Основные экотоксиканты воды

Проблема загрязнения гидросферы. Показатели, характеризующие природные и сточные воды. Степень загрязнения водоемов. Наиболее значимые источники загрязнения воды. Опасность органических экотоксикантов воды. Классы токсичных промышленных отходов.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 18.10.2014
Размер файла 90,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные экотоксиканты воды

Гидросфера занимает 3/4 поверхности земного шара. Большую часть, 97,2 % от общего количества воды, составляет вода океанов. С каждым годом увеличивается как общее, так и безвозвратное потребление воды. Частично вода возвращается в гидросферу, но уже в виде сточных вод.

Бытовые и сточные воды, возвращаемые гидросфере, представляют собой гомогенные или гетерогенные системы. Гетерогенные системы подразделяются на взвеси, суспензии, эмульсии и коллоидные системы. Гомогенные системы могут быть представлены молекулярными растворами или ионными растворами электролитов. Бытовые и сточные воды перед сбросом в гидросферу должны подвергаться строгому контролю. Рассмотрим общие показатели для природных и сточных вод, предусмотренные ГОСТом, и методы их определения.

Мутность и содержание суспендированных веществ. Показатель определяется фильтрацией вод.

Общее содержание растворенных веществ. Показатель определяется после выпаривания воды (сухой остаток).

Жесткость воды. Признак, характеризующий содержание солей кальция и магния в природной воде. Различают общую, постоянную и устранимую (временную) жесткость.

Общая жесткость характеризует общее содержание солей кальция и магния.

Постоянная жесткость определяется содержанием солей кальция и магния, устойчивых к нагреванию.

Устранимая жесткость (временная) характеризует содержание гидрокарбонатов кальция и магния, разлагающихся при нагревании:

Са(НС03)2 на СаС034 + Н20 + C02T ; Mg(HO03)2 на Mg(OH)2 + 2C02t

Общая жесткость воды определяется методом трилонометрии. Постоянная жесткость устанавливается тем же методом трилонометрии, но только после кипячения анализируемой пробы воды. Устранимая жесткость (содержание гидрокарбонатов кальция и магния) определяется как разность между общей и постоянной жесткостью.

Кислотность (щелочность) сточных вод. В сточных водах могут содержаться кислоты и основания, как сильные, так и слабые. Показателем, определяющим содержание кислот (щелочей), служит общая и активная кислотность (щелочность) . Активная кислотность (щелочность) характеризует содержание сильных кислот (щелочей), а общая кислотность (щелочность) - суммарное содержание и сильных, и слабых кислот (щелочей). Определение общей и активной кислотности осуществляется титрованием раствором щелочи в присутствии двух индикаторов: метилоранжа (область перехода окраски 3,1 < рН < 4,4), позволяющего определить активную кислотность, и фенолфталеина (область перехода окраски 8,2 < рН < 10,0) для определения общей кислотности анализируемой сточной воды. Для определения этих показателей в мутных или сильно окрашенных пробах используют методы кондуктометрического или по-тенциометрического титрования .

Концентрация растворенного в воде кислорода. Наличие кислорода в водоемах обеспечивает жизнедеятельность в них живых организмов. Растворенный кислород достаточно быстро взаимодействует с растворенными веществами-восстановителями, которые легко окисляются, и очень медленно - с трудноокисляемыми. Последние могут постепенно окисляться микроорганизмами, присутствующими в воде и потребляющими при этом кислород. В результате концентрация растворенного кислорода в водоеме снижается, и ухудшаются условия для жизнедеятельности рыб и других живых организмов. Поэтому концентрация растворенного кислорода и изменение ее во времени являются чрезвычайно важными показателями для характеристики качества сточных и природных вод.

Определение концентрации растворенного в воде кислорода основано на обменной реакции получения гидроксида двухвалентного марганца, который при взаимодействии с кислородом количественно окисляется:

MnS04 + 2NaOH = Mn(OH)2 + K2S04 2Mn(OH)2 + 02 = 2MnO(OH)2

Содержание продукта окисления - соединения Mn(IV) - количественно определяют методом иодометрии.

6. Биохимическое потребление кислорода (ВПК). Определяемый показатель характеризует изменение концентрации растворенного кислорода во времени и содержание в воде биологически разлагаемых веществ (чаще всего легко окисляемых органических веществ) или аэробных микроорганизмов. В момент взятия пробы определяется концентрация растворенного в воде кислорода описанным выше методом. Затем проба воды хранится в темноте в течение 5 суток (БПК5), 10 суток (БПК10) или 20 суток (БПК20). По истечении определенного срока хранения опять определяется концентрация растворенного в воде кислорода. По разности концентраций до хранения и после устанавливается содержание в анализируемой пробе соединений, легко окисляемых растворенным кислородом, или живых организмов, потребляющих растворенный кислород.

ВПК характеризует степень загрязнения водоемов восстановителями или потребителями кислорода:

Степень загрязнения водоемов

Практически чистые водоемы

Слабое загрязнение

Сильное загрязнение БПК5, мг/л < 30 30 + 80 > 80

Сильное увеличение ВПК природных водоемов чаще всего связано с разрастанием в них сине-зеленых, зеленых и красных водорослей, которые несъедобны для большинства рыб. Разрастание этих водорослей затрудняет рост других живых систем и способствует размножению микроорганизмов, разлагающих мертвые растительные и животные ткани. Все это приводит к уменьшению концентрации растворенного кислорода, т. е. к старению водоемов. Этот процесс называется эвтрофикацией. Эвтрофикацию водоемов усугубляют азотные и фосфатные удобрения, которые смываются с полей в эти водоемы, а также синтетические моющие вещества, содержащие 30-40 % полифосфатов.

