Экологическое состояние питьевой воды в России

Питьевая вода как необходимый элемент жизнеобеспечения населения. Экологическая обстановка по воде, и ее физические и химические свойства. Гигиенические требования к питьевой воде и ее качество. Основные типы загрязнений и традиционные способы очистки.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 12.03.2014
Размер файла 48,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Угроза существованию человечества таится в катастрофической экологической обстановке, а именно в настоящее время серьезным опасением является недостаток питьевой воды, ее качественные изменения, несоответствие санитарно-гигиеническим требованиям.

Состояние водоисточников и систем центрального водоснабжения не гарантирует требуемого качества питьевой воды. Следует отметить, что разработанные традиционные подходы для охраны природных экосистем малоэффективны, так как их использование сводится к установлению только отдельных источников загрязнения.

Питьевая вода - необходимый элемент жизнеобеспечения населения, от ее качества зависят состояние здоровья людей, уровень санитарно-эпидемиологического благополучия, социальная стабильность общества.

Проблема обеспечения населения России питьевой водой нормативного качества она становится одной из главных социально-экономических проблем в осуществлении государственной стратегии устойчивого развития общества.

В Российской Федерации примерно 109 млн. человек проживают в условиях неблагоприятной санитарно-гигиенической обстановки.

Более объективной оценкой загрязнения окружающей среды являются показатели здоровья человека, так как при этом учитывается влияние всех загрязнителей, их действие.

Цель данной работы -определить экологическое состояние питьевой воды в России

Задачи:

1. проанализировать экологическую обстановку по воде

2. рассмотреть экологическое состояние питьевой воды

3. изучить факторы воздействия

4. предложить меры по ее улучшению.

1. Описание экологической системы

В ХIХ веке была открыта химическая формула этого соединения Н2О, которая, как тогда казалось, дает полную информацию о воде, но в 1932 году открылся новый сенсационный факт - помимо обыкновенной воды, существует еще и понятие «тяжелая» вода, а на сегодняшний день уже известно до 135 изотопных разновидностей воды. Состав отдельно взятой капли воды, при условии полного ее очищения от примесей минеральных и органических веществ, всегда уникален, а ее свойства меняются в зависимости от физической природы составляющих ее атомов, способа формирования молекулы, и от объединения этих молекул в химическое соединение [1-8].

Одним из самых замечательных и в то же время затрудняющим изучение воды свойством, является способность воды выступать в качестве универсального растворителя. Любое вещество, будь оно в твердом, жидком или газообразном состоянии, обязательно в какой-то степени растворяется в воде, поэтому вода всегда является раствором, имеющим очень сложный химический состав. И даже когда химический состав воды, взятой в различных местах, полностью идентичен, оказывается, что вода оказывает совершенно различное влияние на организм, так как условия формирования воды также определяют ее свойства.

Следует отметить, что в природе не существует абсолютно чистой воды, а наиболее близкой к этому понятию является дождевая вода, хотя даже она в своем составе имеет некоторое количество примесей, которые попадают в нее из воздуха. А наиболее характерным растворителем является морская вода, так как она может растворить практически любое вещество, а ее состав может включать до 70 элементов периодической системы Менделеева, начиная с хлора, магния, натрия, серы, кальция и калия, брома, углерода, стронция и бора, которые содержатся в морской воде в больших количествах, и заканчивая редчайшими радиоактивными элементами в очень небольших долях.

В зависимости от содержания в воде различных примесей ее можно разделить на несколько классов: пресную воду, соленую и рассолы. От этого зависит и цвет воды. На первый взгляд, любая вода - прозрачная бесцветная жидкость, не имеющая ни вкуса, ни запаха, однако глубокие воды моря или океана выглядят голубыми, а вода горных рек кажется зеленой, именно присутствие различных примесей в воде придает ей различный цвет. Казалось бы, при современном оборудовании и технологиях на сегодняшний день мы знаем о воде все, но открываются новые и новые факты, которые показывают, что вода обладает нераскрытым потенциалом, который еще только предстоит узнать человечеству.

Оказывается, что вода не только с древнейших времен служит для удовлетворения бытовых и промышленных нужд человека, но и защищает Землю летом от перегревания, а зимой, отдавая ей свое тепло, от перемерзания. Избыток углекислого газа, вырабатываемый в процессе жизнедеятельности человека, мог бы привести к катастрофическим последствиям, если бы не был поглощен водами мирового океана.

Вода обладает специфическими свойствами, которые не присущи не одному химическому соединению, так, к примеру, при переходе воды из жидкого состояния в твердое, она не увеличивает свою плотность, а увеличивает объем. Это связано с молекулярным строением льда: при замерзании молекулы располагаются на значительном расстоянии друг от друга, образуя рыхлую структуру льда, тем самым, увеличивая объем, но сохраняя массу, таким образом, вода в твердом состоянии (лед), легче, чем в жидком. Не обладай вода этим свойством, возникновение жизни на Земле не было бы возможно, так как возникший на поверхности водоема лед сразу же тонул и реки, моря и даже океаны промерзли бы до самого дна. Итак, одним из факторов, определяющих свойства воды, является ее молекулярный состав [6,7]. Молекула воды представляет собой равнобедренный треугольник в основании которого лежат атомы водорода, а вершиной является атом кислорода, валентный угол этого треугольника НОН составляет 104,31°, при этом атомы водорода настолько тесно прилегают к атому кислорода, что на первый взгляд, молекула имеет сферическую форму. Молекула воды имеет слабые водородные связи, что позволяет воде испаряться, то есть если поместить воду в открытый сосуд, то постепенно все молекулы воды переместятся в воздух. Если же сосуд закрыть, то вода будет испаряться до тех пор, пока не будет достигнуто некое равновесие, которое объясняется давлением, оказываемым молекулами водяного пара, скопившегося между крышкой сосуда и оставшейся водой. Испарение происходит даже в твердом состоянии воды, то есть с поверхности льда или снега. При этом вязкость воды напрямую зависит от ее температуры, чем выше температура, тем меньше вязкость, при достижении точки кипения воды вязкость уменьшается в 8 раз, нежели при ее точке замерзания. Воду практически невозможно сжать, а ее плотность максимальна при 4°С.

