Рыбы как биоиндикаторы экологического состояния водохранилищ

Анализ результатов исследования рыб как биоиндикаторов водной экосистемы на примере Обь-Иртышского бассейна. Общая характеристика и классификация рыб. Характеристика водных экосистем и методы оценки качества воды. Рыбы как индикаторы качества вод.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 28.04.2013
Размер файла 80,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АНО НОУ "Волжский университет им. В.Н. Татищева" (институт)

Экологический факультет

Кафедра биоэкологи естественных наук

КУРСОВАЯ РАБОТА

ПО ДИСЦИПЛИНЕ "БИОИНДИКАЦИЯ"

Тема: "Рыбы как биоиндикаторы экологического состояния водохранилищ"

Исполнитель: Максим Сергеевич Бойцов

Группа: ЭКОВ - 301

Руководитель: Нина Александрова Зеленевская

Тольятти

Аннотация

Предложенная курсовая работа содержит описание характеристики рыб и водных экосистем, так же в работе раскрыта идеология биологических методов, показаны результаты исследования рыб, как биоиндикаторов водной экосистемы на примере Обь-Иртышского бассейна.

Всего в работе содержится ____ страниц текста и 20 литературных источников.

Содержание

  • Аннотация
  • Введение
  • 1. Материалы и методы исследования рыб как биоиндикаторов водной экосистемы
  • 1.1 Общая характеристика и классификация рыб
  • 1.2 Характеристика водных экосистем и методы оценки качества воды
  • 1.3 Идеология биологических методов
  • 2. Результаты исследования рыб, как биоиндикаторов водной экосистемы
  • 2.2 Рыбы как индикаторы качества вод
  • 2.2 Анализ показателей состояния популяций рыб и их биоразнообразия на примере Обь-Иртышского бассейна
  • Выводы
  • Список литературных источников

Введение

Нарастающие масштабы загрязнения водоемов различными техногенными соединениями являются причиной поиска критериев в оценке их состояния. Особое место в потоке поступающих в водные экосистемы аллохтонных веществ занимают органические соединения, которые наряду с автохтонным органическим веществом, образующимся непосредственно в водоеме, определяют уровень евтрофирования водных экосистем и оказывают существенное влияние на органолептические свойства воды. Изменения, происходящие в гидросфере, наиболее сильное воздействие оказывают на водные организмы, в том числе рыбы, которые чутко реагируют на изменения состояния среды и именно их целесообразнее использовать в качестве биоиндикаторов.

Рыбы, как завершающее звено в трофической цепи водоемов являются объективными индикаторами уровня загрязнения водной среды в целом, но не отдельных ее участков. Обусловлено это тем, что рыбы, как мигрирующие организмы, дают лишь интегральную характеристику загрязнения водного объекта. Изменения экологических факторов водной среды в условиях антропогенного загрязнения водоема различными по природе химическими веществами могут оказать существенное влияние на жизнедеятельность и выживание рыб: ослабить устойчивость организма к раздражителям и привести к гибели.

Цель работы заключается в определении роли рыбы как биоиндикаторов экологического состояния водной экосистемы.

Для достижения поставленной цели решаются следующие задачи: рассматривается общая характеристика рыб и водных экосистем, рассматривается идеология биологических методов, проводится анализ показателей состояния популяций рыб и их биоразнообразия на примере: Обь-Иртышского бассейна.

биоиндикатор экологический рыба вода

Объектом исследования является экологическое состояние Объ-Иртышского бассейна

Предметом исследования является рыба как биоиндикатор водных экосистем.

В ходе выполнения работы использовались следующие литературные источники таких авторов как: Абакумов В.А., Сущеня Л.М. Акимова Н.В., Балашов Ю.С. Безух Н.И., Гашев, Жигилева О.Н., Моисеенко Т. И.,Решетников Ю.С. Соколов С.Г. Стрелков Ю.А., Филенко О.Ф., Флеров Б. А.