7. Перманганатная проба (окисляемость воды)

Этот показатель характеризует содержание органических веществ, способных окисляться перманганатом калия в кислой среде, т. е. достаточно сильных восстановителей:

Органические вещества + КМп04 + Нз304 --*¦ С02 + MnS04 + KjSOj + Н20

Определение осуществляется при кипячении подкисленной пробы воды с избытком КМп04. Остаток КМп04 оттитровывается оксалатом натрия в кислой среде:

2KMn04 + 5Na2C204 + 8H2S04 = 2MnS04 + 10СО2 + ЈОа + 4Н2O

8. Химическое потребление кислорода (ХПК). Характеризует содержание всех органических веществ, растворенных в воде, в том числе и трудно окисляемых соединений. Определение основано на окислении органических веществ очень сильным окислителем при нагревании. С этой целью к пробе воды добавляют дихромат калия и концентрированную серную кислоту:

Органические вещества + К2Сг207 + H2SO, --Cr2 (S04)3 + К2S04 + С02 + Н20

После кипячения раствора остаток К2Сг207 оттитровывается методом иодометрии:

К2Сг207 + 6KI + 7H2S04 - 4K2S04 + Cr2(S04)3 + 3I2 + 7H20 I2 + 2Na2S203 = Na2S4Oe + 2NaI

Кроме перечисленных общих показателей, природные и сточные воды могут анализироваться на содержание тех или иных электролитов или различных металлов, включая, прежде всего, металлы-токсиканты, а также содержание разнообразных пестицидов и диоксинов.

Пестициды - это препараты для борьбы с вредоносными и нежелательными микроорганизмами, растениями и животными. Наиболее токсичны пестициды, которые представляют собой ртуть- или полигалоген-содержащие органические соединения. К последним относятся ДДТ (ди-хлордифенилтрихлорметилметан) и полихлорированные бифенилы. Эти соединения химически устойчивы и не разлагаются микроорганизмами. Поэтому они накапливаются в биосфере и в живых организмах, препятствуя их размножению или вызывая уродства. В настоящее время производство и использование ДДТ запрещено.

Особенно опасными являются диоксины в силу их чрезвычайно высокой токсичности и биологической активности. Диоксины - это группа полихлорированных соединений, например полихлорированные дибен-зо-1,4-диоксины (ПХДД), дибензофураны (ПХДФ), бифенилы (ПХБФ) и многие другие. Диоксины образуются в качестве побочных веществ во многих технологических процессах - от целлюлозно-бумажного производства до биологической очистки сточных вод, хлорирования питьевой воды и сжигания отходов. Эти вещества по своей токсичности превосходят соединения тяжелых металлов, хлорорганические пестициды, а по канцерогенности - ароматический углеводород бензпирен. Диоксины способны накапливаться в организме, вызывая многие тяжелые заболевания: перерождение кожи и слизистых оболочек, разрушение печени, злокачественные новообразования, нарушения в развитии плода у женщин. Они могут быть иммунодефицита. Наиболее опасен2,3,7,8-тетрахлордибензо-1,4-диоксин:его летальная доза 0,07мк/кг. Экотоксиканты - это экологически опасные факторы химической природы, которые способны долгое время сохраняться, мигрировать и накапливаться в ее биотических и абиотических компонентах. В концентрациях, превышающих естественный природный уровень, экотоксиканты оказывают токсическое воздействие, как на окружающую среду, так и на здоровье человека.

Сегодня при изучении экотоксикантов большое внимание уделяется особенностям их кинетики, метаболизма, биотрансформации, кумуляции и концентрации; движению по пищевым цепочкам; переносу и переходам из одной среды в другую; возможностям превращений во вторичные загрязнители; их влиянию на различные организмы, входящие в экосистемы.

К экотоксикантам, имеющим приоритетное значение по степени опасности для окружающей среды и здоровья человека, из неорганических относятся тяжелые металлы, а из органических - нефть и нефтепродукты, полихлорированные и полициклические ароматические углеводороды. Особую опасность для человека представляют собой стойкие экотоксиканты диоксины, которые приводят к развитию диоксиновой патологии.

Наиболее значимые источники экотоксикантов.

1. воздействие ракетно-космической техники (в районах падения отделяющихся частей ракет-носителей скапливается большое количество токсичного гептила, который загрязняет почву, поверхностные и грунтовые воды);

2. воздействие воздушных судов гражданской авиации (негативные эффекты на уровне озонового слоя, загрязнение атмосферы веществами, образующимися в процессе сгорания топлива);

3. воздействие транспорта (загрязнение токсичными веществами отработавших газов транспортных двигателей, выбросы в атмосферу "нетрадиционных" веществ: канцерогенных (бензол, формальдегид, бензапирен, ацетальдегид и др.) и вызывающих различные заболевания (толуол, ксилолы, 1,3-бутадиен, тяжелые металлы и др.), слив сточных вод от стационарных источников, образование твердых отходов);

4. десятки миллиардов тонн твердых отходов производства и потребления, среди которых определенную долю составляют экологически опасные токсичные промышленные отходы разных классов опасности: I класс - отходы гальванических производств, ртуть, хлорорганика, хром шестивалентный и др. II класс - кубовые остатки, нефтепродукты, мышьяк, серная кислота и др. III класс - нефтешламы, медь, свинец, цинк и др.

5. объекты сельскохозяйственного производства (базы средств химизации, взлетно-посадочные полосы, склады минеральных удобрений, навозохранилища, животноводческие комплексы и т. д., где наблюдается повышенное содержание нитратов и других экотоксикантов, в том числе запрещенные и пришедшие в негодность пестициды);

6. горная, угледобывающая и лесоперерабатывающая промышленность (твердые отходы, рудные терриконы, химические средства обработки древесины);

7. нефтедобывающая промышленность (нефтешламы);

8. захламление территорий в окрестностях городов и населенных пунктов, придорожных участков, стоянок автотранспорта производственными отходами, строительным и бытовым мусором;

9. тепловые электростанции, работающие на твердом топливе (токсичные золошлаки);

10. городские свалки, полигоны для твердых бытовых отходов (экотоксиканты, образующиеся гниения и сжигания);

11. осадки от водопроводных и канализационных станций очистки вод.

Тяжелые металлы - основные неорганические экотоксиканты.

Тяжелые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Термин тяжелые металлы, характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы. В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. Таким образом, к тяжелым металлам относятся (ртуть, свинец, медь, цинк, никель, кадмий, кобальт, сурьму, висмут, олово, ванадий, полуметалл мышьяк и др.). Многие из них широко распространены в окружающей среде и способны вызывать заболевания у людей.

Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (pH, окислительно-восстановительный потенциал, наличие лигандов) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений, которые могут быть истинно растворенными, коллоидно-дисперсными или входить в состав минеральных и органических взвесей.