Земля на 75% покрыта водой, и природой постоянно поддерживается естественный круговорот воды: она испаряется с поверхности водоемов, а затем выпадает в виде осадков: дождя или снега, но даже при таком разумном решении, некоторые районы земного шара постоянно страдают от недостатка пресной воды. Именно поэтому стоит помнить, что вода - величайшее богатство, дарованное нам природой, и каждая ее капля - драгоценна, ведь жизнь человека невозможна без воды.

2. Физические свойства воды

Температура кипения воды (и все другие жидкости) зависит от атмосферного давления. Например, на вершине гор на Эвересте вода кипит при 68 ° C (154 ° F), по сравнению с 100 ° C (212 ° F) на уровне моря. Наоборот, глубокие воды в океане вблизи геотермальных жерла температура может достигать сотен градусов и оставаться жидкой. Вода обладает вторым по величине удельной теплоемкости любого известного вещества, после аммиака, а также высокая теплота испарения (40,65 кДж / моль -1), оба из которых являются результатом обширных водородных связей между молекулами. Эти два необычных свойств воды, чтобы позволить умеренным климатом Земле буферизации больших колебаний температуры [4-7].

Максимальная плотность воды происходит при 3,98. ° С (39,16 ° F). Вода становится еще менее плотное при замерзании, расширяя 9%. Это приводит к необычным явлениям: твердые формы вода, лед плавает на воде, что позволяет организму выжить внутри частично-замороженного тела воду, поскольку вода на дне, имеет температуру около 4 ° C (+39 ° F).

3. Химические свойства воды

Вода является химическое вещество с химической формулой H2O [4]: одна молекула воды состоит из двух водородных атомов ковалентно связан с одним атомом кислорода. Вода появляется в природе во всех трех общих состояний материи и может принимать различные формы на Земле: водяной пар и облака в небе, морская вода и айсберги в полярных океанов; ледниками и реками в горах, и жидкости в водоносных горизонтов в почва. Основные химические и физические свойства воды: Вода является вкуса, запаха жидкости при стандартной температуре и давлении. Цвет воды и льда, по своей природе, очень легкий голубой оттенок, хотя вода появляется бесцветное в небольших количествах. Кроме того, лед появляется бесцветное и водяного пара в основном как невидимый газ.

Вода является прозрачным, и, следовательно, водные растения могут жить в воде, поскольку солнечный свет может достигать их. Только сильные ультрафиолетового света немного поглощается. Поскольку молекулы воды не является линейной и атом кислорода имеет более высокую электроотрицательность, чем атомов водорода, имеют небольшой отрицательный заряд, а атомы водорода слабо положительной. В результате, вода является полярная молекула с дипольным моментом. Чистая взаимодействия между диполей на каждую молекулу причина эффективной скин-эффект на границе воды с другими веществами, или воздуха на поверхности, последний вызвал высокий поверхностное натяжение воды. Это дипольное природа способствует тенденцию молекул воды к образованию водородных связей, которые вызывают много воды специальными свойствами. полярная природа также способствует адгезии с другими материалами. Результатом взаимодействия этих свойств, Капиллярный относится к тенденции воду для перемещения вверх узкой трубе против силы тяжести. Это свойство, на которые ссылается всех сосудистых растений, таких, как деревья.

Вода является хорошим растворителем и часто упоминается как универсальный растворитель. Вещества, которые растворяют в воде, например, соли, сахара, кислоты, щелочи и некоторые газы - особенно кислорода, углекислого газа (сатурации) известны как гидрофильные (любящие воду) вещества, а те, что не хорошо смешать с водой (например, жиры и масла), известные как гидрофобные веществ. Все основные компоненты клетки (белки, ДНК и полисахаридов), также растворенный в воде.

4. Питьевая вода

Питьевая вода - это вода, отвечающая нормативным требованиям в естественном состоянии или после ее обработки; это вода не содержащая примесей, вредных для здоровья человека. Она должна быть без запаха и цвета и безопасна при длительном ее употреблении.

Для нормальной работы всех систем человеку необходимо как минимум 1,5 литра воды в день.

Питьевая вода является универсальным растворителем, поэтому именно в ней протекают все процессы жизнедеятельности. Кроме этого вода регулирует температуру тела, увлажняет воздух при дыхании, обеспечивает доставку питательных веществ и кислорода к клеткам человеческого организма, оберегает жизненно важные органы, организовывает усваивание питательных веществ, выводит из организма шлаки. И это ещё далеко не все функции воды.

Питьевая вода представляет собой не простое соединение двух молекул водорода с одной молекулой кислорода, а сложный комплекс множества химических веществ техногенного и природного, как правило минерального, происхождения.

В воде присутствуют металлы: легкие (литий, натрий, калий, магний, кальций), более тяжелые (хром, железо, цинк, ртуть и др.), металлоиды (углерод, фосфор, сера и др.), газы (кислород, озон фтор, хром), неорганические вещества (соли, кислоты, щелочи), органические вещества и нерастворенные до конца механические примеси (песок, ил, ржавчина, глина и т.д.).

Очевидно, что человек крайне чувствителен даже к небольшому изменению состава потребляемой им воды. Нарушение солевого и органического её состава приводит к нарушению процессов пищеварения, кроветворения и обмена.

Быстрый рост населения планеты в сочетании с возрастающими объемами водопотребления для бытовых и промышленных нужд и интенсивным сельским хозяйством приводит к глобальному водному кризису, который проявляется в нехватке пресной воды и в ее усиливающемся загрязнении.

Согласно опубликованному недавно исследованию, системы пресной воды во всем мире сейчас настолько сильно деградируют, утрачивая возможность снабжать людей, животных и растительный мир, что если такая тенденция сохранится и далее, это может привести к резкому сокращению населения планеты и вымиранию большого количества видов животных. Ситуация складывается угрожающая, поскольку человечество потребляет больше пресной воды, чем Земля может дать. Темпы роста потребление пресной воды более чем в 2 раза превышает прирост населения планеты.