1. Материалы и методы исследования рыб как биоиндикаторов водной экосистемы

1.1 Общая характеристика и классификация рыб

В настоящее время существует более 20 тысяч видов, объединяемых в класс рыб. Рыбы относятся к типу хордовых, куда также входят амфибии, рептилии, птицы и млекопитающие. Этот тип по-разному подразделяется на таксоны более низкого ранга. В аквариумах содержат несколько сотен видов в основном представителей надотряда костистых рыб (Теleostei). Эта группа объединяет подавляющее большинство современных рыб. В процессе накопления знаний в области анатомии, эмбриологии и палеонтологии система рыб постепенно изменяется, все более приближаясь к естественному "родословному древу", отражающему действительные родственные связи внутри класса рыб. В связи с вышеуказанным систематика, используемая отдельными авторами, несколько различается. В основу классификации положены биоморфологические и генетические признаки эволюционной единицы - вида. Биологический вид - это совокупность организмов, не скрещивающихся с другими в природе, связанная единством происхождения и сходством во всех существенных признаках. Для их обозначения применяют бинарную номенклатуру, предложенную К. Линнеем в 1758 г.

Первое слово характеризует род, объединяющий близкие виды, второе - собственное название вида. Роды объединяются в подсемейства, подсемейства - в семейства, семейства - в надсемейства, далее - в подотряды, отряды, подклассы и, наконец, в класс рыб. Существуют и промежуточные систематические единицы, удобные для внутренней практической деятельности обозначения - разделы, секции, комплексы, группы. В ихтиологии названия систематических единиц обозначаются по первому описанному роду с изменением окончания. Так, название подсемейства оканчивается на - ini (Cyprinini), семейства - на - idae (Cyprinidae), надсемейства - на - oidae (Cyprinoidae), подотряд - на - oidei (Cyprinoidei), отряда (как правило) - на - formes (Cypriniformes). Остальные систематические единицы обозначаются без определенных окончаний. Рыбы - обширная и неоднородная группа животных. В отличие от млекопитающих, птиц, земноводных, рептилий и даже насекомых, рыбы - это общее название целых семи классов. Первый класс - остракодермы, самые первые из рыб. Остракодермы были закованы в прочный панцирь, плавников не имели, лишь их зачаточные отростки. Медленно переползая по дну, остракодермы профильтровывали ил в поисках пищи либо же взмучивали воду жабрами, заглатывая всё, что попадалось вместе с водой. Но челюстей у них ещё не было, лишь присосковидное образование на конце "морды", в котором и находился фильтрующий аппарат. Последние остракодермы вымерли в девоне-начале карбона.

Второй класс бесчелюстных раньше назывался "круглоротые" и включал около 45 видов миног и миксин. Однако теперь систематика изменилась. Миноги объединены с ископаемыми цефаласпидоморфами (раньше считались остракодермами) в один класс, миксины образуют другой. Начнём с миксин. Это совсем непохожие на рыб морские падальщики. Очень интересно, что миксины умеют завязываться узлом и это помогает им в трёх делах:

1) вырвать из аппетитной рыбы кусочек побольше;

2) счистить с себя мусор или грязь;

3) выскользнуть из чьей-то цепкой хватки. Представители второго класса, миноги, более известен широкой публике, нежели миксины. Личинки миног - пескоройки - являются фильтровальщиками, взрослые особи паразитируют на живых рыбах. Они живут как в морях, так и в реках. Многое в строении и жизни миног остаётся загадкой - к примеру, назначение странного кожного пузыря под глоткой австралийской миноги. Некоторые миноги имеют хозяйственное значение, так, каспийская минога использовалась как пища и источник полезного в медицине жира. У миног и миксин есть общие признаки. Например, тело и тех, и других не имеет чешуи, а покрыто скользкой слизистой кожицей (лишь у древних родичей миног, цефаласпидоморф, тело было в панцире).

Третий класс рыб - плакодермы, или челюстные панцирные рыбы. Они, как остракодермы и цефаласпидоморфы, имели панцирь, но одно отличие у плакодермов всё-таки было: у них появились челюсти. Кстати говоря, панцирь у них тоже был особый: раделённый на головную и туловищную часть, соединённые парой горизонтально расположенных шарниров. Современных плакодермов нет, последние из них вымерли в карбоне, чуть позже остракодермов. Делится класс плакодерм на 2 подкласса - примитивных забронированных антиарх (атеролепис, ботриолепис) и более "продвинутых" хищных артродир (дунклеостеус, коккостеус), у которых панцирь покрывал лишь переднюю часть тела.

