Общие принципы и понятия водной экологии и гидробиологии

Предмет, цель, задачи, основные методы водной экологии и гидробиологии. Место гидробиологии в системе естественных наук. Рассмотрение экологических процессов в водоемах и водотоках. Происхождение воды и гидросферы. Очистка питьевых и сточных родников.

Рубрика Экология и охрана природы
Вид лекция
Язык русский
Дата добавления 05.03.2014
Размер файла 79,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Предмет, цель, задачи, основные методы водной экологии и гидробиологии

Предметом исследований гидробиологии являются экологические процессы в водной среде, т. е. процессы взаимодействия гидробионтов, их популяций и сообществ между собой и с абиотическими компонентами водных экосистем. Водная экология исследует, кроме того, и воздействие человека на эти процессы.

Цель гидробиологии может быть определена как понимание экологических процессов, происходящих в водной среде. Управление этими процессами с целью оптимизации использования водных ресурсов может считаться целью водной экологии.

Основной задачей гидробиологии является изучение экологических процессов в гидросфере, тогда как применение их в интересах освоения гидросферы и оптимизации взаимодействия человеческого общества с водными экосистемами - основная задача водной экологии.

Главная теоретическая задача гидробиологии: изучение общих внутренних закономерностей структурно-функциональной организации водных экосистем, которые и определяют круговорот вещества и поток энергии в них, а водной экологии: исследование зависимостей круговоротов вещества и потоков энергии от факторов внешней среды, в том числе и антропогенных.

Конкретные практические задачи гидробиологии и водной экологии:

1. Повышение биологической продуктивности водоемов для получения из них наибольшего количества биологического сырья.

2. Разработка биологических основ обеспечения людей чистой водой, в том числе оптимизация функционирования экосистем, создаваемых для промышленной очистки питьевых и сточных вод.

3. Экспертная оценка экологических последствий зарегулирования, перераспределения и переброски стока рек, антропогенного изменения гидрологического режима озер и морей.

4. Оценка вновь создаваемых промышленных, сельскохозяйственных и других предприятий для водных экосистем с целью охраны последних от недопустимых повреждений.

5. Мониторинг состояния водных экосистем.

Главным методом гидробиологии, как и остальных экологических дисциплин, является системный подход, т.е. рассмотрение экосистемы как целого, и количественный учет протекающих в ней потоков энергии, вещества и информации. Следовательно, гидробиология всегда оперирует величинами численности организмов, их биомассы и продукции.

Для количественного учета используют различные орудия и приборы как специфически гидробиологические - планктонные сети, дночерпатели, драги, планктоночерпатели, батометры различных конструкций, так и многие приборы, заимствованные из арсеналов гидрохимии, гидрофизики, гидрологии. В последнее время часто используются погружные и дистанционные биофизические приборы.

Методы могут быть подразделены на следующие три группы: общие, особенные и частные методы.

Общие методы касаются всей геоэкологии. Это различные формы диалектического метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени. В естествознании диалектический метод выступает как сравнительный (например, в биологии, географии, химии) метод, с помощью которого раскрывается всеобщая связь явлений, или как исторический. Иногда оба этих метода сочетаются в единый сравнительно-исторический метод, который глубже и содержательней каждого из них в отдельности и широко используется в водной экологии.

Особенные методы касаются не предмета в целом, а лишь одной из его сторон (явления, сущности явления, количественной стороны) или же определенного приема исследований. К особенным методам относятся, в частности, анализ и синтез, индукция и дедукция.

Анализ (греч. analysis- разложение) и синтез (греч. synthesis- соединение) в самом общем значении- это процессы мысленного или фактического разложения целого на составные части и восстановления целого из частей соответственно. Цель анализа - познание частей как элементов сложного целого.

Синтез, напротив, есть процесс объединения в единое целое частей, свойств, отношений выделенных посредством анализа. Синтез дополняет анализ и находится с ним в неразрывном единстве. Дедукция (от лат. deductio- выведение) - один из основных способов рассуждения (умозаключения) и методов исследования. Под дедукцией в широком смысле понимается любой вывод вообще, в более специфическом и наиболее употребительном смысле - доказательство или выведение утверждения (следствия) из одного или нескольких других утверждений (посылок) на основе законов логики, носящее достоверный характер.

Индукция (от лат. inductio- наведение) еще один тип умозаключения и метод исследования. Как форма умозаключения индукция обеспечивает возможность перехода от единичных фактов к общим положениям. В качестве метода исследования индукция понимается как путь опытного изучения явлений, в ходе которого от отдельных фактов совершается переход к общим положениям. Отдельные факты как бы наводят на общее положение. В реальном познании индукция всегда выступает в единстве с дедукцией. водная экология гидробиология питьевой

Особенными методами являются также практические методы: наблюдение, эксперимент, сравнение, измерение. Исключительно важны математические приемы и методы, роль которых неуклонно возрастает по мере все более широкого применения счетно-вычислительных машин.

К частным методам относятся специальные методы, действующие либо только в пределах отдельной отрасли естествознания, либо за пределами той отрасли, где они возникли. Так методы физики, используемые в других отраслях естествознания привели к созданию геофизики и физической химии. Распространение химических методов привело к созданию геохимии, биохимии и т.д.

В ходе прогресса методы могут переходить из более низкой категории в более высокую: частные превращаются в особенные, особенные в общие.

Методическую основу водной экологии как современной науки составляет сочетание системного подхода, натурных наблюдений, эксперимента и моделирования. Экологическая практика охватывает собой множество приемов и методов исследований, адекватных многообразию направлений экологии и потому здесь перечислены лишь некоторые из них:

· Режимные систематические (мониторинговые) наблюдения за состоянием водных объектов и процессов и влияющими на них антропогенными (техногенными) факторами;

· аналитические исследования природных и искусственных объектов;

· исследования морфологических параметров природных водных объектов;

· статистические методы оценки процессов и явлений, происходящих на водных объектах и их водосборах;

· дистанционные методы исследований и методы специальной картографии водотоков и водосборов;

· методы математического моделирования гидроэкологических процессов;

· системный анализ гидроэкологической информации;

· методы социальной демографии; · паспортизация природных и искусственных водных объектов;

· экологический менеджмент;

· экологический аудит.

Как правило, в гидроэкологических исследованиях эти и другие применяемые методы исследований используются совместно или комплексиpуются.