Истинно растворенные формы металлов, в свою очередь, весьма разнообразны, что связано с процессами гидролиза, гидролитической полимеризации (образованием полиядерных гидроксокомплексов) и комплексообразования с различными лигандами. Соответственно, как каталитические свойства металлов, так и доступность для водных микроорганизмов зависят от форм существования их в водной экосистеме.

Многие металлы образуют довольно прочные комплексы с органикой; эти комплексы являются одной из важнейших форм миграции элементов в природных водах. Большинство органических комплексов образуются по хелатному циклу и являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых металлов, относительно хорошо растворимы в условиях нейтральной, слабокислой и слабощелочной сред. Поэтому металлорганические комплексы способны мигрировать в природных водах на весьма значительные расстояния. Особенно важно это для маломинерализованных и в первую очередь поверхностных вод, в которых образование других комплексов невозможно [13].

Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.

Переход металлов в водной среде в металлокомплексную форму имеет три следствия:

1. может происходить увеличение суммарной концентрации ионов металла за счет перехода его в раствор из донных отложений;

2. мембранная проницаемость комплексных ионов может существенно отличаться от проницаемости гидратированных ионов;

3. токсичность металла в результате комплексообразования может сильно измениться.

Так, хелатные формы Cu, Cd, Hg менее токсичны, нежели свободные ионы. Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю связанных и свободных форм .

Источниками загрязнения вод тяжелыми металлами служат сточные воды гальванических цехов, предприятий горнодобывающей, черной и цветной металлургии, машиностроительных заводов. Тяжелые металлы входят в состав удобрений и пестицидов и могут попадать в водоемы вместе со стоком с сельскохозяйственных угодий.

Повышение концентрации тяжелых металлов в природных водах часто связано с другими видами загрязнения, например, с закислением. Выпадение кислотных осадков способствует снижению значения рН и переходу металлов из сорбированного на минеральных и органических веществах состояния в свободное

Тяжелые металлы и их соли ,широко распространенные промышленные загрязнители. В водоемы они поступают из естественных источников (горных пород, поверхностных слоев почвы и подземных вод), со сточными водами многих промышленных предприятий и атмосферными осадками, которые загрязняются дымовыми выбросами. Тяжелые металлы как микроэлементы постоянно встречаются в естественных водоемах и органах гидробионтов (см.таблицу). В зависимости от геохимических условий отмечаются широкие колебания их уровня.

Естественные уровни металлов в природных водах (по А. П. Виноградову, Я. М. Грушко и Д. Бокрис)

элемент

Содержание металлов (мкг/л)

элемент

Содержание металлов (мкг/л)

в морской воде

в речной воде

в морской воде

в речной воде

Ртуть

0,03

0,03 -- 2,8

Олово

3,0

1,0 -- 3,0

Кадмий

0,1

0,1 -- 1,3

Железо

10,0

10,0 -- 67,0

Медь

3,0

1.0 -- 20,0

Марганец

2,0

1,0 -- 50,0

Цинк

10,0

0,1 -- 20,0

Мышьяк

10,0

30,0 -- 64,0

Кобальт

0,5

0,1 -- 1,0

Алюминий

10,0

1,0 -- 50,0

Хром

0,02

1,0 -- 10,0

Никель

2,0

0,8 -- 5,6

Свинец

0,03

1,0 -- 23,0

Серебро

0,04

0,1

Тяжелые металлы довольно устойчивы. Поступая в водоемы, они включаются в круговорот веществ и подвергаются различным превращениям. Неорганические соединения быстро связываются буферной системой воды и переходят в слаборастворимые гидроокиси, карбонаты, сульфиды и фосфаты, а также образуют металлорганические комплексы, адсорбируются донными осадками. Под воздействием живых организмов (микробов и др.) ртуть, олово, мышьяк подвергаются метилированию, превращаясь в более токсичные алкильные соединения. Кроме того, металлы способны накапливаться в различных организмах и передаваться в возрастающих количествах по трофической цепи. Особенно опасны ртуть, цинк, свинец, кадмий, мышьяк, так как они, поступая с пищей в организм человека и высших животных, могут вызвать отравления. Коэффициент материальной кумуляции колеблется у них от сотен до нескольких тысяч.

Основной поставщик тяжелых металлов - предприятия цветной металлургии. Сильное загрязнение свинцом и другими тяжелыми металлами наблюдается вокруг автострад. Часть техногенных выбросов тяжелых металлов поступает в атмосферу в виде тонких аэрозолей и переносится на значительные расстояния, приводя к глобальному загрязнению.

Считают, что большая часть неорганических соединений металлов поступает в организм рыб с пищей. Через жабры и кожу проникают растворимые диссоциирующие соли и металлорганические соединения. Антропогенные источники многократно (в 2 -- 13 раз) повышают концентрацию тяжелых металлов в воде. С этим четко коррелирует содержание металлов в органах рыб.

Токсическое действие большинства тяжелых металлов на рыб обусловлено их ионами. Концентрированные растворы их солей, обладая вяжуще-прижигающим действием, нарушают функции органов дыхания. В слабых разведениях, проникая в организм, они нарушают проницаемость биологических мембран, снижают содержание растворимых протеинов, связываются с сульфгидрильными и аминогруппами белков и вызывают тем самым угнетение активности ферментов. Гидроокиси железа и марганца, осаждаясь на жабрах и икре, нарушают газообмен, что приводит к асфиксии. С повышенным загрязнением морской воды соединениями титана, железа, кадмия, хрома и других металлов связывают поражение рыб (треска, ершоватки и др.) опухолями (эпидермальная папиллома, псевдоопухоль жабр, карцинома печени) и язвенной болезнью, а также деформацию скелета и воспаление плавников. Многие металлы при определенных концентрациях ингибируют действие ферментов (медь, ртуть). Некоторые металлы образуют хелатоподобные комплексы с обычными метаболитами, нарушая обмен веществ (железо). Другие металлы повреждают клеточные мембраны, изменяя их проницаемость и другие свойства. Некоторые металлы конкурируют с необходимыми организму элементами (Стронций-90 может замещать в организме Ca, Цезий-137 - калий, кадмий может замещать цинк ).