Четвертый, небольшой, класс рыб - акантодии. Они были уже почти полностью готовыми на "звание" настоящих рыб - имели развитые челюсти и зубы могли превосходно охотиться, избавились от панциря. Хотя не все из них были хищниками - существовали и акантодии-фильтраторы. Акантоды типа девонского климатиуса были одними из первых рыб с парными плавниками. Увы, акантодии не дожили до наших времён. Последние из них вымерли в начале перми. Раньше акантодий относили к плакодермам, теперь они считаются особым классом (хотя порой причисляются к костным). Кстати говоря: как считают учёные, и плакодермы, и акантодии были пресноводными, хотя могли, в принципе, переносить и солёную воду.

Пятый класс - самый знаменитый и большой класс рыбьего царства это, разумеется, костные рыбы. Он делится на два подкласса - лучепёрые и лопастепёрые. Начнём с лучепёрых. Самые первые лучепёрые - это полностью вымершие в начале мела палеониски. Они достигли расцвета в перми и триасе, найдено множество пермотриасовых палеонисков - тунгусихтис, авамия, караунгурия. От палеонисков произошли хрящевые ганоиды. Обычно их делят на три отряда.

Современная биологическая наука учит, что определенной среде присущи те или иные организмы. Изучение биологии рыб наглядно подтверждает это положение. Организм рыб, начиная от формы тела и кончая дыхательным аппаратом и органами чувств, приспособлен к условиям жизни в воде.

Рыбам необходимо двигаться, чтобы находить пищу и спасаться от врагов. Однако вода оказывает значительное сопротивление их движению. Поэтому в процессе эволюции большинство рыб приобрело обтекаемую форму тела, облегчающую преодоление сопротивления водной среды.

Наиболее совершенную обтекаемую форму туловища имеют проходные рыбы, совершающие далекие миграции, например лососи. Почти такое же веретенообразное туловище, мощный хвост и некрупная чешуя у рыб, постоянно живущих на быстрине (форель, гольян, осман, усач и т.п.). Подчас некоторые рыбы (плотва, язь), обитающие в верховьях реки на быстром течении, обладают более веретенообразным туловищем, чем рыбы того же вида, населяющие устье, где течение медленнее. Широкие, высокотелые рыбы обитают в тихих водах, так как здесь им не приходится бороться с течением; кроме того, такая форма тела помогает им лучше избегать хищников, менее охотно схватывающих широких рыб.

Различны формы туловища и у рыб, которые живут на дне и в верхних слоях воды. Например, у донных рыб (камбала, сом, налим, бычок) тело сплющенное, позволяющее им опираться на грунт большой поверхностью.

Иногда рыбы приспосабливаются к пассивному движению. Листовидная форма личинок угря облегчает их перенос течением с мест нереста угря, расположенных у берегов Центральной Америки, к местам постоянного обитания в водоемах Европы.

В случаях, когда рыбы почти не перемещаются, часть их туловища вместе с хвостом превращается в орган прикрепления (морской конек).

Известное влияние на форму тела оказывает и характер питания; например, у хищных рыб, догоняющих добычу, туловище обычно более прогонистое, чем у рыб, питающихся малоподвижной пищей.

Механизм движения рыб долгое время оставался неясным. Предполагали, что главную роль здесь играют плавники. Последними исследованиями физиков и ихтиологов доказано, что поступательное движение рыбы осуществляется преимущественно волнообразными изгибами тела. Некоторую помощь в движении вперед оказывает хвостовой плавник. Роль других плавников сводится в основном к координирующим и направляющим функциям - спинной и анальный плавники служат килем, грудные и брюшные - облегчают рыбе перемещение по вертикали и помогают поворачиваться в горизонтальной плоскости.