Здоровье человека в значительной мере зависит от качества воды, которую он использует в процессе жизнедеятельности. Далеко не всегда по внешнему виду или запаху воды можно сказать, насколько она безвредна, и можно ли ее пить. Необходимо знать ее химический и бактериологический состав, точнее, состав примесей, которые в ней содержатся.

5. Гигиенические требования к питьевой воде

5.1 Качество питьевой воды

Качество воды, поступающей потребителю из систем водоснабжения, зависит от состава исходной воды и определяется технологическими требованиями, исходящими от соответствующих контролирующих организаций. Санитарные Правила и Нормы 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», утверждены постановлением Госкомсанэпиднадзора РФ от 24.10.1996 г. и введены в действие с 1 июля 1997 года.

СанПиН устанавливают гигиенические требования к питьевой воде, нормирует содержание вредных химических веществ, наиболее часто встречающихся в природных водах, а также поступающих в источники водоснабжения в результате хозяйственной деятельности человека, определяет органолептические и некоторые физико-химические параметры питьевой воды. По большинству параметров российский СанПиН удовлетворяет рекомендациям ВОЗ и не уступает зарубежным стандартам. Качество воды характеризуют следующие параметры: общие физико-химические показатели качества воды, орагнолептические показатели, бактериологические и паразитологические показатели, радиологические показатели, показатели неорганических и органических примесей, а также ряд других параметров, часто употребляемых в водоподготовке. Многие из этих величин не нормируются и, тем не менее, важны для оценки физико-химических свойств воды. Как правило, эти дополнительные параметры не только непосредственно определяют качество воды, но, главным образом, содержат информацию, без которой невозможно подобрать оптимальную схему очистки воды.

5.1.1 Предельно-допустимые концентрации вредных веществ в питьевой воде

Важнейшей составной частью Российского водосанитарного законодательства являются гигиенические нормативы - предельно-допустимые концентрации (ПДК) вредных веществ в питьевой воде, которые установлены в Санитарных правилах и нормах.

Требования к качеству питьевой воды централизованного водоснабжения установлены в Санитарных правилах и нормах СанПиН 2.1.4.1074-01, утвержденные Главным государственным санитарным врачом Российской Федерации 26.09.2001, введены в действие с 1 января 2002 года.

Питьевая вода должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства.

Качество питьевой воды должно соответствовать гигиеническим нормативам перед ее поступлением в распределительную сеть, а также в точках водозабора наружной и внутренней водопроводной сети.

Безвредность питьевой воды по химическому составу определяется ее соответствием нормативам по обобщенным показателям и содержанию вредных химических веществ, наиболее часто встречающихся в природных водах на территории Российской Федерации, а также веществ антропогенного происхождения, получивших глобальное распространение.

Токсикологические показатели качества воды характеризуют безвредность ее химического состава и включают нормативы для веществ: встречающихся в природных водах; добавляемых к воде в процессе обработки в виде реагентов; появляющихся в результате промышленного, сельскохозяйственного, бытового и иного загрязнения источников водоснабжения.

Приведенный перечень нормирует концентрации далеко не всех химических элементов, обнаруживаемых в загрязненных подземных водах. В этих водах современными аналитическими средствами обнаруживают весьма большое число химических элементов, при этом их максимальные концентрации могут быть чрезвычайно значительными.

Соблюдение ПДК обеспечивает безопасность здоровья населения и благоприятные условия для санитарно-бытового водоиспользования. ПДК служат критерием эффективности различных мероприятий по охране водоемов от загрязнения, а также стимулами прогресса в области промышленной технологии.

При отсутствии установленных нормативов экологами проводятся необходимые исследования для изучения степени вредности содержащихся в сточных водах веществ и обосновании для них ПДК.

Гигиенические нормативы позволяют отличать уровни загрязнения, прямо или косвенно влияющие на санитарные условия водопользования и здоровье населения, от уровней загрязнений, затрагивающих не только интересы здравоохранения, сколько другие народнохозяйственные интересы.

Среди показателей, определяющих токсичность состава воды, многие из них окрашивают природную воду в тот или иной цвет (например, железо, марганец, органические вещества). Они вызывают неприятные запахи (сероводород, азотистые соединения, примеси органических газов), характерный привкус (магний, калий и др.) способствуют образованию мутных взвесей (соли кальция, бария, стронция и пр.).

Поэтому определение органолептических свойств является одним из основополагающих определений природных вод и проводится непосредственно после отбора пробы и не позднее, чем через несколько часов, после ее отбора.

5.1.2 Физико-химические показатели качества воды

Водородный показатель

Водородный показатель характеризует концентрацию свободных ионов водорода в воде. В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д. Контроль за уровнем рН особенно важен на всех стадиях водоочистки, так как его отклонения в ту или иную сторону могут не только существенно сказаться на запахе, привкусе и внешнем виде воды, но и повлиять на эффективность водоочистных мероприятий. Для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9 (СанПиН).

Общая минерализация

Общая минерализация представляет собой суммарный количественный показатель содержания растворенных в воде веществ. Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся в виде солей. СанПиН рекомендует верхний предел минерализации в 1000 мг/л. Вода же с низким солесодержанием слишком пресная и безвкусная. К величине минерализации с точки зрения отложения осадков и накипи в нагревательных приборах, паровых котлах, бытовых водогрейных устройствах применяются специальные требования, и чем меньше уровень минерализации (особенно содержание солей жесткости), тем лучше.

Жесткость

Жесткостью называют свойство воды, обусловленное наличием в ней растворимых солей кальция и магния.

Различают следующие виды жесткости:

· Общая жесткость - определяется суммарной концентрацией ионов кальция и магния, представляет собой сумму карбонатной (временной) и некарбонатной (постоянной) жесткости.

· Карбонатная жесткость - обусловлена наличием в воде гидрокарбонатов и карбонатов (при рН > 8.3) кальция и магния. Данный тип жесткости почти полностью устраняется при кипячении воды и поэтому называется временной жесткостью.

· Некарбонатная жесткость - обусловлена присутствием кальциевых и магниевых солей сильных кислот (серной, азотной, соляной) и при кипячении не устраняется (постоянная жесткость).

В мировой практике используется несколько единиц измерения жесткости, все они определенным образом соотносятся друг с другом. В России Госстандартом в качестве единицы жесткости воды установлен моль на кубический метр (моль/м3). СанПиН рекомндует норму общей жесткости воды - 7,0 мг-экв/л.