Будучи одной из наук гидрологического цикла, водная экология использует общие для него теоретические и эмпирические методы: анализ и синтез, дедукцию и индукцию, наблюдение, сравнение (включая измерение) и эксперимент (включая моделирование).

Эмпирические методы подразделяются на "полевые" и "лабораторные", соответственно тому, проводятся ли они в условиях, приближенных к естественным или в условиях, контролируемых исследователем. И те и другие могут предполагать использование инструментария: измерительного и аналитического оборудования, устройств для фиксации, снятия и обработки данных.

Эмпирические данные могут быть использованы лишь после их теоретической обработки, то есть после включения в логическую конструкцию: гипотезу, теорию, концепцию. В последнее время особую важность приобрели планомерные, поддающиеся эффективному анализу экологические исследования, складывающиеся в мониторинг - систему долгосрочных наблюдений, оценки, контроля и прогноза состояния и изменения объектов. Мониторинг принято делить на фоновый, глобальный, региональный и импактный (в особо опасных зонах и местах). По способам ведения различают космический, авиационный и наземный мониторинг. В систематизации и анализе накапливаемых данных особое значение имеет создание баз данных и использование ГИС-технологий.

2. Общие принципы и понятия водной экологии и гидробиологии

Гидробиология как наука экологическая прежде всего исходит из представления о том, что организмы и другие живые системы не могут существовать без окружающего их внешнего мира, в то время как последний остается объективной реальностью вне зависимости от присутствия или отсутствия в нем тех или иных живых тел.

Среда -- это совокупность тех элементов внешнего мира, с-которыми особи вида связаны прямыми приспособительными отношениями. Например, растворенный в воде кислород -- элемент среды рыб, адаптированных к его потреблению, но не водных млекопитающих, хотя косвенно влияет на них. Из большого числа природных тел и явлений, составляющих внешний мир, только некоторая их часть образует среду особей того или иного вида. Среда организмов двух или нескольких видов может совпадать или различаться в неодинаковой степени. То же самое справедливо в отношении среды одного организма на разных стадиях развития. В случае исчезновения из водоема организмов он перестает быть для них средой. Вместе с тем водоем может рассматриваться в качестве возможной среды для отсутствующих в нем организмов, в частности тех, которые предполагаются в качестве объектов акклиматизации. Зная жизненные потребности акклиматизируемых организмов и свойства водоема, можно составить правильное представление о последнем как благоприятной или неблагоприятной среде для предполагаемых к вселению гидробионтов. Следует отметить, что многие экологи понимают под средой все элементы внешнего мира, прямо или косвенно влияющие на организм.

Элементы среды, оказывающие то или иное непосредственное влияние на существование населения, называются факторами воздействия, или просто факторами. По своей природе они могут быть разделены наабиотические -- физико-химические воздействия мертвой среды, биотические -- воздействия одних элементов населения на другие и антропогенные -- влияния человека на живую природу (как сознательные, так и невольные), сопутствующие развитию цивилизации. В одних случаях факторы среды могут иметь небольшую амплитуду изменчивости (например, температура, соленость и плотность воды морских глубин), в других -- значительно большую (те же самые свойства морской воды, но не в глубине, а у поверхности).

Различные виды могут существовать только в определенном пределе изменчивости отдельных элементов среды. Амплитуда колебаний фактора, которую может выдерживать вид, называется его экологической валентностью. Формы с широкой экологической валентностью обозначаются как зврибионтные, с узкой -- какстеиобионтные (еигуз -- широкий, з1епо5 -- узкий). Примером стенобионтных форм могут служить мадрепоровые кораллы, обитающие только в морях на твердых грунтах при температуре не ниже 20° С и не выносящие даже легкого опреснения воды. В качестве эври-бионтного вида можно назвать, которая встречается в морях, засоленных болотах и пресных водоемах, в теплых и холодных озерах. Виды с очень высокой степенью эврибионтности, вроде только что указанной корненожки, называются убиквистами.

Степень экологической валентности вида можно оценивать не только в отношении широкого комплекса факторов (эври- или стенобионтность), но и применительно к каждому из них в отдельности, добавляя к названию соответствующего фактора греческое «эври» или «стено». Например, голотурия Е1рШ1а §1аыаИз, не встречающаяся в воде с температурой выше 1°С, представляет собой стенотермную форму, а упоминавшаяся корненожка С. атрии -- эвритермную (Шегтоз -- тепло).

Виды, стенобионтные в отношении какого-то фактора, существуют при его высоких или низких абсолютных значениях. Если они нуждаются в высоких значениях какого-то фактора, то к русскому названию последнего добавляется «любивый», а к греческому -- «фильный» (Шео -- люблю), и таким образом полученным термином характеризуется экологический облик организмов. Например, стенотермные формы, обитающие в теплых водах, будут называться теплолюбивыми, или термофильными, в холодных -- холодолю-бивыми, или криофильными(кпоз-- холод). Если особи вида избегают высоких значений фактора, то это обозначается термином, образованным из названия данного фактора с добавлением греческого «фобный» (!оЬоз -- боязнь). Например, формы, не терпящие заметного осолонения воды, будут называться галофобными {^а1з-- соль). Иногда используется другая терминология: виды, обитающие в условиях высокой выраженности данного фактора, называются его бионтами. Так, формы, населяющие соленые воды, называются галобионтами, обитающие на течении, -- реобионтами (гео -- теку) и т. п.

Экологическая валентность вида тем шире, чем изменчивее его среда. По этой причине, например в морях, прибрежные формы, как правило, более звритермны и эвригалинны, чем обитатели открытой зоны, где температурные и солевые условия устойчивее. Точно так же обитатели поверхностного слоя воды эвритермнее и эвригалиннее глубоководных форм, живущих в условиях высокой степени постоянства температурного и солевого режима. Чем вариабильнее условия жизни в водоеме, тем разнообразнее видовой состав его населения. Чем больше какой-либо фактор отклоняется в водоеме от средних значений, тем однообразнее население последнего.

Знание типа водоема, в котором обитают те или иные гидробионты, позволяет получить некоторое представление о среде последних, и, например, называя виды морскими, озерными или речными, мы в какой-то степени обрисовываем их экологический облик. Дальнейшая конкретизация его возможна путем выяснения приуроченности вида к тем или иным биотопам внутри водоема и изучения комплекса условий, которыми характеризуются эти биотопы. К основным, наиболее различающимся между собой биотопам гидросферы относятся толща воды, или пелагиаль (открытое море), и дно водоемов, или бенталъ (глубина). Соответственно этому в качестве основных жизненных форм водного населения выделяют пелагос--обитателей толщи воды и бентос-- население дна. К пелагобентосу относят формы, способные попеременно вести то пелагический, то бентосный образ жизни. Население, обнаруживающееся на различных предметах и живых телах, находящихся в толще воды, получило название перифитона (реп -- вокруг, растение).