В соответствии со строением дыхательных органов рыбы по-разному относятся к количеству растворенного в воде кислорода. Одни рыбы нуждаются в очень высоком содержании его в воде - лосось, сиг, форель, судак; другие менее требовательны - плотва, окунь, щука; третьи удовлетворяются совершенно ничтожным количеством кислорода - карась, линь. Существует как бы определенный для каждого вида рыб порог содержания кислорода в воде, ниже которого особи данного вида становятся вялыми, почти не перемещаются, плохо питаются и в конце концов погибают.

Большинство рыб дышит растворенным в воде кислородом. Основным органом дыхания являются жабры. Форма и величина поверхности жабер, строение жаберных щелей и механизм дыхательных движений зависят от образа жизни рыб. У рыб, плавающих в полводы, жаберные щели большие, а жаберные лепестки все время омываются свежей водой, богатой кислородом. У донных рыб - угря, камбалы - жаберные щели маленькие (иначе они могут засориться илом) с приспособлениями для принудительной циркуляции воды.

Рыбы, которые живут в воде, бедной кислородом, имеют дополнительные органы дыхания. Карась и некоторые другие рыбы при недостатке в воде кислорода заглатывают атмосферный воздух и используют его для обогащения воды кислородом.

1.2 Характеристика водных экосистем и методы оценки качества воды

В своем естественном состоянии различные природные водоемы могут сильно отличаться друг от друга. На водную флору и фауну действуют такие показатели как глубина водоема, скорость течения, кислотно-щелочные свойства воды, мутность, кислородный и температурный режим, количество растворенной органики, соединений азота и фосфора и многие другие. На все эти параметры влияет как антропогенная нагрузка, так и естественные процессы, происходящие в водоемах. Для водоемов разных типов в норме будет характерен разный видовой состав и обилие водных организмов (гидробионтов). Стоит заметить, что самые чистые водоемы не будут обладать самой богатой фауной.

Температура воды и динамика ее изменений - важнейший экологический фактор для всех обитателей водоемов. Ведь температура не только непосредственно воздействует на гидробионтов, регулирует скорость жизненных процессов, но и определяет важнейшие физико-химические свойства воды.

Водные организмы приспособились к различным температурным условиям обитания: одни из них живут в горячих источниках при температуре 45-50°С и выше, другие активны при температуре воды - 2°С и могут выдерживать промерзание до - 12°С. Важно другое: из-за своей высокой теплоемкости вода является гораздо более термостабильной средой, чем воздух, то есть ее температура изменяется медленно, а это благоприятно для существования живых организмов.

В водоемах суши температура обычно колеблется значительно существеннее, чем в морях и океанах. Особенно это характерно для водоемов умеренного пояса, где сезоны сильно отличаются друг от друга, и температура воды в течение года может изменяться на 10-20 градусов. Организмы, способные жить в воде разной температуры и переносить значительные ее колебания, называются эвритермными. У них вырабатываются различные приспособления, позволяющие компенсировать воздействия меняющейся температуры: изменяется активность ферментов, общая интенсивность процессов обмена веществ. Сами организмы производят миграции в места с более стабильной или благоприятной температурой. Так многие пресноводные рыбы зимой скапливаются в наиболее глубоких участках водоема. Иногда снижение скорости обмена веществ при низкой температуре может быть выгодно для организма: например, рыб это предохраняет от истощения организма зимой, в период с неблагоприятными кормовыми условиями.

Организмы, способные существовать только в узком диапазоне температур, называются стенотермными. Для них изменение температурного режима водоема может оказаться гибельным. Существуют стенотермные виды, приспособленные к жизни только в холодной воде (ручьевая форель) - это олиготермные виды. Напротив, есть виды, живущие только в теплой, хорошо прогреваемой воде. К таким политермным видам из привычных нам организмов относятся многие аквариумные рыбки.

Человек может ощутимо влиять на температурный режим водоемов. Сброс воды из системы охлаждения тепловых и атомных электростанций повышает температуру значительных участков реки или озера на 5-10 градусов, что приводит к коренным изменениям в сообществе организмов, населяющих эту зону.