Окисляемость перманганатная

Окисляемость - это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых (при определенных условиях) одним из сильных химических окислителей. Выражается этот параметр в миллиграммах кислорода, пошедшего на окисление этих веществ, содержащихся в 1 дм3 воды. В соответствии с требованиями СанПиН перманганатная окисляемость не должна превосходить 5,0 мгО2/л.

Орагнолептические показатели

К числу органолептических показателей относятся те параметры качества воды, которые определяют ее потребительские свойства, т.е. те свойства, которые непосредственно влияют на органы чувств человека (обоняние, осязание, зрение).

Наиболее значимые из этих параметров - вкус и запах - не поддаются формальному измерению, поэтому их определение производится экспертным путем.

Кроме вкуса и запаха, выделяют такие показатели как привкус, цветность, мутность и прозрачность.

Запах и привкус

Химически чистая вода совершенно лишена привкуса и запаха. С научной точки зрения, запах и привкус - это свойство веществ вызывать у человека и животных специфическое раздражение рецепторов слизистой оболочки носоглотки и языка. Привкус может быть щелочной, металлический, вяжущий и т.п.

Интенсивность запаха воды определяют экспертным путем при 20°С и 60°С и измеряют в баллах. СанПиН нормирует допустимую интенсивность привкуса - 2 балла, запаха - 2 балла.

Вкус

Вкус воды определяется растворенными в ней веществами органического и неорганического происхождения и различается по характеру и интенсивности.

Различают четыре основных вида вкуса: соленый, кислый, сладкий, горький. Все другие виды вкусовых ощущений называются привкусами.

Интенсивность вкуса определяют при 20°С и оценивают по пятибалльной системе. СанПиН нормирует допустимую интенсивность вкуса - 2 балла.

Цветность

Цветностью называют показатель качества воды, характеризующий интенсивность окраски воды. Определяется цветность путем сравнения окраски испытуемой воды с эталонами и выражается в градусах платиново-кобальтовой шкалы. Высокая цветность свидетельствует о неблагополучии воды. СанПиН нормирует допустимый показатель цветности - 20 градус Pt-Co шкалы.

Мутность

Мутность воды вызвана присутствием тонкодисперсных взвесей органического и неорганического происхождения. Главным отрицательным следствием высокой мутности является то, что она защищает микроорганизмы при ультрафиолетовом обеззараживании и стимулирует рост бактерий.

ВОЗ по показаниям влияния на здоровье мутность не нормирует, однако с точки зрения внешнего вида рекомендует, чтобы мутность была не выше 5 NTU (нефелометрическая единица мутности), а для целей обеззараживания - не более 1 NTU. СанПиН нормирует допустимый показатель мутности - 2,6 ЕМФ (по формазину) и 1,5 мг/л (по каолину).

Прозрачность

Прозрачность (или светопропускание) воды обусловлена ее цветом и мутностью, то есть содержанием в них различных окрашенных и взвешенных органических и минеральных веществ. Воду в зависимости от степени прозрачности условно подразделяют на прозрачную, слабоопалесцирующую, опалесцирующую, слегка мутную, мутную, сильно мутную.

Определение прозрачности воды - обязательный компонент программ наблюдений за состоянием водных объектов. Специальные нормы для контроля данного параметра СанПиНом не вводятся.

Бактериологические и паразитологические показатели

Для выделения и идентификации отдельных патогенных (болезнетворных) микроорганизмов в воде используется отдельная методика идентификации, требующая больших затрат времени.

Так как разнообразие бактерий, вирусов и простейших, которые могут быть обнаружены в воде, очень велико, специфические тесты на отдельные патогенные организмы не применимы для рутинного анализа микробиологического качества воды.

С практической точки зрения гораздо важнее часто и быстро производить один общий тест путем поиска неких индикаторных организмов, наблюдение за которыми позволяет контролировать микробиологическое загрязнение воды.

Общее микробное число

В качестве критерия бактериологической загрязненности используют подсчет общего числа образующих колонии бактерий (Colony Forming Units - CFU) в 1 мл воды. Полученное значение называют общим микробным числом. Высокое микробное число свидетельствует об общей бактериологической загрязненности воды и о высокой вероятности наличия патогенных организмов. СанПиН нормирует этот показатнль в 50 CFU.

Колиформные организмы (общие колиформы)

Колиформные организмы являются удобными микробными индикаторами качества питьевой воды. Согласно рекомендациям СанПиН, колиформные бактерии не должны обнаруживаться в системах водоснабжения с подготовленной водой. Допускается случайное попадание колиформных организмов в распределительной системе, но не более чем в 5% проб, отобранных в течение любого 12 - месячного периода. Присустствие же колиформных организмов в воде свидетельствует о ее недостаточной очистке, вторичном загрязнении или о наличии в воде избыточного количества питательных веществ.

Термотолерантные колиформные бактерии

Бактерии этого типа представляют собой группу колиформных организмов, способных ферментировать лактозу при 44 - 45 °С. Термотолерантные колиформные бактерии поддаются быстрому обнаружению и поэтому играют важную вторичную роль при оценке эффективности очистки воды от фекальных бактерий.

Более точным индикатором служит E.Coli (кишечная палочка), так как источником некоторых других термотолерантных колиформ могут служить не только фекальные воды.

СанПиН рекомендует контрольным лабораториям производить точное определение E.Coli в случаях обнаружения большого количества термотолерантных бактерий (при отсутствии санитарных аварий), либо, наоборот, в условиях, когда возможности комплексных микробиологических исследований ограничены.

Фекальные стрептококки

Термин «фекальные стрептококки» относится к тем стрептококкам, которые обычно присутствуют в экскрементах человека и животных. Фекальные стрептококки редко размножаются в загрязненной воде и поэтому могут использоваться при исследовании качества воды как дополнительный индикатор эффективности очистки воды.

Кроме того, стрептококки имеют высокую устойчивость к высушиванию и могут быть полезны для рутинного контроля после прокладки новых водопроводных магистралей или ремонта распределительной сети, а также для обнаружения загрязнения поверхностными стоками подземных или поверхностных вод.