В клинической симптоматике острых отравлений рыб тяжелыми металлами преобладают нервно-паралитический синдром и нарушение дыхания, которое обусловлено дистрофическими и некробиотическими изменениями в жабрах и коже. При хроническом отравлении симптомы выражены слабо. На первое место выступают деструктивные изменения жаберного аппарата и паренхиматозных органов, анемия и истощение рыб.

Ртуть

Ртуть широко используется в электротехнической промышленности и приборостроении, на хлорных производствах, как легирующая добавка, теплоноситель, катализатор при синтезе пластмасс, в лабораторной и медицинской практике, сельском хозяйстве. Основными источниками загрязнения окружающей среды этим элементом являются: пирометаллургические процессы получения металла, сжигание органических видов топлива, сточные воды, производство цветных металлов, красок, фунгицидов и т.д. Наиболее опасным соединением ртути является метилртуть.

Выбросы ртути в окружающую среду в результате деятельности человека весьма значительны. Общая (природная и антропогенная) эмиссия ртути в атмосферу составляет свыше 6000 тонн ежегодно, причем менее половины -- 2500 т составляют поступления от естественных источников.

Соединения ртути попадают в водную среду, где активно аккумулируются планктонными организмами, представляющими пищу для ракообразных, а последние поедаются рыбами, которых поедают птицы, в печени которых ртуть обнаруживается в больших количествах.

Ртуть обладает широким спектром токсических эффектов на теплокровных: нарушение биосинтеза белков и окислительного фосфорилирования в митохондриях почек и печени; возникновение биохимических сдвигов в организме; нейротоксическое, гонадотоксическое, генотоксическое, эмбриотоксическое и тератогенное воздействие. Под действием токсических концентраций органических соединений ртути происходит нарастание интенсивности процессов свободнорадикального окисления. Особо чувствительными к действию ртути являются эмбрионы.

Несмотря на достаточную изученность, экологическая опасность ртути и последствий ее действия представляет собой сегодня серьезную проблему в экотоксикологии.

Свинец

Еще одним значимым экотоксикантом является свинец, который широко используется в производстве кабелей, как компонент различных сплавов, для защитных экранов от гамма-излучения, при производстве электрических аккумуляторов, красок и пигментов, в химическом машиностроении, пиротехнике, полиграфии, сельском хозяйстве. Еще один источник попадания свинца в организм человека -- свинцовая посуда.

Выбросы свинца в окружающую среду в результате деятельности человека весьма значительны. Основными источниками загрязнения биосферы этим элементом являются: выхлопные газы двигателей внутреннего сгорания, высокотемпературные технологические процессы, добыча и переработка металла. Перенос свинца в окружающей среде и его распространение в объектах окружающей среды происходит главным образом через атмосферу. Некоторые виды планктона обладают способностью концентрировать свинец в 12000 раз. Интенсивно аккумулируют свинец хвойные деревья и мох.

Люди подвергаются воздействию свинца при потреблении загрязненных пищи и воды, а также и при дыхании. Концентрация свинца в костях современного человека в 700--1200 раз превышает его содержание в скелетах людей живших 1600 лет назад.

Свинец характеризуется широким спектром вызываемых им токсических эффектов. Механизм его действия обусловлен ингибированием ферментов детоксикации ксенобиотиков и угнетением образования цитохома Р-450 .Эксперименты на крысах и мышах дали убедительные доказательства канцерогенности свинца и его неорганических соединений, токсичность которых неоднородна и убывает в зависимости от вида соединения: нитрат > хлорид > оксид > карбонат > ортофосфат. В картине хронического свинцового отравления выделяют следующие клинические синдромы:

1. Изменения со стороны нервной системы (астенический синдром, энцефалопатии, двигательные расстройства, поражение зрительных анализаторов).

2. Изменения системы крови (ретикулоцитоз, анизоцитоз, микроцитоз, свинцовая анемия).

3. Эндокринные и обменные нарушения (ферментативные расстройства, нарушения обмена порфиринов, менструальной и детородной функций).

4. Изменения со стороны желудочно-кишечного тракта (от тошноты, изжоги до свинцовых колик).

5. Изменения со стороны сердечно-сосудистой системы (аритмия, синусовая брадикардия или тахикардия, вазоневроз).

6. Нарушения функции почек (поражения почечных канальцев, интерстициальные нефропатии, ведущие к почечной недостаточности).

Особо следует отметить, что маленькие дети значительно легче, чем взрослые аккумулируют свинец и потому относятся к группе высокого риска в отношении свинцовых интоксикаций.

Кадмий

Согласно данным Института продуктов питания Австрии, самым опасным экотоксикантом в группе тяжелых металлов является не ртуть и не свинец, а Кадмий, который относится к рассеянным элементам и содержится в виде примеси во многих минералах. Однако антропогенное загрязнение кадмием окружающей среды в несколько раз превышает природную его концентрацию.

Кадмий широко применяется в ядерной энергетике, в гальванотехнике, в производстве аккумуляторов (никель-кадмиевые батареи), используется как стабилизатор поливинилхлорида, пигмент в стекле и пластмассах, электродный материал, компонент различных сплавов. Основными источниками загрязнения окружающей среды этим элементом являются: производство цветных металлов, сжигание твердых отходов, угля, сточные воды горно-металлургических комбинатов, производство минеральных удобрений, красителей и т.д.

В организме кадмий может легко взаимодействовать с другими металлами, особенно с кальцием и цинком, что влияет на выраженность его воздействий. Кадмий способен замещать кальций в кальмодулине, нарушая тем самым физиологические процессы регуляции поглощения кальция. Он способен ингибировать ионный транспорт и индуцировать синтез металлотионеина. Эпидемиологические данные указывают на чрезвычайную опасность кадмия для человека, который чрезвычайно медленно выводится из человеческого организма. Хроническое отравление кадмием имеет следующие признаки: поражение почек, нервной системы, легких, нарушение функций половых органов, боли в костях скелета. Этот комплекс нарушений называют болезнью "итай-итай" (сильные боли, деформация скелета, переломы костей, повреждения почек). Имеются достоверные доказательства канцерогенной опасности кадмия.

Хром

Один из наименее токсичных тяжелых металлов - Хром. В растительных и животных организмах хром всегда присутствует в составе ДНК. Некоторые виды млекопитающих способны переносить увеличение содержание этого элемента в организме в сотни раз без видимых негативных последствий. Большинство микроорганизмов, многие виды лекарственных растений способны аккумулировать хром. В трехвалентном состоянии хром распространен повсеместно. Экотоксический эффект имеет шестивалентный хром, которые крайне редко встречается в природных условиях и, как правило, появляется в результате антропогенной активности (использование хрома, сжигание угля, добыча руды и производство металла).