В воде природных водоемов растворены различные газы. Концентрации этих газов зависят от их природы, их содержания в атмосфере, а также от температуры и солености воды (при повышении этих двух показателей растворимость газов падает). То количество газа, которое может раствориться в воде при данных условиях, называется "нормальным".

Огромное значение для водных организмов имеет концентрация растворенного в воде кислорода. Этот газ попадает в водоем из атмосферы, а также выделяется водными растениями в процессе фотосинтеза. Относительное значение каждого из этих путей может меняться в зависимости от характеристик водоема: в быстрой, порожистой речке со слабо развитой растительностью более значима диффузия кислорода из атмосферы. А в озере, имеющем мощные заросли водной растительности, большая часть кислорода может поступать в воду в результате их фотосинтетической активности. При 0°С и нормальном атмосферном давлении в одном литре пресной воды может раствориться 10,3 мл кислорода. Чем теплее вода, тем меньше кислорода может быть в ней растворено.

Насыщение воды атмосферным кислородом идет через поверхность. Фотосинтез максимально интенсивен тоже в верхнем, наиболее освещенном слое воды. Поэтому кислородные условия у поверхности обычно лучше, чем на глубине. Особенно сильно это может быть выражено в тех водоемах, где перемешивание воды почти не происходит, а на дне имеется значительно количество органических остатков: ведь при гниении органика поглощает кислород из воды. Из-за таких процессов содержание кислорода в воде может падать ниже необходимого для нормальной жизни водных организмов уровня. Содержание кислорода в водоеме меняется также в зависимости от сезона и времени суток. Минимальные его концентрации в воде обнаруживаются обычно ранним утром: ведь ночью растения не фотосинтезируют, а только поглощают кислород в процессе своего дыхания. Из сезонов наименее благоприятна с точки зрения кислородного режима зима: лед не позволяет проникать в воду кислороду атмосферы, условия для фотосинтеза под слоем льда тоже неблагоприятны. Поэтому именно зимой наиболее часто происходят заморы - массовая гибель гидробионтов из-за нехватки кислорода.

Некоторые водные обитатели сравнительно легко переносят низкие концентрации кислорода в воде (карась, моллюск живородка, малощетинковый червь трубочник), т.к. они приспособились к жизни в водоемах, где дефицит кислорода обычное явление. Другие организмы наоборот, чрезвычайно требовательны к содержанию кислорода.

Соленость воды это сумма концентраций всех растворенных в воде минеральных веществ. Пресной считается вода, имеющая соленость ниже 0,5 г/кг. Вода океана обычно имеет соленость от 30 до 35 промилле. Кроме пресных водоемов и соленых морей существуют водные объекты с промежуточным уровнем солености. Например, Финский залив Балтийского моря по международной классификации является солоноватоводным олигогалинным (от 0,5 до 5 промилле) или (в западной части) меюгалинным (5-18 промилле) водоемом.

Сумма концентраций в воде ионов магния и кальция называется жесткостью. Особенно важен этот показатель для организмов, имеющих известковые скелеты и раковины.

Пресная и соленая вода очень по-разному воздействуют на организм водных животных. Особенно сильно различаются у морских и пресноводных обитателей системы осморегуляции. Поэтому соленые водоемы имеют свою характерную фауну, а пресные водоемы - свою. Наименее благоприятны для жизни водоемы с промежуточным уровнем солености. Как правило, они имеют очень бедную фауну водных беспозвоночных.

Прозрачность воды - характеристика, показывающая, насколько уменьшилась интенсивность света при его прохождении через слой воды определенной толщины. Океаны и моря обычно более прозрачны, чем континентальные водоемы: в них слабый свет проникает до глубины 150 и более метров (глубже всех проникают синие и зеленые лучи). И на таких глубинах растут виды красных водорослей, способные вести фотосинтез при этом скудном освещении.

