов (ветроопыляемые растения), которые выработали для этого ряд приспособлений: цветочные покровы у них обычно редуцированы и пыльца не защищена от ветра. Восходящие и особенно нисходящие потоки в атмосфере нередко создают условия для застаивания и накопления у поверхности почвы холодного воздуха, что вызывает задержку в развитии растений и животных. Воздушные потоки выполняют определенную роль в расселении растений и животных. Плоды растений (анемохоров) имеют множество приспособлений, увеличивающих их парусность, и разносятся ветром на большие расстояния. Для наземно-воздушной среды, как и для водной, характерна четко выраженная зональность. При этом любые сочетания растительного покрова и животного населения соответствуют морфологическим подразделениям географической оболочки Земли - климатическим зонам. Каждая климатическая зона характеризуется своеобразной растительностью и животным населением.
Атмосфера способствует сохранению на планете тепла, которое в противном случае рассеивалось бы в холоде космического пространства. Сама же она благодаря силам притяжения Земли не улетучивается. Атмосфера не только поддерживает жизнь, она служит защитным экраном. На высоте 20-25 км от поверхности Земли под воздействием ультрафиолетовой радиации Солнца часть молекул кислорода расщепляется на свободные атомы кислорода. Последние могут вновь образовывать молекулу кислорода, его трехатомную форму, называемую озоном. Озон, образуя в высших слоях атмосферы тонкий слой - озоновый экран, обеспечивает хрупкой земной жизни дальнейшее ее существование.
Почва как среда обитания представляет собой совокупность выветренной материнской породы, живых организмов и продуктов их жизнедеятельности. Почва обладает специфическими физическими свойствами. Для нее характерна более или менее рыхлая структура, определенная водопроницаемость и аэрируемость. Она обладает также своеобразными биологическими особенностями, поскольку тесно связана с жизнедеятельностью организмов. Верхние слои ее содержат массу корней растений. В процессе роста, отмирания и разложения они разрыхляют почву и создают определенную структуру, а вместе с тем и условия для жизни других организмов. Роющие животные перемешивают почвенную массу, а после смерти становятся источником органического вещества для микроорганизмов. Благодаря специфическим свойствам почва выполняет одну из важных функций в жизни различных почвенных организмов и, прежде всего растений, обеспечивая им водоснабжение и минеральное питание.
Оптимальные запасы доступной для растений почвенной воды (рисунок 2.3) являются чрезвычайно существенным фактором. В почве различают биологически полезную и биологически бесполезную воду. Биологически полезной является вода, свободно передвигающаяся по капиллярам почвы и бесперебойно снабжающая растения влагой. Значение почвы в водоснабжении растений тем выше, чем она легче отдает им воду, что зависит от структуры почвы и степени набухаемости ее частиц. Различают физическую и физиологическую сухость почвы. При физической сухости почва испытывает недостаток влаги. Происходит это при атмосферной засухе, что обычно наблюдается в сухом климате и в местах, где почва увлажняется только за счет атмосферных осадков. Физиологическая сухость почвы - явление более сложное. Оно возникает в результате физиологической недоступности физически доступной воды. Растения даже на влажных почвах могут испытывать дефицит воды, когда низкая температура почвенного покрова, другие неблагоприятные условия препятствуют нормальному функционированию корневой системы. Так, на сфагновых болотах, несмотря на большое количество влаги, вода оказывается недоступной для многих растений из-за высокой кислотности почвы, плохой аэрации ее и наличия токсических веществ, нарушающих нормальную физиологическую функцию корневой системы. Физиологически сухими являются и сильно засоленные почвы. Из-за высокого осмотического давления почвенного раствора вода засоленных почв для многих растений оказывается недоступной. Почва играет важную роль в минеральном питании растений. Вместе с водой в растения через корневую систему поступает ряд минеральных веществ, находящихся в почве в растворенном состоянии. Однако корневое питание растений - это не простое всасывание веществ, а сложный биохимический процесс, в котором