Токсичность шестивалентного хрома проявляется в подавлении роста, в торможении метаболических процессов, в виде генотоксического, эмбриотоксического и тератогенного эффектов. При воздействии на людей выделяют легочную и желудочную формы интоксикации. Отмечаются различные дерматиты, аллергические реакции, раздражение верхних дыхательных путей. Многочисленными эпидемиологическими исследованиями установлено, что хроматы могут вызывать бронхогенный рак, поэтому хром и его соединения относят к группе высокого канцерогенного риска для человека.

Мышьяк

Мышьяк является одним из самых опасных химических экотоксикантов, поскольку имеет широкое распространение в объектах окружающей среды и вызывает тяжелые последствия в живых системах.

В природе мышьяк обычно существует в виде арсенидов меди, никеля и железа, а также оксидов и сульфидов. В водной среде присутствует обычно в форме арсенитов и арсенатов. Разнообразные соединения мышьяка находят широкое применение в сельском и лесном хозяйстве как пестициды и гербициды, применяются в медицине и ветеринарии, стекольной, керамической, текстильной и кожевенной промышленности, электронике, электротехнике, оптике, при производстве красителей, зеркал и в других областях. Ежегодно в мире промышленно производится более 60 000 тонн соединений As.

Антропогенные источники поступления мышьяка в окружающую среду - добыча и переработка мышьяксодержащих руд, пиррометаллургия, сжигание природных видов топлива - каменного угля, сланцев, нефти, торфа, а также производство и использование суперфосфатов, содержащих мышьяк ядохимикатов, препаратов и антисептиков.

Метаболизм мышьяка чрезвычайно сложен. Абсорбция, трансплацентарный транспорт, распределение в организме, элиминация и биотрансформация мышьяка во многом видоспецифичны, зависят от путей поступления и химической структуры As-соединений. Необходимо отметить, что во многих живых организмах происходит конверсия пятивалентного As в более токсичный трехвалентный, а выделение идет обычно в виде метилированных производных.

Токсические эффекты соединений мышьяка хорошо и давно известны. Основные поражения, вызываемые мышьяком у людей, можно свести к следующим:

1) нарушения тканевого дыхания;

2) накопление в организме кислых продуктов обмена, т.е общий ацидоз;

3) нарушение гемодинамики, расстройство сердечной деятельности;

4) гемолиз и анемия;

5) дегенеративные и некротические процессы в тканях на месте контакта;

6) эмбрио- и гонадотоксические и тератогенные эффекты;

7) канцерогенное действие, которое проявляется спустя значительное время после контакта с мышьяком, причем кроме производственных условий, главные пути поступления этого элемента в организм человека - мышьяксодержащие лекарства, пестициды и питьевая вода.

8) соединения мышьяка обладают и мутагенным (кластогенным) эффектом - они, не вызывая генных мутаций, индуцируют как in vitro, так и in vivo хромосомные аномалии у различных объектов, в том числе и у людей.

Все компоненты биосферы тесно связаны и взаимообусловлены, и бесконтрольное загрязнение почв и других сопредельных сред чужеродными для живых организмов компонентами может угрожать существованию жизни на Земле, так как тяжелые металлы и радиоактивные элементы накапливаются в костях, тканях, крови человека, отравляя организм и вызывая мутационные изменения с непредвиденными последствиями.

Медь

МЕДЬ (Си) содержится в сточных водах рудообогатительных комбинатов, металлургических, машиностроительных и электротехнических предприятий. Сульфат, карбонат, хлорокись и арсенат меди применяют как альгициды, фунгициды и моллюскоциды. Медь легко образует комплексы с неорганическими и органическими веществами, адсорбируется на взвесях. Поэтому она редко присутствует в виде свободного иона, за исключением мягких вод с повышенной кислотностью.

Токсичность. В высоких концентрациях соли меди оказывают вяжущее, раздражающее и прижигающее действие, а в низких -- инактивируют дыхательные ферменты. Токсичность меди возрастает при снижении жесткости воды, температуры и содержания кислорода. В присутствии хелатов, гуминовых кислот, взвешенных веществ и при повышении жесткости она снижается на 1 -- 1,5 порядка. Отмечен синергизм в комбинации меди с цинком и кадмием.

Для определения меди в воде и органах рыб применяют колориметрические, спектрофотометрические, атомно-адсорбционные, масс-спектроскопические методы, а для биологического материала приемлем титрометрический метод с роданидом аммония. Кроме того, медь можно обнаружить в органах гистохимически реакцией с дитиокарбаматами.

Профилактика основана на проведении общих предупредительных мероприятий. Рыбохозяйственная ПДК в пресных водоемах 0,001 мг Cu/л, в морских -- 0,005 мг Cu/л. Допустимые остаточные количества меди в рыбных продуктах 10 мг/кг продукта.

ЦИНК (Zn)

Соединения цинка поступают в водоемы из предприятий цветной металлургии, машиностроительной, красильной, химико-фармацевтической, целлюлозно-бумажной, деревообрабатывающей и текстильной промышленности. Хлорид цинка применяют в качестве консерванта древесины. В водоемах он присутствует в виде растворимых солей, нерастворимых гидроокисей и адсорбированным на взвешенных частицах.

Токсичность. Ядовитые свойства цинка обусловлены в основном ионами, возможно, суспензиями гидроокиси и карбонатов. При увеличении жесткости, солености и взвешенных частиц его токсичность снижается, так как в этих случаях растворимость солей цинка уменьшается.

Сульфат цинка вызывает острое отравление (5 дней) карпов в концентрации 10 мг/л. Остротоксичные концентрации ионов цинка составляют для молоди форели 0,4, молоди карпа и колюшки 0,5 мг Zn/л, а среднесмертельные (96 часов) для ушастого окуня 3,2 мг Zn/л и тиляпии -- 1,6 мг Zn/л. Хроническое отравление молоди форели наступает через 26 сут в концентрации 0,01 мг Zn/л. Сульфат цинка тот же эффект у карпов вызывал в концентрации 0,1 -- 0,3 мг/л через 60 -- 80 сут. Для зоопланктона токсичны 0,08 мг Zn/л и выше.