Среди населения пелагиали различают представителей планктона и нектона (р1апйоз -- парящий, пейоз -- плавающий). К первому относятся формы либо не способные к активным движениям, либо обладающие ими, но не могущие противостоять токам воды, которыми переносятся с места на место (водоросли, простейшие, коловратки, рачки и другие мелкие животные). Пелагические организмы, часть тела которых находится в воде, а часть над ее поверхностью (некоторые сифонофоры, ряска и др.), получили название плейстона (плавать на корабле). К нектонным формам принадлежат крупные животные, двигательная активность которых достаточна для преодоления водных течений (рыбы, кальмары, млекопитающие). Особую жизненную форму, получившую название неистона (пет -- плавать), образуют растения и животные, жизнь которых связана с поверхностной пленкой воды. Организмы бентоса, планктона, нектона, неистона и перифитона могут быть соответственно названы бентонтами, планктонтами, нектонтами и т. д. (существующее). Совокупность взвешенных в воде органоминеральных частиц (детрит или триптон) и планктонных организмов называется сестоном (5ез1о5 -- просеянный).

Наряду с видами, адаптированными к жизни только в водной среде, гидробиология изучает также те, которые могут существовать как в воде, так и на суше. Некоторые из таких форм (водный лютик, земноводная гречиха, стрелолист и др.) одинаково хорошо живут в обеих средах, другие (лягушки, тритоны, некоторые раки и рыбы) преимущественно адаптированы к жизни в воде, но могут значительное время пребывать вне ее, третьи (бобр, выхухоль, нутрия) значительную часть жизни проводят на суше и лишь сравнительно небольшое время находятся в воде. Все перечисленные формы, адаптированные к жизни как в водной, так и воздушной среде, называются амфибионтными. Среди них в особую группу выделяют полуводные организмы, часть тела которых находится в воде, а часть -- на воздухе (камыш, тростник, осока и др.). Наконец, к объектам гидробиологического изучения относятся водные стадии гетеротопных, или воздушно-водных организмов, часть жизненного цикла которых осуществляется в воздушной, а часть -- в водной среде (например, многие насекомые, ведущие в имагинальной стадии воздушный образ жизни, а в личиночной -- водный).

Гидробионты существуют в гидросфере не изолированно, а как компоненты более сложных биологических тел -- популяций и биоценозов. Популяции гидробионтов и гидробиоценозы -- не арифметическое множество организмов, так же как последние -- не просто сумма клеток. Подобно организмам, популяции гидробионтов и водные биоценозы обладают динамической структурой, состояние которой, меняющееся в заданном порядке, определяется особенностями потока материи (химические превращения), энергии (энтропийные процессы) и информации (преобразования систем). Представляя собой коллективы более простых биологических тел, популяции гидробионтов и гидробиоценозы в свою очередь являются компонентами систем следующих иерархических рангов. К ним относятся биомы -- население отдельных водоемов и биота -- живой компонент всей биосферы.

Изучая надорганизменные системы, гидробиолог обращает главное внимание не на познание их структуры, взаимодействия внутрисистемных компонентов, механизмов гомеостаза и других черт организации. Точно так же для него не является самоцелью изучение особенностей потока материи, энергии и информации в надорганизменных системах, что относится к задачам биогеоценологии.

Для гидробиолога популяции и биоценозы представляют интерес прежде всего как системы, производящие нужные человеку организмы и определяющие качество потребляемой им воды. С этой точки зрения наиболее важной характеристикой надорганизменных систем служат их продукционные свойства -- эффективность трансформации исходной энергии и количество полезных продуктов, образующихся в процессе круговорота веществ и способных изыматься из него без разрушения систем, в пределах их саморегуляционных возможностей. Сопоставление энергии, проходящей через популяцию или биоценоз, с той, которая запасается в продуктах, интересующих человека, дает представление об эффективности этих систем как производителей биологического сырья. Энергия, рассеиваемая популяциями или биоценозами, характеризует величину их минерализационной деятельности, которая лежит в основе биологического самоочищения водоемов.

В известных пределах термодинамический принцип вполне может быть применен к решению обеих основных задач гидробиологии-- повышению биологической продуктивности водоемов и обеспечению чистоты природных вод. Использование в гидробиологии энергетического принципа, впервые в широком масштабе осуществленное Р. Линдеманном в 1942 г., заслуживает полного внимания, так как позволяет в единых сопоставимых единицах выражать результаты биологических процессов, протекающих в водных экосистемах. Помимо этого, энергетический подход с использованием понятий и терминов термодинамики усиливает количественный подход к решению биологических задач и облегчает широкое применение современных средств математики для анализа получаемых результатов.

3. Водная экология и гидробиология, их место в системе естественных наук

Предложено и предлагается много определений гидробиологии. Представляется наиболее корректным следующее: гидробиология - наука о надорганизменных формах организации жизни, изучающая структуру и функционирование водных экосистем. Данное определение охватывает изучение отдельных водных организмов (гидробионтов), их популяций и сообществ, взаимодействий между ними и с неживой природой.

Водная экология (гидроэкология, экология гидросферы) - часть геоэкологии, изучающая водные экосистемы как совокупность трех взаимодействующих компонентов: водной среды, водных организмов и деятельности человека.

Гидробиология и водная экология тесно связаны, прежде всего, с науками о гидросфере - гидрохимией, гидрофизикой, гидрологией.

Гидрохимия - часть геохимии, изучающая химический состав естественных вод и протекающие в них химические реакции. Гидрофизика - часть геофизики, исследующая физические свойства природных вод и протекающие в них физические процессы. Гидрология - часть географии, изучающая природные воды, закономерности круговорота воды в природе.

Близка гидробиология и к таким географическим дисциплинам, как океанология и лимнология.

Океанология - наука о Мировом океане (т. е. совокупности океанов и морей земного шара) и процессах, протекающих в нем.

Лимнология (или озероведение) изучает воды замедленного стока поверхности суши. Кроме того, в гидрологии суши можно выделить еще науку о водотоках (потамология ), ледниках (гляциология).