особую роль играют почвенные микроорганизмы, выделения которых усваиваются корневой системой. Поэтому большинство высших растений имеют микоризу, значительно увеличивающую активную поверхность корней. Важную роль в росте и развитии растений играет органическое вещество почвы. Перегной, или гумус, для почвенных обитателей является основным источником необходимых для жизни минеральных соединений и энергии. Он обусловливает плодородие почв и их структуру. Процессы минерализации органических веществ и перегноя обеспечивают постоянное поступление в почвенный раствор таких важнейших элементов питания растений, как азот, фосфор, сера, кальций, калий, микроэлементы. Гумус служит источником физиологически активных соединений (витамины, органические кислоты, полифенолы и др.), которые стимулируют рост растений. Перегнойные вещества обеспечивают также водоустойчивую структуру почв, что создает благоприятный для растений вводно-воздушный режим. Микроорганизмы, растения и животные, обитающие в почве, находятся в постоянном взаимодействии друг с другом, а также со средой обитания. Эти отношения очень сложны и многообразны. Животные и бактерии потребляют растительные углеводы, белки, жиры. Грибы разрушают целлюлозу, в частности древесину. Хищники питаются тканями своих жертв. Благодаря этим взаимоотношениям и в результате коренных изменений физических, химических и биохимических свойств горной породы в природе постоянно происходят почвообразовательные процессы.
Живые организмы как среда жизни. Для растений и животных, ведущих симбиотический или паразитический образ жизни, организм, на котором или в котором они поселяются, является специфической средой жизни (рисунок 2.4).
Рисунок 2.3. Типы почвенной воды, доступной корням растений (по Н.И. Николайкину, 2004): 1 - частицы почвы; 2 - гигроскопическая вода; 3 - капиллярная вода; 4 - воздух или гравитационная вода
Рисунок 2.4. Живые организмы как среда жизни (по А.С. Степановских, 2003)
Термин "симбиоз" означает "совместная жизнь". Различают несколько типов симбиоза, которые будут рассмотрены далее. При паразитизме многие паразиты почти полностью утратили связь с внешним миром - все их стадии проходят в организме хозяина (малярийный плазмодий, трихина спиральная). В процессе эволюции между паразитами и их хозяевами возникли сложные взаимоотношения. Паразит не только зависит от хозяина, но и влияет на него. У хозяина в результате вырабатываются самые различные защитные реакции. Паразиты, в свою очередь, приспосабливаются к этим реакциям, и, таким образом, процесс взаимного приспособления паразита к хозяину и, наоборот, хозяина к паразиту, осуществляется постоянно. Паразитизм как форма межвидовых отношений, которые сформировались на основе пищевых и пространственных связей организмов, не представляют собой резко обособленного явления в природе. С паразитизмом тесно переплетены другие формы биотических отношений: различные формы симбиоза животных с животными, растений с растениями и животных с растениями.
На Земле существует огромное разнообразие условий сред жизни, что обеспечивает разнообразие экологических ниш и их "заселение". Однако, не смотря это разнообразие, различают четыре качественно различные среды жизни, обладающие специфическим набором экологических факторов, а следовательно - требующих и специфического набора адаптаций. Вот эти среды жизни:
· наземно-водушная (суша);
· вода;
· почва;
· другие организмы.
Познакомимся с особенностями каждой из этих сред.
Водная среда жизни. По мнению большинства авторов, изучающих возникновение жизни на Земле, эволюционно первичной средой жизни была именно водная среда. Этому положению мы находим не мало косвенных подтверждений. Прежде всего, большинство организмов не способны к активной жизнедеятельности без поступления воды в организм или, по крайней мере, без сохранения определенного содержания жидкости внутри организма. Внутренняя среда организма, в которой происходят основные физиологические процессы, очевидно, по-прежнему сохраняет черты той среды, в которой происходила эволюция первых организмов. Так, содержание солей в крови человека (поддерживаемое на относительно постоянном уровне) близко к таковому в океанической воде. Свойства водной океанической среды во многом определили химико-физическую эволюцию всех форм жизни.