Колифаги

Колифаги - это разновидность бактериофагов (вирусов бактерий, заражающих бактериальную клетку, размножающихся в ней и часто вызывающих ее гибель), живущих в колиформных бактериях. Бактериофаги предложены как индикаторы качества воды из-за своего сходства с кишечными вирусами (энтеровирусами) человека и легкости обнаружения в воде.

Сульфитредуцирующие клостридии

Споры клостридий способны существовать в воде значительно дольше, чем колиформные организмы, и они более устойчивы к обеззараживанию. Их присутствие в прошедшей дезинфекцию воде может указывать на ее недостаточную очистку и, следовательно, на то, что устойчивые к обеззараживанию патогенные микроорганизмы могли не погибнуть.

Лямблии

Лямблия - это простейший одноклеточный микроорганизм, существующий в двух отдельных морфологических формах: цисты (статическая форма) и трофозоиты (свободно живущая форма). Они устойчивы к кислотам, щелочам, веществам, содержащим активный хлор, и полностью инактивируются лишь при кипячении в течение не менее 20 минут.

Именно в силу вышеназванных причин нормами российского СанПиН и американского Агентства по Охране Окружающей Среды (USEPA) предусматривается полное отсутствие этих микроорганизмов в питьевой воде. Отсутствие в воде цист лямблий является важным показателем того, что вода очищена от целого ряда других простейших, таких как покоящиеся стадии (ооцисты) Cryptosporidium, амеб, а также энтеровирусов.

5.1.3 Радиологические показатели качества воды

Воздействие ионизирующей радиации на человека обусловлено как естественными, так и искусственными источниками излучения.

Доза облучения, получаемая человеком (здесь и далее под дозой подразумевается эффективная приведенная доза), складывается из двух составляющих - так называемого внешнего облучения (за счет источников ионизирующего излучения, находящихся вне тела человека) и внутреннего облучения (за счет радионуклидов, иначе говоря - радиоактивных изотопов, находящихся в организме человека). По данным ВОЗ среднемировая доза облучения, получаемая человеком за счет всех естественных источников (как внешних, так и внутренних), составляет 2.4 м3в/год.

Основное поступление радиоактивных элементов в организм человека происходит за счет дыхания (газ радон обуславливает до 75% всего внутреннего облучения) и пищи.

За счет питьевой воды - немного, так как естественные радиоактивными изотопы (продукты распада урана и тория) встречаются в ней в очень незначительных количествах. СанПиН установил ряд показателей радиологического качества воды.

Общая a (Alfa) - радиоактивность

Альфа-излучение гораздо опаснее, когда источник альфа-частиц находится внутри организма. По СанПиН рекомендована величина 0,1 Бк/л в качестве предельного значения общей альфа-активности для целей рутинного контроля радиологической безопасности воды.

Общая b (Beta) - радиоактивность

Бета-излучение может привести к ожогам кожи и очень опасно, когда источник бета-частиц попадает внутрь организма человека. СанПиН обозначают величину 1.0 Бк/л в качестве предельного значения общей бета-активности для целей рутинного контроля радиологической безопасности воды.

6. Основные типы загрязнений и методы их удаления

Значение чистой воды для человека трудно переоценить. К сожалению, вода практически никогда не бывает чистой, то есть всегда содержит какие-то примеси и растворенные вещества [11]. Она растворяет в себе огромное количество химических веществ, как органических, так и неорганических. Некоторые из них сами по себе возможно и не очень вредны для организма, но становятся вредными при контакте с другими. Другие же полезны, но сочетания могут приносить вред, в целом не сравнимый с пользой. Другая разновидность примесей - микроорганизмы, которые вызывают массу заболеваний: бактерии, вирусы, грибы, простейшие и т.д. Известно, что поступление в организм с питьевой водой веществ, в концентрациях выше предельно-допустимых, может вызвать необратимые изменения в работе важнейших систем жизнедеятельности человека.

Существуют различные методы очистки воды для приведения ее к норме [11,12]. Рассмотрим наиболее распространенные из них [11-14]:

1. Предварительная очистка воды

Если в качестве источника водоснабжения для приготовления питьевой воды используются поверхностные и подземные воды, требуется проведение тщательной предварительной очистки, которая включает в себя:

* первичное отстаивание с применением или без применения реагентов, в зависимости от состава исходной воды.

* коагуляция (т.е. введение в обрабатываемую воду солей алюминия, железа или полиэлектролитов), для укрупнения взвешенных и коллоидных частиц и перевода их в фильтруемую форму.

* механическая очистка воды с помощью фильтрования. Очистка воды с помощью фильтрования применяется для самых различных целей. Для очистки воды, подаваемой из общественных водопроводных сетей, как правило, применяется тонкое фильтрование с использованием:

-фильтров обратной промывки (данный тип фильтров представляет собой сетчатые фильтры, очистка в которых происходит посредством осаждения механических загрязнений на сетке фильтра и при обратной промывке водой смываются в дренаж)

-или патронных фильтров (данный тип фильтров представляет собой колбу со сменным фильтрующим элементом - патроном (картриджем), по истечении срока службы которого, производится замена на новый фильтрующий элемент).

В качестве элементов очистки используют сетки и картриджи со степенью фильтрации от 5мкм до 1мм, в зависимости от уровня загрязнений. В технике подготовки воды из индивидуальных подземных или поверхностных источников водоснабжения наиболее широко применяют скорые напорные фильтры. В качестве фильтрующего материала в зависимости от целей фильтрации применяется кварцевый песок, антрацит, доломит.

2. Очистка воды от железа

Решение проблемы очистки воды от железа представляется довольно сложной и комплексной задачей, в связи с этим вряд ли возможно установить какие-либо универсальные правила очистки.

Наиболее часто используемыми методами при очистке воды от железа являются:

* аэрация, т. е. Нагнетание воздуха и интенсивный процесс окисления в емкости. Расход воздуха для насыщения воды кислородом составляет около 30 л/м3.

* обработка воды сильными окислителями - озон, хлор, гипохлорит натрия, перманганат калия.