Симптомы и патоморфологические изменения сходны с теми, которые вызывает медь. При остром отравлении отмечают потемнение окраски тела, отек жаберных лепестков, гиперплазию и слущивание респираторного эпителия. У гольяна обнаружено искривление позвоночника после 30-дневной интоксикации нитратом цинка в концентрации 0,06 -- 0,16 мг Zn/л.

Диагноз ставят на основании клинико-анатомической картины отравления и определения цинка в воде и органах рыб. Цинк в воде обнаруживают колориметрическим методом с дитизоновым реактивом и атомно-адсорбционной спектроскопией, а в биологическом материале титрометрически с ферроцианидом калия или комплексно-метрическим методом. Цинк накапливается в слизи, жабрах, почках, скелете и желудочно-кишечном тракте, гораздо меньше -- в печени, селезенке и мышцах.

Диагностическим показателем считают увеличение отношения содержания цинка в жабрах и жаберной крышке до 100:1 против 1:1 у контрольных рыб. При диагностике следует учитывать данные о количестве цинка в органах рыб незагрязненных водоемов. Среднее содержание цинка в органах леща, плотвы, судака и сазана Волжского бассейна составляет (по сухому веществу) в жабрах и печени 140 -- 1500, почках и селезенке -- 70 -- 150, мышцах -- 15 -- 70 мг/кг.

Профилактика основана на общих принципах, рыбохозяйственная ПДК цинка в пресных водоемах 0,01, в морских -- 0,05 мг Zn/л. Допустимые остаточные количества цинка в рыбных продуктах 40 мг/кг продукта.

ЖЕЛЕЗО (Fe).

В поверхностных водах содержание железа колеблется в широких пределах. В подземных водоисточниках и водах болот его концентрация достигает десятков мг/л. Резкое повышение железа в водоемах происходит при загрязнении их сточными водами рудников, металлургических, машиностроительных и химических предприятий.

В воде присутствует закисное (Feяя) и окисное (Feяяя) железо. Закисные формы железа нестойки, быстро окисляются, переходя в окисные, а также образуют нерастворимые гидроокиси и карбонаты. Процесс окисления идет не только в воде, но и в теле железобактерий, которые размножаются в болотах, водопроводных трубах, прудах. После отмирания бактерий гидрат окиси железа оседает на дно прудов и бассейнов. В кислой среде растворимость железа увеличивается, а в щелочной уменьшается. В концентрации 0,05 мг/л железо придает воде желтоватую окраску, а в концентрациях 0,3 -- 1,0 мг/л -- металлический вкус.

Токсичность железа обусловлена механическим повреждением и асфиксией рыб и икры в результате осаждения хлопьев гидроокиси железа или снижением в воде кислорода, потребляемого на окисление закисного железа. В кислой среде ионы железа проникают в ткани и действуют самостоятельно как токсины.

О величине токсических концентраций железа для рыб имеются разноречивые данные. Это связано с тем, что его токсичность во многом зависит от гидрохимического режима, особенно от рН, жесткости и других показателей. Для рыб более токсичны сернокислое и двухлористое железо, чем его окись и хлорное железо.

По данным одних авторов, острое отравление карпа, карася и леща происходит при концентрации хлорида и сульфата железа 4,3 -- 6,4 мг/л. При рН воды 5 -- 6,7 токсические концентрации железа для лосося, форели, щуки, плотвы и карпа снижаются до 1,0 -- 2 мг/л. Гибель икры байкальского окуня отмечена при концентрации железа 0,52 мг/л в результате оседания на ее оболочке окиси железа. По данным Г. Д. Полякова, смертельные границы железа для карпов находятся на уровне 15 мг/л и выше. Железные квасцы вызывают гибель карпа и линя в концентрации 340 -- 380 мг/л. При длительном воздействии низких концентраций железа понижается резистентность рыб к сапролегниозу.

Симптомы и патоморфологические изменения. При остром отравлении соединениями железа жабры, кожа рыб, а также оболочка погибшей икры покрываются бурым налетом. В жабрах, кроме того, отмечается распад эпителия и его десквамация. Диагноз ставят на основании внешнего осмотра рыб и икры, результатов определения содержания железа в воде, отложения его на растительности и дне водоема.

Наиболее распространенный метод определения железа в воде -- колориметрический с роданидом калия или аммония, а также с сульфосалициловой кислотой или орто-фенантролином.

Профилактика. Воду, богатую железом, можно использовать для рыбоводных целей после хорошей аэрации и пропускания ее через отстойники. Для рыбоводства в пресных водоемах допустимы концентрации общего железа 1 -- 2 мг/л, закисного -- не более 0,2 мг/л, в морских водах -- 0,05 мг/л.

Сурьма

Сурьма поступает в поверхностные воды за счет выщелачивания минералов сурьмы (стибнит, сенармонтит, валентинит, сервантит, стибиоканит) и со сточными водами резиновых, стекольных, красильных, спичечных предприятий.

В природных водах соединения сурьмы находятся в растворенном и взвешенном состоянии. В окислительно-восстановительных условиях, характерных для поверхностных вод, возможно существование как трехвалентной, так и пятивалентной сурьмы.

В незагрязненных поверхностных водах сурьма находится в субмикрограммовых концентрациях, в морской воде ее концентрация достигает 0.5 мкг/дм3, в подземных водах - 10 мкг/дм3 [31].

ПДКв сурьмы составляет 0.05 мг/дм3 (лимитирующий показатель вредности -- санитарно-токсикологический), ПДКвр - 0.01 мг/дм3

Олово

В природные воды поступает в результате процессов выщелачивания оловосодержащих минералов (касситерит, станнин), а также со сточными водами различных производств (крашение тканей, синтез органических красок, производство сплавов с добавкой олова и др.).

Токсическое действие олова невелико.

В незагрязненных поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограммов в 1 дм3 [31].ПДКв составляет 2 мг/дм3

Никель

Присутствие никеля в природных водах обусловлено составом пород, через которые проходит вода: он обнаруживается в местах месторождений сульфидных медно-никелевых руд и железо-никелевых руд. В воду попадает из почв и из растительных и животных организмов при их распаде. Повышенное по сравнению с другими типами водорослей содержание никеля обнаружено в сине-зеленых водорослях. Соединения никеля в водные объекты поступают также со сточными водами цехов никелирования, заводов синтетического каучука, никелевых обогатительных фабрик. Огромные выбросы никеля сопровождают сжигание ископаемого топлива.