Лимноэкология - часть гидроэкологии, изучающая структуру и функционирование экологических систем поверхностных пресных вод суши (озер, водохранилищ, рек).

Гидробиология связана и с рядом биологических дисциплин (зоологией, ботаникой, микробиологией).

Естественно, являясь дисциплинами биологическими и географическими, гидробиология и водная экология, тем не менее, в первую очередь, теснейшим образом связаны с экологией, частями которой они являются. Следует отметить, что именно водная экология является одной из самых успешно развивающихся частей экологии.

4. Основные направления водной экологии и гидробиологии

Общая гидробиология изучает экологические процессы в водоемах и водотоках. В ней выделяются:

* системная гидробиология;

* трофологическая гидробиология;

* энергетическая гидробиология;

* этологическая гидробиология;

* палеогидробиология;

* бентология;

* планктология.

Системная гидробиология - приложение общей теории систем и ее методов в водной экологии. Она занимается общими проблемами организации биосистем в гидросфере, их поведением, самоорганизацией и самоуправлением, моделированием водных биосистем, прогнозу их состояния при различных внешних воздействиях.

По изучаемым процессам различаются трофологическая гидробиология - пищевые связи, биологическая трансформация веществ, энергетическая гидробиология - поток энергии, ее биологическая трансформация, этологическая гидробиология - поведение гидробионтов, палеогидробиология - исторические изменения водных экосистем.

По локализации изучаемых процессов в общей гидробиологии можно выделить бентологию и планктологию. Первая занимается экологическими процессами, проходящими на дне водоемов и водотоков, вторая - в толще вод.

Частная гидробиология изучает специфику экологии водных объектов разного типа. Выделяют гидробиологию морей, озер, прудов, болот, луж, временных и пересыхающих водоемов и др. То же происходит и для водотоков: гидробиология рек различных типов, ручьев. Кроме того, существует гидробиология подземных и пещерных вод, гидробиологии полярных и тропических водоемов, водоемов умеренного пояса и субтропических.

Водная экология, изучающая взаимодействие водных экосистем и человеческой деятельности тесно смыкается с прикладной гидробиологией. Последняя, как это следует из самого её названия, занимается прикладными приложениями результатов общей или теоретической гидробиологии. В нее входят:

* Продукционная гидробиология, изучающая биологические основы продуктивности водоемов (например, повышения вылова рыбы, урожая морепродуктов и т.п.).

* Санитарная гидробиология, занимающаяся решением проблем чистой воды, самоочищения водоемов.

* Медицинская гидробиология, исследующая происхождение и распространение болезней, связанных с водой (в первую очередь - инфекционных). Ее подразделом является гидропаразитология, разрабатывающая методы борьбы с паразитическими животными, обитающими в водоемах, в том числе личиночными стадиями паразитов.

* Токсикологическая гидробиология или водная токсикология, изучающая возможность вреда продуктов техногенеза для водных объектов, в частности, влияние токсикантов на гидробионтов и экосистемные процессы.

* Радиологическая гидробиология, решающая вопросы, связанные с поступлением в водоемы радионуклидов, влиянием их на гидробионтов, накоплением их в трофических цепях.

* Техническая гидробиология, изучающая биологические явления, представляющие опасность для техники, контактирующей с водой (биокоррозия, обрастания и т.п.). Частным случаем ее можно считать навигационную гидробиологию, которая исследует водные биологические процессы, препятствующие судоходству.

5. История развития водной экологии и гидробиологии

Область знаний, отражающая взаимоотношение живых тел и различного рода их объединений с неживым и живым окружением имеет более чем 2000-летнюю историю. Но, только в середине XIX века эта область знаний, благодаря трудам К.Ф. Рулье и Э. Геккеля, приобрела статус самостоятельной науки. В своих работах, опубликованных в 1866 и 1868 гг. Эрнст Геккель так определяет новую науку: "Под экологией мы понимаем сумму знаний, относящихся к экономике природы: изучение всей совокупности взаимоотношений животного с окружающей его средой, как органической, так и неорганической, и прежде всего - его дружественных или враждебных отношений с теми животными и растениями, с которыми он прямо или косвенно вступает в контакт.

Современная водная экология (гидроэкология) вбирает в себя проблемы окружающей среды, использует науки о Земле, физику, химию, компьютерные науки и т.д. развивалась вместе с экологией. В истории её развития можно выделить три этапа:

1 этап. С древних времён - до 60-х годов 19-го века. Первые сообщения экологического характера связаны с такими центрами древней культуры, как Китай, Египет, Индия, Греция. Уже в работах древнегреческих философов Гераклита (530 - 470 гг. до н.э.), Гиппократа (460 - 356 гг. до н.э.), Аристотеля (384 - 322 гг. до н.э.), Теофраста Эрезийского (372 - 287 гг. до н.э.), Плиния Старшего (23 - 79 гг.) и других содержатся сведения экологического характера. Например, в трактате Гиппократа «О воздухе, воде и местности» содержатся сведения о влиянии условий окружающей среды на здоровье человека.

Аристотель описал 500 известных ему видов животных, особенности их поведения и приспособления к условиям окружающей среды. Ученик Аристотеля Теофраст Эрезийский - “отец ботаники”, как его часто называют, описывал особенности роста растений в разных условиях среды, зависимость их форм и особенностей их роста от грунта и климата.

В эпоху Возрождения продолжалось накопление данных о растительном и животном мире. Первые систематики Д. Цезалпин (1519 - 1603), Д.Рей (1627 - 1705), Ж. Турнефор (1556 - 1708) в своих трудах приводят сведения экологического характера, в частности, зависимость распространения растений от условий их произрастания. Т. Мальтус ещё в 1798 г. описал уравнение экспоненциального роста популяции, на основе которого строил демографические концепции.

2 этап. 60-е годы 19-го века - 50-е годы 20-го века. Важный этап в становлении экологии как новой области знания. Ознаменовался выходом работ русских учёных Н.А. Северцова, В.В. Докучаева, В.И. Вернадского. Неоценимый вклад в развитие науки внёс в своё время Ч. Дарвин, которые ввёл понятие «борьба за существование». Это обстоятельство следует рассматривать как взаимодействие живых организмов с биотическими и абиотическими условиями среды. С введением практически однозначных понятий «экосистема» А. Тенсли и «биогеоценоз» В.Н. Сукачёвым стали интенсивно развиваться экологические исследования надорганизменного уровня. Это направление широко использовало количественные методы определения функций экосистем и математическое моделирование биологических процессов.