* фильтрование через модифицированную загрузку (пропускание воды через материалы для удаления железа, которые осуществляют не только очистку воды от окисленного железа (осадка), но и от растворенного железа с помощью химического взаимодействия).

Типичная картина, которая наблюдается при подъеме железистой воды из скважины, такова: вначале вода, выкачанная из скважины, абсолютно прозрачна и кажется чистой, но проходит несколько десятков минут и вода мутнеет, приобретая специфический желтоватый цвет. Через несколько часов муть начинает оседать, образуя рыхлый осадок. Процесс осаждения может длиться несколько дней. Скорость осаждения зависит от температуры и состава воды. Наличие железа можно определить и на вкус. Начиная с концентрации 1,0-1,5 мг/л вода имеет характерный неприятный металлический привкус. Игнорирование проблемы железа в воде оканчиваются плохо, и стоит дорого: потеря «белизны» ванн, отказ импортной бытовой техники, систем отопления и нагрева воды. В системе горячего водоснабжения проблемы, обусловленные повышенным содержанием железа, многократно возрастают. Уже при концентрации 0,5 мг/л идет интенсивное появление хлопьев, образующих рыхлый шлам, который забивает теплообменники, радиаторы, трубопроводы, сужает их проходное сечение.

Санитарные нормы КР ограничивают концентрацию железа в воде для хозяйственно-питьевых нужд в пределах 0,3 мг/л. В подземной же воде она колеблется в пределах от 0,5 до 20 мг/л. В Центральном регионе, включая Подмосковье - от 0,5 до 10 мг/л, наиболее часто 3-5 мг/л.

Все многообразие методов, применяемых в технологии очистки воды от железа, можно свести к двум основным типам - реагентные (для восстановления фильтрующих свойств загрузки используется дополнительный реагент) и безреагентные (для восстановления фильтрующих свойств загрузки используется промывка водой). Очистку от железа поверхностных вод можно осуществлять лишь реагентными методами, а в очистке от железа подземных вод распространение получили оба метода.

3. Очистка воды от солей жесткости

С жесткой водой сталкивается каждый, достаточно вспомнить о накипи в чайнике. В жесткой воде хуже пенится стиральный порошок и мыло. Жесткая вода не годится при окрашивании тканей водорастворимыми красками, в пивоварении, производстве водки, негативно влияет на стабильность майонезов и соусов. Чай и кофе тоже лучше заваривать мягкой водой. Жесткость воды определяется суммарным содержанием в ней растворенных солей кальция и магния. Гидрокарботаны кальция и магния образуют карбонатную или временную жесткость воды, которая полностью устраняется при кипячении воды в течение часа. В процессе кипячения растворимые гидрокарбонаты переходят в нерастворимые карбонаты, выпадающие в виде белого осадка или накипи, с выделением при этом углекислого газа. Соли же сильных кислот, например, сульфаты и хлориды кальция и магния - образуют некарбонатную или постоянную жесткость, не изменяющуюся при кипячении воды.

Жесткость пресных природных водоемов меняется в течение года, имея минимум в период паводка. Артезианская вода, как правило, более жесткая, чем вода из поверхностных источников. В Подмосковье жесткость артезианских вод меняется от 3 до 15-20 мг-экв/л в зависимости от места и глубины скважины.

Высокая гидрокарбонатная (временная) жесткость воды делает её непригодной для питания газовых и электрических паровых котлов и бойлеров. Стенки котлов постепенно покрываются слоем накипи. Слой накипи в 1,5 мм снижает теплоотдачу на 15%, а слой толщиной 10 мм - снижает теплоотдачу уже на 50%.

Снижение теплоотдачи ведет к увеличению расхода топлива или электроэнергии, что в свою очередь ведет к образованию прогаров, трещин на трубах и стенках котлов, выводя преждевременно из строя системы отопления и горячего водоснабжения.

В тех случаях, когда вода слишком жесткая и её необходимо умягчить, применяют следующие методы очистки воды:

* термический, основанный на нагревании воды,

* дистилляция или вымораживание

* реагентный

* ионообменный

* обратный осмос

* электродиализ

* и комбинированный, представляющего собой различные сочетания перечисленных методов.

4. Очистка воды обеззараживанием

Обеззараживание питьевой воды имеет важное значение в общем цикле очистки воды и почти повсеместное применение, так как это последний барьер на пути передачи связанных с водой бактериальных и вирусных болезней. Обеззараживание воды является заключительным этапом подготовки воды питьевой кондиции. Использование для питья подземной и поверхностной воды в большинстве случаев невозможно без обеззараживания.

Обычными методами обеззараживания при очистке воды являются:

* хлорирование путем добавления хлора, диоксида хлора, гипохлорита натрия или кальция;

* озонирование воды;

* ультрафиолетовое облучение.

Другие способы обеззараживания (воздействие ионов благородных металлов, ультразвук, радиоактивное излучение) крайне редко применяются в централизованных системах водоснабжения. Конкретный способ обеззараживания определяется с учетом производительности и затрат.

5. Очистка воды на активированном угле

Очистка воды на активированном угле чаще всего применяется на одной из последних ступеней очистки и является одним из классических способов получения питьевой воды. Такую дополнительную очистку воды необходимо в тех случаях, когда требуется устранить незначительные нарушения показателей цветности, вкуса и запаха воды. Активные угли также используются для очистки муниципальной водопроводной воды от хлора и хлорсодержащих соединений.

6. Очистка воды обратным осмосом С помощью этого метода можно проводить глубокую очистку воды. При оптимальных значениях температуры и давления подаваемой воды, степень очистки воды обратным осмосом составляет 95-98%. Разделение воды и содержащихся в ней веществ достигается с помощью полупроницаемой мембраны. Сами мембраны изготавливаются из различных материалов, например, полиамида или ацетатцеллюлозы и выпускаются в виде полых волокон или рулонов. Через микроскопически малые поры этих мембран (размер порядка 0,0001 микрона), могут пройти только молекулы воды и кислорода, а микроорганизмы, растворенные в воде соли и органические соединения и т.п. задерживаются мембраной. Степень очистки воды и связанная с этим производительность зависит от различных факторов, прежде всего от общего солесодержания сырой воды, а также солевого состава, давления и температуры. На стадии предварительной очистки воды следует ее отфильтровать и при необходимости очистить от хлора. Особые преимущества обратного осмоса заключаются в его высокой экологической безопасности. При очистке воды методом обратного осмоса получают питьевую воду наивысшего качества.