В континентальных водоемах прозрачность и условия освещенности меняются очень сильно. В горных реках и озерах свет может проникать до дна: дно этих водоемов сложено малорастворимыми породами, в них мало планктона. В равнинных водоемах прозрачность зависит от сезона. В паводок она минимальна. На значительные глубины свет проникает только в озерах с низкими концентрациями органических веществ - в них прозрачность может достигать 40 м. В большинстве же рек и озер прозрачность не превышает 2-3 м. Особенно низкую прозрачность имеют дистрофные озера с сильно гумифицированной коричневой водой и эвтрофные озера, в которых много планктона.

Для водоемов суши наиболее характерны постоянные течения, вызванные наклоном русла (в реках), а также периодические или временные течения, происходящие из-за трения воздушных масс о водную поверхность или из-за разности в температуре и плотности воды в разных частях водоема.

На порожистых участках рек скорость течения может достигать нескольких метров в секунду. Условия обитания на таких участках очень своеобразны: из-за интенсивного перемешивания вода насыщена кислородом, существует постоянная опасность быть оторванным от грунта и снесенным течением. Пищевые частицы с большой скоростью проносятся мимо. Организмы, приспособленные к обитанию в таких условиях, называются реакофилами. Впрочем, большинство равнинных рек имеет более спокойное течение, его скорость обычно не превышает нескольких десятков сантиметров в секунду.

В озерах и прудах течения имеют еще меньшие скорости, но их значение для жизни водных организмов очень велико. Дважды в год, весной и осенью, во всех водоемах умеренного пояса, имеющих достаточную глубину, происходит масштабное перемешивание водных масс. Вода у поверхности нагревается (весной) или охлаждается (осенью) до температуры +4°С. Известно, что при такой температуре вода имеет максимальную плотность, поэтому верхние слои воды опускаются вниз, а придонные вытесняются наверх, к поверхности. При этом перемешивании глубины водоема обогащаются кислородом, а к поверхности поднимаются из глубины биогены и минеральные соли.

Природные водоемы различаются по химическому составу воды, донных отложений и потока веществ, поступающих в них с водосборной площади, а так же рядом физических, гидрологических и географических параметров. В связи с этим в каждом водоеме формируется свой собственный набор видов микроорганизмов, растений и животных, взаимно влияющих друг на друга и на окружающую среду. Каждая водная экосистема имеет свои определенные характеристики: видовое разнообразие водных организмов, их численность, биомассу и др. Одним из важнейших показателей является продуктивность (трофность) водной экосистемы, т.е. количество нового органического вещества, создаваемого экосистемой за единицу времени. Продуктивность зависит в первую очередь от фотосинтетической деятельности автотрофных организмов и различна в разных водоемах. По уровню продуктивности природные водоемы могут классифицироваться как:

дистрофные (непродуктивные),

олиготрофные (малопродуктивные),

мезотрофные (среднепроду ктивн ые),

эвтрофные (высокопродуктивные).

Классификация водоемов по их трофности применима для всех природных водоемов. Трофический уровень водной экосистемы сильно связан с содержанием в воде биогенов растворенных минеральных веществ, являющихся удобрением для водных растений. К ним относятся прежде всего соединения фосфора и азота. Уровень трофности водоема может изменяться при действии как природных, так и антропогенных (возникающих в результате воздействия человека) факторов. В некоторых случаях определить причину изменения трофности очень сложно. Когда нет сомнений в том, что причина имеет антропогенный характер, встает задача оценки качества воды в сравнении с прежним "природным" состоянием и прогноза дальнейших изменений.

Трофический уровень конкретного водоема можно определить не только по продукции фотосинтезирующих организмов, но и по видовому составу и обилию тех гидробионтов, которые в этом водоеме обитают. С их помощью можно определить качество воды и изменение трофического уровня водоема в связи с увеличением концентрации биогенов при загрязнении.

Понятие "качество воды" подразумевает комплексную оценку, которая включает гидрохимические и гидробиологические характеристики. В настоящее время продолжает использоваться традиционный подход к оценке качества воды, основанный на определении только ряда химических показателей. Это не позволяет оценить изменения в водной экосистеме, оценить степень ее нарушенности, выяснить механизм нарушения и дать прогноз дальнейшего изменения в экосистеме. Такие задачи можно решить, используя методы биоиндикации.