Пожалуй, главной отличительной особенностью водной среды является ее относительная консервативность. Скажем, амплитуда сезонных или суточных колебаний температуры в водной среде намного меньше, чем в наземно-воздушной. Рельеф дна, различие условий на различных глубинах, наличие коралловых рифов и проч. создают разнообразие условий в водной среде.
Особенности водной среды проистекают из физико-химических свойств воды. Так, большое экологическое значение имеют высокая плотность и вязкость воды. Удельная масса воды соизмерима с таковой тела живых организмов. Плотность воды примерно в 1000 раз выше плотности воздуха. Поэтому водные организмы (особенно, активно движущиеся) сталкиваются с большой силой гидродинамического сопротивления. Эволюция многих групп водных животных по этой причине шла в направлении формирования формы тела и типов движения, снижающих лобовое сопротивления, что приводит к снижению энергозатрат на плавание. Так, обтекаемая форма тела встречается у представителей различных групп организмов, обитающих в воде, - дельфинов (млекопитающих), костистых и хрящевых рыб.
Высокая плотность воды является также причиной того, что механические колебания (вибрации) хорошо распространяются в водной среде. Это имело важное значение в эволюции органов чувств, ориентации в пространстве и коммуникации между водными обитателями. Вчетверо большая, чем в воздухе, скорость звука в водной среде определяет более высокую частоту эхолокационных сигналов.
В связи с высокой плотностью водной среды ее обитатели лишены обязательной связи с субстратом, которая характерна для наземных форм и связана с силами гравитации. Поэтому есть целая группа водных организмов (как растений, так и животных), существующих без обязательной связи с дном или другим субстратом, "парящих" в водной толще.
Электропроводность открыла возможность эволюционного формирования электрических органов чувств, обороны и нападения.
Наземно-воздушная среда жизни. Наземно-воздушная среда характеризуется огромным разнообразием условий существования, экологических ниш и заселяющих их организмов. Надо отметить, что организмы играют первостепенную роль в формировании условий наземно-воздушной среды жизни, и прежде всего - газового состава атмосферы. Практически весь кислород земной атмосферы имеет биогенное происхождение.
Основными особенностями назмено-воздушной среды является большая амплитуда изменения экологических факторов, неоднородность среды, действие сил земного тяготения, низкая плотность воздуха. Комплекс физико-географических и климатических факторов, свойственных определенной природной зоне, приводит к эволюционному становлению морфофизиологических адаптаций организмов к жизни в этих условиях, многообразию форм жизни.
Высокое содержание кислорода в атмосфере (около 21 %) определяет возможность формирования высокого (энергетического) уровня обмена веществ.
Атмосферный воздух воздух отличается низкой и изменчивой влажностью. Это обстоятельство во многом лимитировало (ограничивало) возможности освоения наземно-воздушной среды, а также направляло эволюцию водно-солевого обмена и структуры органов дыхания.
Почвенная среда обитания. Почва является результатом деятельности живых организмов. Заселявшие наземно-воздушную среду организмы приводили к возникновению почвы как уникальной среды обитания. Почва представляет собой сложную систему, включающую твердую фазу (минеральные частицы), жидкую фазу (почвенная влага) и газообразную фазу. Соотношение этих трех фаз и определяет особенности почвы как среды жизни.
Важной особенностью почвы является также наличие определенного количества органического вещества. Оно образуется в результате отмирания организмов и входит в состав их экскретов (выделений).
Условия почвенной среды обитания определяют такие свойства почвы как ее аэрация (то есть насыщенность воздухом), влажность (присутствие влаги), теплоемкость и термический режим (суточный, сезоный, разногодичный ход температур). Термический режим, по сравнению с наземно-воздушной средой, более консервативный, особенно на большой глубине. В целом, почва отличается довольно устойчивыми условиями жизни.