На практике при решении задачи получения чистой воды для бытовых или производственных нужд, требуется обязательное проведение анализа состава воды. И только после него можно говорить о выборе методов очистки воды и о количестве ступеней очистки, входящих в систему.

Таким образом, проблема очистки воды охватывает вопросы физических, химических и биологических ее изменений в процессе обработки с целью сделать ее пригодной для питья, т. е. очистки и улучшения ее природных свойств.

6.1 Традиционные способы очистки питьевой воды

вода экологический питьевой загрязнение

Озонирование

Проблема обеспечения населения питьевой водой, отвечающей требованиям стандарта, является одной из основных задач, стоящих перед предприятиями и организациями водообеспечения Кыргызстана [15-17].

В результате зарегулирования рек и строительства на них водохранилищ создались условия для развития планктона, что способствует увеличению цветности и появлению в воде привкусов и запахов. Органические примеси и химические загрязнения выносятся в водоёмы с неочищенными сточными водами населённых пунктов и промышленных предприятий. В результате этого во многих водоёмах, особенно вблизи крупных городов, природная вода содержит фенолы (до 2-7 ПДК), хлорорганические пестициды, аммонийный и нитритный азот (до 10-16 ПДК), нефтепродукты и многие другие загрязнения.

Периодически возникающие аварийные ситуации приводят к существенному ухудшению качества воды природных источников и соответственно качества питьевой воды. Только в последние годы отмечались резкое снижение её качества и появление в ней фенолов в количествах, превышающих ПДК в 100 и 1000 раз в промышленных районах Кыргызстана. В подземных водах часто обнаруживаются марганец, амины, нефтепродукты.

Барьерная роль существующих водопроводных очистных сооружений не велика, и в питьевой воде, потребляемой населением, содержатся практически те же загрязнения, что и в природной воде.

Одним из наиболее реальных и высокоэффективных методов очистки воды от указанных загрязнений является озонирование. Озонирование воды позволяет существенно улучшить качество питьевой и очищенной сточной воды и решить проблемы: здравоохранения и экологии.

Озонирование воды позволит кроме решения основных задач по улучшению качества очищенных сточных вод, упростить технологию подготовки природных вод. Наиболее широкое применение технология озонирования получила в области подготовки питьевой воды. В существующем многообразии методов и способов решения проблемы качественной очистки и обеззараживания воды озонирование является предпочтительным, что вызвано:

· трудностями решения проблем, связанных с образованием в очищенной воде в результате её хлорирования токсичных хлорорганических соединений;

· недостаточным количеством хлорреагентов, выпускаемых российской промышленностью;

· возможностью получения озона на месте применения;

· высокой активностью озона в отношении обеззараживания воды от бактерий и вирусов.

Озонирование можно применять как альтернативный метод очистки воды взамен традиционного хлорирования, в сочетании с хлором, перекисью водорода и другими окислителями, вместе с УФ-облучением, обработкой ультразвуком, фильтрацией с использованием песка, активированного угля, ионообменных смол. Наиболее традиционным является использование озона в конце технологической схемы. Для эффективного обеззараживания при этом необходимо создать концентрацию озона 0.4-1мг/л и поддерживать её в течение 4 минут. Озон можно использовать для предварительной обработки воды с целью перевода растворённых веществ в коллоидную форму с последующим осаждением на фильтрах, так как он обладает флокулирующим эффектом.

Преимущество озонирования состоит в том, что под действием озона одновременно с обеззараживанием происходит обесцвечивание воды, а также устраняются запахи и привкусы воды и вообще улучшаются её вкусовые качества. Озон не изменяет натуральные свойства воды, так как его избыток (не прореагировавший озон) через несколько минут превращается в кислород. С одной стороны, это вызывает некоторые технические трудности, а с другой - создаёт определённые преимущества, так как даже при некотором передозировании остаточные количества его не могут быть велики и не требуют устранения. Остаточный озон в количестве 3.5-5 мг/л в течение 30 минут снижается до 0.2-0.3 мг/л.

Озонная обработка удаляет земляной привкус воды в результате снижения концентрации геосмина в 5-10 раз. Несмотря на появление у воды после обработки озоном нового вкусового компонента, суммарные вкусовые качества озонированной воды улучшаются.

Озон начали применять для дезинфекции питьевых вод раньше, чем хлор. Но несмотря на это озон ещё не нашёл достаточного распространения в технике водоподготовки, особенно в России. Основными причинами этого являлась, по видимому, нехватка электроэнергии, а также то, что химические и физические свойства водного раствора озона ещё мало изучены. В настоящее время на ряде водоподготовительных установок в теплоэнергетике возникла также проблема интенсивного зарастания ионообменных фильтров биомассой. Не изменяя ионообменных свойств загрузки, биомасса увеличивает сопротивление загрузки, что приводит к существенному снижению скорости фильтрования.

Согласно литературным данным, для предотвращения развития биомассы и стерилизации фильтров применяют различные окислители, такие как активный хлор, содержащийся в электроактивированном растворе хлористого натрия, формальдегид, перуксусная кислота, хлорамин Т и др.

Механизм бактерицидного действия хлора и его кислородсодержащих соединений заключается во взаимодействии с составными частями клетки микроорганизма, в первую очередь с ферментами, что ведёт к нарушению обмена веществ в клетке и отмиранию микроорганизмов. В практике обработки воды применяют свободный хлор, соли хлорноватистой кислоты (гипохлориты) и диоксид хлора ClO2. При растворении хлора в воде происходит гидролиз с образованием хлорноватистой и хлороводородной (соляной) кислот.

6.2 Осветление, обесцвечивание и обеззараживание воды

Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры. В осветлителях и отстойниках вода движется с замедленной скоростью, вследствие чего происходит выпадение в осадок взвешенных частиц. В целях осаждения мельчайших коллоидных частиц, которые могут находиться во взвешенном состоянии неопределенно долгое время, к воде прибавляют раствор коагулянта (обычно сернокислый алюминий, железный купорос или хлорное железо) [14,15]. В результате реакции коагулянта с солями многовалентных металлов, содержащимися в воде, образуются хлопья, увлекающие при осаждении взвеси и коллоидные вещества.