В водоемах с наиболее "чистой" водой, содержащей низкие концентрации биогенных и органических веществ, количество видов гидробионтов и их обилие обычно ниже, чем в тех водоемах, где органические вещества, соединения азота и фосфора присутствуют в умеренных концентрациях. Для многих водных организмов, обитающих в мезо - и эвтрофных водах, умеренный уровень загрязнения является нормальным состоянием среды обитания. Часть таких видов вполне может служить индикаторами загрязнения воды органическими и биогенными веществами. Другая часть видов, обитающих в узких пределах условий окружающей среды, не выдерживают даже небольшого загрязнения и исчезают - такие виды являются хорошими индикаторами низких уровней загрязнения. По мере поступления органических и биогенных веществ происходит постепенное изменение химического состава воды, видового состава гидробионтов, происходит перестройка структуры и функций экосистемы в целом. В начале процесса загрязнения изменения в экосистеме незначительны и обратимы. В дальнейшем экосистема увеличивает свою способность к переработке поступающих веществ, но до определенного предела. Его превышение приводит к деградации и полному разрушению экосистемы. Важнейшей комплексной характеристикой состояния водоема является уровень его сапробности.

Сапробность - характеристика водоема, показывающая уровень его загрязненности органическими веществами и продуктами их распада. По нарастанию количества органических веществ различают водоемы олигосапробные (практически незагрязненные), бета-мезосапробные (слабо или умеренно загрязненные), альфа-мезосапробные (загрязненные) и полисапробные сильно загрязненные органикой. Как правило, высокие концентрации органических веществ в водоемах вызываются сбросом в них сточных вод бытового и сельскохозяйственного происхождения. Под сапробностыо какого-либо вида животных или растений понимают его способность обитать в воде с соответствующим уровнем органического загрязнения. От олигосапробной к полисапробной зоне ухудшаются многие важные для водных обитателей показатели: уменьшается содержание растворенного в воде кислорода, необходимого для дыхания гидробионтов, нитраты превращаются в более токсичные нитриты и аммонийные соединения. Сульфаты переходят в сульфиты и далее в сульфиды вплоть до образования сероводорода. При этом уменьшается количество видов живых существ, требовательных к содержанию кислорода, вплоть до полного их исчезновения. В то же время виды, способные выдержать изменение химического состава воды и недостаток кислорода, могут даже увеличить свою численность за счет притока питательных веществ и исчезновения конкурентов.

По мере дальнейшего загрязнения ситуация ухудшается: исчезает все больше видов, нарушаются пищевые связи, нарушаются круговороты веществ и использование энергии в системе. Снижается устойчивость экосистемы, ее способность к переработке веществ и "самоочищению", экосистема деградирует. По разнообразию отмеченных в водоеме видов-индикаторов и их обилию определяют уровень сапробности водоема.

Попадание в водоем токсичных веществ вызывает, как правило, процессы деградации экосистемы, выраженность которых зависит от свойств токсиканта, его концентрации, степени разбавления, скорости разложения токсичного вещества, времени воздействия и ряда других причин. К токсичным веществам относятся соединения тяжелых металлов, хлорорганические, фосфороорганические и другие пестициды, нефть и продукты ее переработки, синтетические поверхностно-активные вещества, кислоты, фенолы и другие соединения. Комплексная характеристика качества воды, характеризующая ее загрязненность токсичными веществами - токсобнось. В качестве быстрого метода интегрального определения токсичности воды используются методики биотестирования, то есть использования биологических объектов для выявления степени токсичности тех или иных веществ или их суммарного воздействия.

Конечно же, для определения химического состава воды, а значит и для выявления находящихся в ней загрязняющих веществ можно использовать специальные приборы. Они позволяют получить точные значения концентраций загрязнителей. Но приборные методы имеют свои недостатки:

с их помощью нельзя точно оценить, насколько полученные концентрации опасны для водных организмов и для нас с вами;

они не учитывают возможного взаимодействия различных загрязняющих веществ (а это взаимодействие, как правило, происходит);

они оценивают качество воды на момент отбора пробы и ничего не скажут нам про аварийный сброс загрязнителя, произошедший на реке неделю назад;

они достаточно сложны и дороги.