Вертикальные различия характерны и для других свойств почвы, например, проникновение света, естественно, зависит от глубины.
Многие авторы отмечают промежуточность положения почвенной среды жизни между водной и наземно-воздушной средами. В почве возможно обитание организмов, обладающих как водным, так и воздушным типом дыхания. Вертикальный градиент проникновения света в почве еще более выражен, чем в воде. Микроорганизмы встречаются по всей толще почвы, а растения (в первую очередь, корневые системы) связаны с наружными горизонтами.
Для почвенных организмов характерны специфические органы и типы движения (роющие конечности у млекопитающих; способность к изменению толщины тела; наличие специализированных головных капсул у некоторых видов); формы тела (округлая, вольковатая, червеобразная); прочные и гибкие покровы; редукция глаз и исчезновение пигментов. Среди почвенных обитателей широко развита сапрофагия - поедание трупов других животных, гниющих остатков и т.д.
Подобные документы
Понятие экологии как науки, изучающей условия существования живых организмов, взаимоотношения между ними и средой их обитания. Основные признаки глобальных экологических проблем. Глобальное потепление климата. Вырубка лесов, опустынивание земель.
презентация [8,8 M], добавлен 22.04.2015Понятие среды обитания. Ее экологические факторы: абиотические, биотические, антропогенные. Закономерности их воздействия на функции живых организмов. Приспособление растений и животных к изменению температуры. Основные пути температурных адаптаций.
реферат [67,4 K], добавлен 11.03.2015Сравнительная характеристика сред обитания и адаптаций к ним организмов. Условия обитания организмов воздушной и водной среды. Понятие и классификация экологических факторов, законы их действия (закон оптимума, минимума, взаимозаменяемости факторов).
презентация [6,8 M], добавлен 06.06.2017Воздействие экологических факторов окружающей среды (климата, температуры, влажности) на живые организмы. Проявление биотических факторов во взаимоотношениях организмов при совместном обитании: хищничество, паразитизм, симбиоз. Свойства популяции.
реферат [20,9 K], добавлен 06.07.2010Взаимоотношения организмов между собой и с физической средой обитания как предмет экологии. Экологические факторы, их классификация и действие на живые организмы. Оптимальная интенсивность фактора. Климатические факторы и их влияние на организм.
реферат [24,5 K], добавлен 01.12.2011Характеристика водной, наземно-воздушной, почвенной сред как основных составляющих биосферы. Изучение биотических, абиотических, антропогенных групп экологических факторов, определение их влияния на организмы. Описание энергетического и пищевого ресурсов.
реферат [20,9 K], добавлен 08.07.2010Общие правила и закономерности влияния экологических факторов на живые организмы. Классификация экологических факторов. Характеристика абиотических и биотических факторов. Понятие об оптимуме. Закон минимума Либиха. Закон лимитирующих факторов Шелфорда.
курсовая работа [445,5 K], добавлен 06.01.2015Организмы, популяции и виды, их адаптация к среде. Планктонные организмы, нектон, нейстон, плейстон и перифитон, особенности их строения и поведения. Организмы, обитающие сверху поверхностной пленки. Совокупность организмов, обитающих на дне водоемов.
курсовая работа [269,0 K], добавлен 19.02.2014Среда обитания, условия существования и природные ресурсы, понятие биотических, абиотических и антропогенных факторов. Лимитирующие факторы и их представление с помощью законов минимума и толерантности. Взаимодействие и компенсация экологических факторов.
реферат [765,6 K], добавлен 24.06.2010Влияние экологических и биотических факторов на среду обитания. Закон лимитирующего фактора. Шумовое и электромагнитное воздействие на организмы. Мероприятия по складированию и утилизации отработанных ртутьсодержащих ламп. Источники загрязнения воздуха.
контрольная работа [757,5 K], добавлен 18.04.2016