Коагуляцией примесей воды называют процесс укрупнения мельчайших коллоидных и взвешенных частиц, происходящий вследствие их взаимного слипания под действием сил молекулярного притяжения.

Фильтрование -- самый распространенный метод отделения твердых частиц от жидкости. При этом из раствора могут быть выделены не только диспергированные частицы, но и коллоиды.

В процессе фильтрования происходит задержание взвешенных веществ в порах фильтрующей среды и в биологической пленке, окружающей частицы фильтрующего материала. Вода освобождается от взвешенных частиц, хлопьев коагулянта и большей части бактерий.

Обесцвечивание воды, т. е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Обеззараживание воды, или ее дезинфекция, заключается в полном освобождении воды от болезнетворных бактерий. Так как полного освобождения ни отстаивание, ни фильтрование не дают, с целью дезинфекции воды применяют хлорирование и другие способы, описанные ниже.

На примере типовой схемы очистной станции водопровода показан комплекс составляющих ее элементов (рис. 2.1).

Главнейшие из этих элементов следующие:

Насосная станция первого подъема, подающая воду на очистные сооружения.

Смеситель 2, обеспечивающий перемешивание раствора коагулянта, поступающего из реагентного хозяйства 3, с обрабатываемой водой. В практике применяют гидравлические и механические типы смесителей. На схеме показан дырчатый смеситель, представляющий собой лоток с дырчатыми перегородками, в котором происходит перемешивание воды с раствором коагулянта.

Рис. 2.1 Камера реакции 4, в которой завершается химическая реакция и образуются хлопья коагулянта

На схеме приводится камера реакции, помещаемая внутрь вертикального отстойника. Хлопьеобразование в ней завершается в течение 10...15 мин.

Отстойники 5, которые в зависимости от направления движения воды подразделяются на горизонтальные, вертикальные и радиальные. Горизонтальный отстойник в плане -- прямоугольник. Глубина его 3...5 м. Вода движется через отстойник со скоростью, не превышающей 5 мм/с, а при коагулировании -- 10 мм/с. В целях равномерного распределения потока в поперечном сечении отстойника предусматривается конструктивная деталь, обеспечивающая равномерное поступление воды в отстойник и отвод ее, например дырчатая стенка.

На станциях меньшей производительности применяют вертикальные отстойники, состоящие из двух цилиндров, вложенных один в другой. Диаметр внешнего цилиндра -- не больше 12 м. Отношение диаметра к высоте отстойника (D/H) принимают в пределах 1,2...2. Вода поступает во внутренний цилиндр, в котором находится камера реакции, опускается вниз, затем осветляется, поднимаясь в вертикальном направлении вверх по среднему кольцевому пространству со скоростью 0,5...0,75 мм/с. Осветленная вода через отводящие желоба отводится трубой или по каналу на фильтр.

Радиальные отстойники диаметром от 5 до 60 м занимают среднее положение между горизонтальными и вертикальными отстойниками. Вода попадает в центральную часть отстойника и, постепенно уменьшая скорость, движется в радиальном направлении к лотку, расположенному вдоль периферийной части, из которого отводится.


Подобные документы

  • Физико-химическая характеристика питьевой воды. Гигиенические требования к качеству питьевой воды. Обзор источников загрязнения воды. Качество питьевой воды в Тюменской области. Значение воды в жизни человека. Влияние водных ресурсов на здоровье человека.

    курсовая работа [50,2 K], добавлен 07.05.2014

  • Качество питьевой воды, доступ к чистой воде городского и сельского населения. Основные пути и источники загрязнения гидросферы, поверхностных и подземных вод. Проникновение загрязняющих веществ в круговорот воды. Методы и способы очистки сточных вод.

    презентация [3,1 M], добавлен 18.05.2010

  • Гидрологический и гидрохимический режим поверхностных водотоков. Организация водоснабжения района. Общая технологическая схема очистки питьевой воды. Химические и физические процессы, происходящие при этом. Методы обработки воды для улучшения ее качества.

    курсовая работа [2,5 M], добавлен 24.10.2014

  • Физико-химическая характеристика питьевой воды, ее основные источники, значение в жизни и здоровье человека. Главные проблемы, связанные с питьевой водой, и пути их решения. Биологические и социальные аспекты взаимодействия человека со средой обитания.

    контрольная работа [26,7 K], добавлен 07.10.2009

  • Роль питьевой воды для здоровья населения. Соответствие органолептических, химических, микробиологических и радиологических показателей воды требованиям государственных стандартов Украины и санитарного законодательства. Контроль качества питьевой воды.

    доклад [19,7 K], добавлен 10.05.2009

  • Проведение экологического мониторинга состояния питьевой воды. Выявление основных загрязнителей. Установление соответствия качества питьевой воды санитарным нормам. Характеристика основных методов очистки воды для хозяйственно-питьевого водоснабжения.

    презентация [1,1 M], добавлен 12.04.2014

  • Основные источники загрязнения водных объектов. Физико-химические, бактериологические и паразитологические, радиологические показатели качества воды, методы очистки. Влияние химического состава питьевой воды на здоровье и условия жизни населения.

    реферат [459,5 K], добавлен 28.11.2011

  • Роль воды в жизни человека. Исследование качества водопроводной воды в в деревне Уть, источники загрязнения. Результаты исследования проб воды. Влияние химических примесей в воде на здоровье человека. Пути решения данной экологической проблемы.

    практическая работа [332,8 K], добавлен 18.01.2011

  • Нормативно-правовая база, регулирующая качество питьевой воды в Украине. Рассмотрение органолептических и токсикологических свойств воды. Ознакомление со стандартами качества питьевой воды в США, их сравнение с украинскими и европейскими стандартами.

    реферат [347,9 K], добавлен 17.12.2011

  • Особенности состава и загрязнения природной воды. Требования к питьевой воде, которая должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства. Методы очистки воды.

    реферат [19,1 K], добавлен 03.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.