3 этап. 60-е годы 20-го века - до наших дней. С середины столетия экология оказывается в центре общечеловеческих проблем, наблюдается превращение экологии в комплексную междисциплинарную науку. Продолжаются исследования свойств биосферы, начатые В.И. Вернадским. Стало ясно, что популяция - не просто «население», т. е. сумма особей на какой-то территории, а самостоятельная биологическая (экологическая) система надорганизменного уровня, обладающая определенными функциями и механизмами авторегуляции, которые поддерживают ее самостоятельность и функциональную устойчивость. Это направление наряду с интенсивным исследованием многовидовых систем занимает важное место в современной классической экологии. Выдающимися представителями классической экологии этого периода являются Ю. Одум, Н.Ф. Реймерс, Н.П. И.А. Наумов, С.С. Шварц. Постепенно раскрывается роль многовидовых совокупностей живых организмов в осуществлении биогенного круговорота веществ и поддержании жизни на Земле.

Начиная с середины XIX в. гидробиология начала оформляться в самостоятельную науку. Ничто не происходит само по себе и, естественно, науки о жизни вод потребовали какие-то практические потребности человечества. Первая из них - забота о хлебе насущном. Иллюзия неиссякаемости рога изобилия, - промысла продуктов океана, - рассеялась: произошло снижение объема добычи устриц и мидий, уловы рыбы уменьшились, китобойный промысел стал сокращаться. Возникла необходимость реально оценивать запасы объектов промысла, особенности их воспроизводства и возможность искусственного разведения.

Вторая - опасность жажды. Угроза загрязнения источников питьевой воды - пресных водоемов благодаря развитию промышленности, сельского хозяйства, транспорта, росту населения стала реальной. Мыслящая часть человечества постепенно осознала, что без знания механизмов самоочищения природных вод цивилизация рискует остаться без пригодной для питья воды.

Начинаются планомерные работы, которые с полным правом уже можно назвать гидробиологическими. Московское общество любителей естествознания в 1867 г. организует планомерное изучение подмосковных озер. В 1872 г. образуются первые морские биологические станции: в Севастополе, основанная А. О. Ковалевским (ныне - Институт биологии Южных морей НАН Украины), и в Неаполе, основанная А. Дорном. Морская биологическая станция на Атлантическом побережье США основывается А. Агассизом в 1876 г. в Ньюпорте. Возникают и биологические станции для изучения пресных водоемов. В 1880 г. в Богемии (Чехия) А. Фриген создал станцию на Почерницком пруду; в 1892 г. в Германии О. Захариас - на оз. Плён (ныне Макс-Планк Институт Лимнологии); в 1891 г. в России на оз. Глубокое, затем в 1896 г. на оз. Бологовском. Наступает очередь водотоков: в 1894 г. - на р. Иллинойс в США, в 1900 г. - на р. Волге в Саратове. На оз. Байкал первая биологическая станция была создана в 1918 г. в пос. Большие Коты. Байкальская экспедиция АН СССР начала работу на Байкале с 1925, в 1931 г. была основана Лимнологическая станция АН СССР в пос. Маритуй, позже переведенная в пос. Лиственничное. Ныне это - Лимнологический институт СО РАН.

Возникает гидробиологическая аппаратура. Создаются устройства для количественного учета гидробионтов. В. Гензен в 1887 г. изобретает орудие лова планктона - специальную коническую сеть из мелкоячеистого шелкового сита («газа»). Й. Петерсен разрабатывает дночерпатель для количественного сбора обитателей дна.

Наука рождается окончательно, когда издаются первые обобщающие монографии и учебники. Такими для гидробиологии и лимнологии стали книги Ф. А. Фореля: «LeLeman. Monographielimnologique», 1893-1901 (в 3-хтомах) и «HandbuchderSeenkunde.AllgemeineLimnologie», 1901.

6. Вода как среда обитания

В процессе исторического развития живые организмы освоили четыре среды обитания. Первая - вода. В воде жизнь зародилась и развивалась многие миллионы лет. Вторая - наземно-воздушная - на суше и в атмосфере возникли и бурно адаптировались к новым условиям растения и животные. Постепенно преобразуя верхний слой суши - литосферы, они создали третью среду обитания - почву, а сами стали четвертой средой обитания.

Вода покрывает 71 % площади земного шара и составляет 1/800 часть объема суши. Основная масса воды сосредоточена в морях и океанах - 94-98 %, в полярных льдах содержится около 1,2 % воды и совсем малая доля - менее 0,5 %, в пресных водах рек, озер и болот. Соотношения эти постоянны, хотя в природе, не переставая, идет круговорот воды.

В водной среде обитает около 150 000 видов животных и 10 000 растений, что составляет соответственно всего 7 и 8 % от общего числа видов Земли.

В Мировом океане, как в горах, выражена вертикальная зональность. Особенно сильно различаются по экологии пелагиаль - вся толща воды, и бенталь - дно. Особенно чётко зональность проявляется в озёрах умеренных широт. В водной массе как среде обитания организмов по вертикали может быть выделено 3 слоя: эпилимнион, металимнион и гиполимнион. Воды поверхностного слоя - эпилимниона летом прогреваются и перемешиваются под воздействием ветра и конвекционных токов. Осенью поверхностные воды, охлаждаясь и становясь более плотными, начинают погружаться, и температурная разность слоев выравнивается. При дальнейшем охлаждении воды эпилимниона становятся холоднее вод гиполимниона. Весной происходит обратный процесс, заканчивающийся периодом летнего застоя. Дно озёр (бенталь) подразделяется на 2 зоны: более глубоководную - профундаль, примерно соответствующую части ложа, заполненной водами гиполимниона, и прибрежную зону - литораль, обычно простирающуюся вглубь до границы произрастания макрофитов. По поперечному профилю реки различают прибрежную зону - рипаль и открытую - медиаль. В открытой зоне скорости течения выше, население количественно беднее, чем в прибрежной.

Экологические группы гидробионтов. Наибольшим разнообразием жизни отличаются теплые моря и океаны (40000 видов животных) в области экватора и тропиках, к северу и югу происходит обеднение флоры и фауны морей в сотни раз. Что касается распределения организмов непосредственно в море, то основная масса их сосредоточена в поверхностных слоях (эпипелагиаль) и в сублиторальной зоне. В зависимости от способа передвижения и пребывания в определенных слоях, морские обитатели подразделяются на три экологические группы: нектон, планктон и бентос.