Концентрация его может понижаться в результате выпадения в осадок таких соединений, как цианиды, сульфиды, карбонаты или гидроксиды (при повышении значений рН), за счет потребления его водными организмами и процессов адсорбции.

В поверхностных водах соединения никеля находятся в растворенном, взвешенном и коллоидном состоянии, количественное соотношение между которыми зависит от состава воды, температуры и значений рН. Сорбентами соединений никеля могут быть гидроксид железа, органические вещества, высокодисперсный карбонат кальция, глины. Растворенные формы представляют собой главным образом комплексные ионы, наиболее часто с аминокислотами, гуминовыми и фульвокислотами, а также в виде прочного цианидного комплекса. Наиболее распространены в природных водах соединения никеля, в которых он находится в степени окисления +2. Соединения Ni3+ образуются обычно в щелочной среде.

Соединения никеля играют важную роль в кроветворных процессах, являясь катализаторами. Повышенное его содержание оказывает специфическое действие на сердечно-сосудистую систему. Никель принадлежит к числу канцерогенных элементов. Он способен вызывать респираторные заболевания. Считается, что свободные ионы никеля (Ni2+) примерно в 2 раза более токсичны, чем его комплексные соединения .

В речных незагрязненных и слабозагрязненных водах концентрация никеля колеблется обычно от 0.8 до 10 мкг/дм3; в загрязненных она составляет несколько десятков микрограммов в 1 дм3. Средняя концентрация никеля в морской воде 2 мкг/дм3, в подземных водах - n.103 мкг/дм3. В подземных водах, омывающих никельсодержащие горные породы, концентрация никеля иногда возрастает до 20 мг/дм3.

Содержание никеля в водных объектах лимитируется: ПДКв составляет 0.1 мг/дм3 (лимитирующий признак вредности -- общесанитарный), ПДКвр -- 0.01 мг/дм3 (лимитирующий признак вредности -- токсикологический)

Молибден

Соединения молибдена попадают в поверхностные воды в результате выщелачивания их из экзогенных минералов, содержащих молибден. Молибден попадает в водоемы также со сточными водами обогатительных фабрик, предприятий цветной металлургии. Понижение концентраций соединений молибдена происходит в результате выпадения в осадок труднорастворимых соединений, процессов адсорбции минеральными взвесями и потребления растительными водными организмами.

Молибден в поверхностных водах находится в основном в форме МоО42-. Весьма вероятно существование его в виде органоминеральных комплексов. Возможность некоторого накопления в коллоидном состоянии вытекает из того факта, что продукты окисления молибденита представляют рыхлые тонкодисперсные вещества.

В речных водах молибден обнаружен в концентрациях от 2.1 до 10.6 мкг/дм3. В морской воде содержится в среднем 10 мкг/дм3 молибдена.

В малых количествах молибден необходим для нормального развития растительных и животных организмов. Молибден входит в состав фермента ксантиноксидазы. При дефиците молибдена фермент образуется в недостаточном количестве, что вызывает отрицательные реакции организма. В повышенных концентрациях молибден вреден. При избытке молибдена нарушается обмен веществ .

Предельно допустимая концентрация молибдена в водоемах санитарно-бытового использования составляет 0.25 мг/дм3

Марганец

В поверхностные воды марганец поступает в результате выщелачивания железомарганцевых руд и других минералов, содержащих марганец (пиролюзит, псиломелан, браунит, манганит, черная охра).

Значительные количества марганца поступают в процессе разложения водных животных и растительных организмов, особенно сине-зеленых, диатомовых водорослей и высших водных растений. Соединения марганца выносятся в водоемы со сточными водами марганцевых обогатительных фабрик, металлургических заводов, предприятий химической промышленности и с шахтными водами.

Понижение концентрации ионов марганца в природных водах происходит в результате окисления Mn(II) до MnO2 и других высоковалентных оксидов, выпадающих в осадок. Основные параметры, определяющие реакцию окисления, - концентрация растворенного кислорода, величина рН и температура. Концентрация растворенных соединений марганца понижается вследствие утилизации их водорослями.

Главная форма миграции соединений марганца в поверхностных водах - взвеси, состав которых определяется в свою очередь составом пород, дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и сорбированные соединения марганца. Существенное значение в миграции марганца в растворенной и коллоидной формах имеют органические вещества и процессы комплексообразования марганца с неорганическими и органическими лигандами. Mn(II) образует растворимые комплексы с бикарбонатами и сульфатами. Комплексы марганца с ионом хлора встречаются редко. Комплексные соединения Mn(II) с органическими веществами обычно менее прочны, чем с другими переходными металлами. К ним относятся соединения с аминами, органическими кислотами, аминокислотами и гумусовыми веществами. Mn(III) в повышенных концентрациях может находиться в растворенном состоянии только в присутствии сильных комплексообразователей, Mn(YII) в природных водах не встречается.

В речных водах содержание марганца колеблется обычно от 1 до 160 мкг/дм3, среднее содержание в морских водах составляет 2 мкг/дм3, в подземных - n.102 - n.103 мкг/дм3.

Концентрация марганца в поверхностных водах подвержена сезонным колебаниям.

Факторами, определяющими изменения концентраций марганца, являются соотношение между поверхностным и подземным стоком, интенсивность потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов и высшей водной растительности, а также процессы осаждения его на дно водных объектов.

Роль марганца в жизни высших растений и водорослей водоемов весьма велика. Марганец способствует утилизации CO2 растениями, чем повышает интенсивность фотосинтеза, участвует в процессах восстановления нитратов и ассимиляции азота растениями. Марганец способствует переходу активного Fe(II) в Fe(III), что предохраняет клетку от отравления, ускоряет рост организмов и т.д. Важная экологическая и физиологическая роль марганца вызывает необходимость изучения и распределения марганца в природных водах .Для водоемов санитарно-бытового использования установлена ПДКв (по иону марганца), равная 0.1 мг/дм3

Кобальт

В природные воды соединения кобальта попадают в результате процессов выщелачивания их из медно-колчедановых и других руд, из почв при разложении организмов и растений, а также со сточными водами металлургических, металлообрабатывающих и химических заводов. Некоторые количества кобальта поступают из почв в результате разложения растительных и животных организмов.