Нектон (nektos - плавающий) - активно передвигающиеся крупные животные, способные преодолевать большие расстояния и сильные течения: рыбы, кальмары, ластоногие, киты. В пресных водоемах к нектону относятся и земноводные и множество насекомых.

Планктон (planktos - блуждающий, парящий) - совокупность растений (фитопланктон: диатомовые, зеленые и сине-зеленые (только пресные водоемы) водоросли, растительные жгутиконосцы, перидинеи и др.) и мелких животных организмов (зоопланктон: мелкие ракообразные, из более крупных - крылоногие моллюски, медузы, гребневики, некоторые черви), обитающих на разной глубине, но не способных к активным передвижениям и к противостоянию течениям. В состав планктона входят и личинки животных, образуя особую группу - нейстон. Это пассивно плавающее «временное» население самого верхнего слоя воды, представленное разными животными (десятиногие, усоногие и веслоногие ракообразные, иглокожие, полихеты, рыбы, моллюски и др.) в личиночной стадии. Личинки, взрослея, переходят в нижние слои пелагели. Выше нейстона располагается плейстон - это организмы, у которых верхняя часть тела растет над водой, а нижняя - в воде (ряска, кубышки, кувшинки и др.). Планктон играет важную роль в трофических связях биосферы, т.к. является пищей для многих водных обитателей, в том числе основным кормом для усатых китов.

Бентос (benthos - глубина) - гидробионты дна. Представлен в основном прикрепленными или медленно передвигающимися животными (зообентос: фораминефоры, рыбы, губки, кишечнополостные, черви, плеченогие моллюски, асцидии, и др.), более многочисленными на мелководье. На мелководье в бентос входят и растения (фитобентос: диатомовые, зеленые, бурые, красные водоросли, бактерии). На глубине, где нет света, фитобентос отсутствует. У побережий встречаются цветковые растения зостера, рупия. Наиболее богаты фитобентосом каменистые участки дна. В озерах зообентос менее обилен и разнообразен, чем в море. Его образуют простейшие (инфузории, дафнии), пиявки, моллюски, личинки насекомых и др. Фитобентос озер образован свободно плавающими диатомеями, зелеными и сине-зелеными водорослями; бурые и красные водоросли отсутствуют. Укореняющиеся прибрежные растения в озерах образуют четко выраженные пояса, видовой состав и облик которых согласуются с условиями среды в пограничной зоне «суша-вода». В воде у самого берега растут гидрофиты - полупогруженные в воду растения (стрелолист, белокрыльник, камыши, рогоз, осоки, трищетинник, тростник).Они сменяются гидатофитами - растениями, погруженными в воду, но с плавающими листьями (лотос, ряски, кубышки, чилим, такла) и - далее - полностью погруженными (рдесты, элодея, хара). К гидатофитам относятся и плавающие на поверхности растения (ряска).

Высокая плотность водной среды определяет особый состав и характер изменения жизнеобеспечивающих факторов. Одни из них те же, что и на суше - тепло, свет, другие специфические: давление воды (с глубиной увеличивается на 1 атм. на каждые 10 м), содержание кислорода, состав солей, кислотность. Благодаря высокой плотности среды, значения тепла и света с градиентом высоты изменяются гораздо быстрее, чем на суше.

Тепловой режим. Для водной среды характерен меньший приход тепла, т.к. значительная часть его отражается, и не менее значительная часть расходуется на испарение. Согласуясь с динамикой наземных температур, температура воды обладает меньшими колебаниями суточных и сезонных температур. Более того, водоемы существенно выравнивают ход температур в атмосфере прибрежных районов. При отсутствии ледового панциря моря в холодное время года оказывают отепляющее действие на прилегающие территории суши, летом - охлаждающее и увлажняющее.

Диапазон значений температуры воды в Мировом океане составляет 38° (от -2 до +36°С), в пресных водоемах - 26° (от -0,9 до +25°С). С глубиной температура воды резко падает. До 50 м наблюдаются суточные колебания температуры, до 400 - сезонные, глубже она становится постоянной, опускаясь до +1-3°С (в Заполярье близка к 0°С). Поскольку температурный режим в водоемах сравнительно стабилен, их обитателям свойственнастенотермность. Незначительные колебания температуры в ту или иную сторону сопровождается существенными изменениями в водных экосистемах. Примеры: «биологический взрыв» в дельте Волги из-за понижения уровня Каспийского моря - разрастание зарослей лотоса (Nelumbakaspium), в южном Приморье - зарастание белокрыльником стариц рек (Комаровка, Илистая и др.) по берегам которых вырублена и сожжена древесная растительность.

В связи с разной степенью прогревания верхних и нижних слоев в течение года, приливами и отливами, течениями, штормами происходит постоянное перемешивание водных слоев. Роль перемешивания воды для водных обитателей (гидробионтов) исключительно велика, т.к. при этом выравнивается распределение кислорода и питательных веществ внутри водоемов, обеспечивая обменные процессы между организмами и средой.

В стоячих водоемах (озерах) умеренных широт весной и осенью имеет место вертикальное перемешивание, и в эти сезоны температура во всем водоеме становится однородной, т.е. наступает гомотермия. Летом и зимой в результате резкого усиления прогревания или охлаждения верхних слоев перемешивание воды прекращается. Это явление называется температурной дихотомией, а период временного застоя - стагнацией (летней или зимней). Летом более легкие теплые слои остаются на поверхности, располагаясь над тяжелыми холодными. Зимой, наоборот, в придонном слое более теплая вода, так как непосредственно подо льдом температура поверхностных вод меньше +4°С и они в силу физико-химических свойств воды становятся более легкими, чем вода с температурой выше +4°С.

В периоды стагнаций четко выделяются три слоя: верхний (эпилимнион) с наиболее резкими сезонными колебаниями температуры воды, средний (металимнион или термоклин), в котором происходит резкий скачок температур, и придонный (гиполимнион), в котором температура в течение года изменяется слабо. В периоды стагнаций в толще воды образуется дефицит кислорода - летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко происходят заморы рыбы. В стоячих водоемах (озерах) умеренных широт весной и осенью имеет место вертикальное перемешивание, и в эти сезоны температура во всем водоеме становится однородной, т.е. наступает гомотермия. Летом и зимой в результате резкого усиления прогревания или охлаждения верхних слоев перемешивание воды прекращается. Это явление называется температурной дихотомией, а период временного застоя - стагнацией (летней или зимней). Летом более легкие теплые слои остаются на поверхности, располагаясь над тяжелыми холодными. Зимой, наоборот, в придонном слое более теплая вода, так как непосредственно подо льдом температура поверхностных вод меньше +4°С и они в силу физико-химических свойств воды становятся более легкими, чем вода с температурой выше +4°С.

В периоды стагнаций четко выделяются три слоя: верхний (эпилимнион) с наиболее резкими сезонными колебаниями температуры воды, средний (металимнион или термоклин), в котором происходит резкий скачок температур, и придонный (гиполимнион), в котором температура в течение года изменяется слабо. В периоды стагнаций в толще воды образуется дефицит кислорода - летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко происходят заморы рыбы.

Световой режим. Интенсивность света в воде сильно ослаблена из-за его отражения поверхностью и поглощения самой водой. Это сильно сказывается на развитии фотосинтезирующих растений. Чем меньше прозрачность воды, тем сильнее поглощается свет. Прозрачность воды лимитируется минеральными взвесями, планктоном. Уменьшается она при бурном развитии мелких организмов летом, а в умеренных и северных широтах - еще и зимой, после установления ледового покрова и укрытия его сверху снегом. В небольших озерах на глубину 2 м проникает всего лишь десятые доли процента света. С глубиной становится все темнее, и цвет воды становится вначале зеленым, затем голубым, синим и в конце - сине-фиолетовым, переходя в полный мрак. Соответственно меняют цвет и гидробионты, адаптирующиеся не только к составу света, но и к его недостатку - хроматическая адаптация. В светлых зонах, на мелководьях, преобладают зеленые водоросли (Chlorophyta), хлорофилл которых поглощают красные лучи, c глубиной они сменяются бурыми (Phaephyta) и далее красными (Rhodophyta). На больших глубинах фитобентос отсутствует. К недостатку света растения приспособились развитием хроматофоров крупных размеров, обеспечивающих низкую точку компенсации фотосинтеза, а также увеличением площади ассимилирующих органов (индекса листовой поверхности). Для глубоководных водорослей типичны сильно рассеченные листья, пластинки листьев тонкие, просвечивающиеся. Для полупогруженных и плавающих растений характернагетерофиллия - листья над водой такие же, как у наземных растений, имеют цельную пластинку, развит устьичный аппарат, а в воде листья очень тонкие, состоят из узких нитевидных долей. Животные, как и растения, закономерно меняют свою окраску с глубиной. В верхних слоях они ярко окрашены в разные цвета, в сумеречной зоне (морской окунь, кораллы, ракообразные) окрашены в цвета с красным оттенком - удобнее скрываться от врагов. Глубоководные виды лишены пигментов.

7. Общая характеристика гидросферы

Общепринятое и наиболее обоснованное определение понятия «гидросфера» - прерывистая водная оболочка Земли. По некоторым прежним представлениям, рамки гидросферы ограничивались Мировым океаном. Но воды рек и озер, так же как и подземные воды, являются составными частями гидросферы. А эти воды в отличие от океана дискретны. Отсюда и появляется необходимость определения гидросферы как прерывистой оболочки. Гидросфера отличается высокой динамичностью, движущей силой которой служит круговорот воды.

Воды гидросферы не связаны химически и физически в земной коре, т. е. могут двигаться под влиянием гравитационной, сорбционных, капиллярных сил, а также под влиянием тепла. В понятие движения входит и переход воды из одного агрегатного состояния в другое.

Переход воды через парообразную фазу служит механизмом естественного опреснения воды. Происхождение гидросферы связывается с дегазацией воды из мантии Земли, в которой содержится около 20 млрд. км3 воды.

Из определения гидросферы и ее краткой характеристики видно, что эта сфера Земли находится в тесной взаимосвязи с другими сферами - литосферой, атмосферой и биосферой.

Весь объем гидросферы, по современным подсчетам, несколько превышает 1,4 млрд. км3.

Приблизительное представление о пресноводной части гидросферы дают данные табл. 2.2. Общий объем пресных вод на Земле достигает приблизительно 28,25 млн. км3, что составляет около 2 % общего объема гидросферы. Но если учесть, что основная часть пресных вод, законсервированных в полярных ледниках в виде льда, недоступна для использования, то объем остальной части пресных вод составляет всего лишь немногим более 4,2 млн. км3, или 0,3 % объема гидросферы.

8. Водные ресурсы и их особенности

К водным ресурсам относятся все виды воды, исключая воду, физически и химически связанную с горными породами и биосферой. Они делятся на две различные группы, состоящие из стационарных запасов воды и возобновимых запасов, участвующих в процессе круговорота воды и оцениваемых балансовым методом. Для практических нужд необходимы в основном пресные воды. Распределение и потребление воды по территории Земли и отдельным регионам неравномерно (табл. 2.3).

Водные ресурсы не всегда соответствуют требованиям хозяйства. Это относится к качеству воды, устойчивости водных ресурсов во времени и распределению по территории. Наиболее высокие требования к качеству водных ресурсов предъявляются при использовании их в рыборазведении и для питьевого водоснабжения.

Для использования речного стока в связи с его неравномерным территориальным и временным распределением необходимо регулирование стока, что достигается путем создания водохранилищ и переброской стока.

Первые стандарты качества питьевой воды были утверждены в СССР и в США в 1937 г. Советский стандарт включал 30 обязательных показателей. Всемирная организация здравоохранения рекомендует учитывать более 100 показателей качества питьевой воды. Полномасштабный контроль качества воды требует значительных вложений, направленных на организацию соответствующих служб, создание приборов, разработку систем очистки.

Особенностью природных водоемов является их способность к самоочищению за счет осаждения примесей, деятельности водных растений, разложения веществ в воде, кругооборота воды.

На территории бывшего СССР около 2870 тыс. рек и других естественных водотоков длиной больше 0,5 км формируют сток, среднемноголетний объем которого составляет более 4 тыс. км3 в год.

По величине формируемого стока территория СНГ естественным образом делилась на регионы, принадлежащие к водосборным бассейнам трех океанов или их частям. Наибольший речной сток формируется на западном, северном и восточном склонах территории бывшего СССР, а также в бассейнах Балтийского моря и Тихого океана. Особенно низкий сток характерен для бессточной области Казахстана и Средней Азии.