Соединения кобальта в природных водах находятся в растворенном и взвешенном состоянии, количественное соотношение между которыми определяется химическим составом воды, температурой и значениями рН. Растворенные формы представлены в основном комплексными соединениями, в т.ч. с органическими веществами природных вод. Соединения двухвалентного кобальта наиболее характерны для поверхностных вод. В присутствии окислителей возможно существование в заметных концентрациях трехвалентного кобальта .

Кобальт относится к числу биологически активных элементов и всегда содержится в организме животных и в растениях. С недостаточным содержанием его в почвах связано недостаточное содержание кобальта в растениях, что способствует развитию малокровия у животных (таежно-лесная нечерноземная зона). Входя в состав витамина В12, кобальт весьма активно влияет на поступление азотистых веществ, увеличение содержания хлорофилла и аскорбиновой кислоты, активизирует биосинтез и повышает содержание белкового азота в растениях. Вместе с тем повышенные концентрации соединений кобальта являются токсичными .

В речных незагрязненных и слабозагрязненных водах его содержание колеблется от десятых до тысячных долей миллиграмма в 1 дм3, среднее содержание в морской воде 0.5 мкг/дм3.

ПДКв составляет 0.1 мг/дм3, ПДКвр 0.01 мг/дм3

Висмут

Естественными источниками поступления висмута в природные воды являются процессы выщелачивания висмутсодержащих минералов. Источником поступления в природные воды могут быть также сточные воды фармацевтических и парфюмерных производств, некоторых предприятий стекольной промышленности.

В незагрязненных поверхностных водах содержится в субмикрограммовых концентрациях. Наиболее высокая концентрация обнаружена в подземных водах и составляет 20 мкг/дм3, в морских водах - 0.02 мкг/дм3.

ПДКв составляет 0.1 мг/дм3

Ванадий

Ванадий находится преимущественно в рассеянном состоянии и обнаруживается в железных рудах, нефтях, асфальтах, битумах, горючих сланцах, углях и др. Одним из главных источников загрязнения природных вод ванадием являются нефть и продукты ее переработки.

В природных водах встречается в очень малой концентрации: в воде рек 0.2 - 4.5 мкг/дм3, в морской воде - в среднем 2 мкг/дм3

В воде образует устойчивые анионные комплексы (V4O12)4- и (V10O26)6-. В миграции ванадия существенна роль растворенных комплексных соединений его с органическими веществами, особенно с гумусовыми кислотами.

Повышенные концентрации ванадия вредны для здоровья человека. ПДКв ванадия составляет 0.1 мг/дм3 (лимитирующий показатель вредности -- санитарно-токсикологический), ПДКвр - 0.001 мг/дм3

Стронций

Стронций природный -- составная часть микроорганизмов, растений и животных. Стронций является аналогом кальция, поэтому он наиболее эффективно откладывается в костной ткани. В мягких тканях задерживается менее 1 %. Стронций с большой скоростью накапливается в организме детей до четырёхлетнего возраста, когда идет активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечно-сосудистой системы.


Подобные документы

  • Причины загрязнения воды. Влияние твердых отходов на заиливание рек и судоходных каналов. Сущность процесса эвтрофикации озер. Токсичность неорганических отходов. Микробиологическая загрязненность воды. Источники и последствия загрязнения водоемов.

    презентация [76,6 K], добавлен 20.02.2010

  • Снижение биосферных функций водоемов. Изменение физических и органолептических свойств воды. Загрязнение гидросферы и его основные виды. Основные источники загрязнения поверхностных и подземных вод. Истощение подземных и поверхностных вод водоемов.

    контрольная работа [36,9 K], добавлен 09.06.2009

  • Возвратные воды как главный источник загрязнения водной среды региона. Основные экологические проблемы. Анализ промышленных источников загрязнения воды. Оценка риска здоровью человека. Законодательные акты в области управления охраной водных ресурсов.

    реферат [17,0 K], добавлен 10.10.2014

  • Технологические процессы и оборудование – источники образования выбросов. Расчет экологического налога. Сточные воды различных цехов машиностроительных предприятий. Расход поверхностных сточных вод. Особые виды промышленного загрязнения водоемов.

    контрольная работа [32,1 K], добавлен 07.01.2015

  • Охрана поверхностных вод от загрязнения. Современное состояние качества воды в водных объектах. Источники и возможные пути загрязнения поверхностных и подземных вод. Требования к качеству воды. Самоочищение природных вод. Охрана воды от загрязнения.

    реферат [27,5 K], добавлен 18.12.2009

  • Основные источники загрязнения: промышленные предприятия; автомобильный транспорт; энергетика. Природные и техногенные источники загрязнения воды, почвы. Главные источники загрязнения атмосферы. Предельно допустимые концентрации вредных веществ в воздухе.

    презентация [1,8 M], добавлен 24.02.2016

  • Обзор основных антропогенных источников загрязнения воды, основными из которых являются промышленные, бытовые стоки и бытовой мусор, сельское хозяйство, обезлесение, тепловое загрязнение, атмосферные осадки. Проблема дефицита воды. Пути решения проблемы.

    реферат [34,3 K], добавлен 08.06.2013

  • Качество питьевой воды, доступ к чистой воде городского и сельского населения. Основные пути и источники загрязнения гидросферы, поверхностных и подземных вод. Проникновение загрязняющих веществ в круговорот воды. Методы и способы очистки сточных вод.

    презентация [3,1 M], добавлен 18.05.2010

  • Проблема загрязнения водной среды. Количество воды во Вселенной, водород и кислород - исходные элементы для ее образования. Строение молекулы воды, ее уникальные свойства. Дефицит пресной воды на планете, последствия загрязнения Мирового океана.

    презентация [2,3 M], добавлен 14.05.2012

  • Химическое, биологическое и физические загрязнения водных ресурсов. Проникновение загрязняющих веществ в круговорот воды. Основные методы и принципы очистки воды, контроль ее качества. Необходимость защиты водных ресурсов от истощения и загрязнения.

    курсовая работа [455,3 K], добавлен 18.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.