9. Происхождение воды и гидросферы

Существует шесть гипотез появления воды на земном шаре. Первая гипотеза исходит из «горячего» происхождения Земли. Считается, что некогда Земля была расплавленным огненным шаром, который, излучая тепло в пространство, постепенно остывал. Появилась первородная кора, возникли химические соединения элементов и среди них соединение водорода с кислородом, или, проще говоря, вода.

Пространство вокруг Земли все более заполнялось газами, которые непрерывно извергались из трещин остывающей коры. По мере охлаждения пары образовывали облачный покров, плотно окутавший нашу планету. Когда температура в газовой оболочке упала настолько, что влага, содержащаяся в облаках, превратилась в воду, пролились первые дожди. Тысячелетие за тысячелетием низвергались дожди. Они-то и стали тем источником воды, которая постепенно заполнила океанические впадины и образовала Мировой океан.

Вторая гипотеза исходит из «холодного» происхождения Земли с ее последующим разогревом. Разогрев стал причиной вулканической деятельности. Извергаемая вулканами лава выносила на поверхность планеты пары воды. Часть паров, конденсируясь, заполняла океанические впадины, а часть образовала атмосферу. Как теперь подтверждено, главной ареной вулканической деятельности на первых стадиях эволюции Земли действительно являлось дно современных океанов. Согласно этой гипотезе вода содержалась уже в той первичной материи, из которой сложилась наша Земля. Подтверждением такой возможности является наличие воды в падающих на Землю метеоритах.

Третья гипотеза также исходит из «холодного» происхождения Земли с последующим ее разогревом. В мантии Земли на глубинах 50- 70 км из ионов водорода и кислорода начал возникать водяной пар. Однако высокая температура мантии не позволяла ему вступать в химические соединения с веществом мантии. Под действием давления пар выжимался в верхние слои мантии, а затем и в кору Земли. В коре более низкие температуры стимулировали химические реакции между минералами и водой, в результате разрыхления пород, образовались трещины и пустоты, которые немедленно заполнялись свободной водой. Под действием давления воды трещины раздавались, превращались в разломы, и вода через них устремлялась на поверхность. Так возникли первичные океаны.

В пользу приведенной гипотезы свидетельствует резкое возрастание скорости сейсмических волн на глубине 15-20 км, т. е. как раз там, где должна пролегать граница предполагаемого раздела между гранитом и поверхностью рассола, граница резкого изменения физико-химических свойств вещества.

Приведенную гипотезу подтверждает и так называемый дрейф материков. Гранитные громады материков перемещаются. Они «плывут», хотя скорость их движения составляет всего несколько сантиметров в столетие.

Четвертая гипотеза принадлежит английскому астрофизику Хойлу и опубликована сравнительно недавно, в 1972 г. Она представляет собой следствие из гипотезы происхождения Солнечной системы. Конденсация протопланетного облака, окружавшего прото-Солнце, протекала неравнозначно на разных расстояниях от Солнца. Чем дальше от него, тем температура облака была ниже. Ближе к Солнцу могли конденсироваться, скажем, металлы как вещества более тугоплавкие. А там, где проходят орбиты Урана, Нептуна и Плутона, по расчетам Хойла, температура составляла примерно 350 К, что уже достаточно для конденсации паров воды. Именно этим обстоятельством можно объяснить «водную» природу Урана, Нептуна и Плутона, образовавшихся в процессе слияния частиц льда и снега. «Водную» природу указанных планет подтверждают новейшие астрономические наблюдения.


Подобные документы

  • Объекты организменного (уровня особей), популяционно-видового, биоценотического, биосферного уровней организации как предмет изучения экологии. Главные задачи экологии, основные принципы изучения. Специфика экологических факторов, классификация на группы.

    реферат [27,8 K], добавлен 17.02.2010

  • Предмет, задачи, методы экологии. Место экологии в системе естественных наук. Проблемы, связанные с антропогенным воздействием на биосферу. Явление парникового эффекта и его влияние на экосистемы. Единая государственная система экологического мониторинга.

    контрольная работа [30,8 K], добавлен 21.10.2010

  • Предмет, задачи, методы исследования экологи. Структура современной экологии, ее связь с другими науками. Уровни организации живых систем. Взаимодействие природы и общества. Виды и методы экологических исследований. Основные экологические проблемы.

    реферат [71,5 K], добавлен 10.09.2013

  • Сущность и структура общей экологии. Уровни организации живой материи, аутэкология и синэкология. Положение общей экологии в системе наук. Экологические постулаты Б. Компонера. Виды и методы экологических исследований. Основные экологические проблемы.

    реферат [1,4 M], добавлен 25.01.2010

  • Определение экологии. Основные разделы. Законы экологии. Организм и среда. Практическое значение экологии. Взаимодействие сельскохозяйственных и природных экосистем, сочетания окультуренных и естественных ландшафтов.

    реферат [14,4 K], добавлен 25.10.2006

  • Качество питьевой воды, доступ к чистой воде городского и сельского населения. Основные пути и источники загрязнения гидросферы, поверхностных и подземных вод. Проникновение загрязняющих веществ в круговорот воды. Методы и способы очистки сточных вод.

    презентация [3,1 M], добавлен 18.05.2010

  • Предмет экологии и задачи ее изучения в процессе подготовки специалистов в области экономики. Понятия среды обитания и экологических факторов. Закон сохранения и превращения энергии. Равновесие замкнутых открытых систем. Природа тепловой формы энергии.

    реферат [41,1 K], добавлен 10.10.2015

  • Меры по предотвращению водного кризиса. Выход из "водной" задолженности путём очищения, опреснения, сокращения потребления воды и вредных выбросов. Эффективные пути экономии воды в промышленном производстве. Способы очистки воды, сохранение ее запасов.

    реферат [1,8 M], добавлен 16.10.2013

  • Общие сведения о механической очистке сточных вод. Механическая очистка, фильтрование и отстаивание воды. Основные параметры каркасно-засыпных фильтров. Основные загрязнения сточных вод. Разделение суспензий и эмульсий в поле гравитационных сил.

    реферат [1,8 M], добавлен 24.04.2015

  • Особенности экологии района: основные проблемы Челябинской области в сфере экологии, влияние промышленных предприятий на экологию, пути и методы решения экологических проблем. Усовершенствование технологий по очистке природной среды от отходов.

    доклад [10,9 K], добавлен 15.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.