Лучшими "приборами", оценивающими качество воды, являются сами водные обитатели. Конечно, эти "приборы" тоже не идеальны: например, у них нет стрелок и шкал. Поэтому с помощью методов биоиндикации мы можем оценить только общий уровень загрязненности, но не узнаем точных концентраций того или иного вещества. Зато эти методы относительно дешевы и не требуют специального оборудования. Многие из них довольно просты и могут быть использованы в работе юными исследователями, А главное, биологические методы дают комплексную оценку качества воды, учитывают взаимодействие разных загрязняющих веществ и могут помочь нам в том случае, когда источник загрязнения имеет переменную мощность или непостоянный химический состав.

Данные о качестве воды, полученные при помощи биологических методов, можно соотнести с официально принятыми показателями: классами качества воды (ККВ), уровнями сапробности. Это позволяет сравнивать данные, полученные при помощи приборных и биологических методов.

1.3 Идеология биологических методов

Выделяют две основные группы биологических методов: это методы биотестирования и биоиндикации.

В методиках биотестирования в качестве основного показателя используется физиологическая или поведенческая реакция на загрязнение воды определенного вида живых организмов. При этом исследователи отбирают пробу воды в изучаемом водоеме и ставят лабораторный эксперимент, для чего используется искусственно поддерживаемая культура тест-организмов. С помощью подобного эксперимента можно, например, оценить уровень загрязненности водопроводной воды, которая практически не имеет собственной биоты. Чувствительность многих методов биотестирования очень высока и сравнима с чувствительностью методов газовой хроматографии.

При оценке качества воды в лабораторном эксперименте учитываются такие показатели как выживаемость тест-организмов, темпы их размножения, интенсивность жизненных процессов (дыхание, пищеварение, фотосинтез), поведенческие реакции. Подобные опыты направлены прежде всего на определение высокотоксичных, сильнодействующих химических веществ.

Существует ряд требований по выбору тест-организмов. Они должны быть некрупными, легко культивироваться, иметь короткий жизненный цикл и обладать средней степенью чувствительности к токсикантам. На практике в качестве тест-организмов обычно используются простейшие, плоские черви, коловратки, моллюски, многие ракообразные и одноклеточные водоросли.

Методы биоиндикации применимы только к водоемам, имеющим собственную биоту. Они учитывают реакцию на загрязнение целых сообществ водных организмов или же отдельных систематических групп. При этом исследователи непосредственно на водоеме учитывают факт присутствия в нем индикаторных организмов, их обилие, наличие у них патологических изменений.

Несмотря на то, что и естественные условия водоемов, и виды загрязнений очень разнообразны, можно выделить несколько универсальных реакций сообществ водных организмов на ухудшение качества воды. Прежде всего это:

уменьшение видового разнообразия (в 2-4, а иногда и в десятки раз);

изменение обилия водных организмов.

Причем обилие может как снижаться (при очень высоком уровне загрязнения или при наличии токсичных загрязнителей), так и расти по сравнению с нормальным состоянием сообщества. Этот рост объясняется тем, что в водоемах, особенно при их загрязнении органическими веществами, могут оставаться немногие, но устойчивые к загрязнению виды животных. В таких условиях они достигают очень высокого обилия. Например, в Невской губе численность малощетинковых червей может достигать десятков и даже сотен тысяч особей на квадратный метр дна.

Именно эти закономерности применяются во многих методиках биоиндикации. К их числу относятся индексы видового разнообразия и методы, учитывающие соотношение обилия разных групп водных организмов. Кроме этого, часто учитывается способность определенных групп организмов обитать в водоемах с тем или иным уровнем загрязненности.

Надо особо отметить то, что представители любой надвидовой систематической группы (рода, семейства, отряда) практически никогда не обладают одинаковыми экологическими потребностями. В состав таких групп могут входить совершенно разные с точки зрения отношения к загрязнению виды: устойчивые к загрязнителям, неустойчивые, виды-универсалы, способные жить в очень широком спектре внешних условий и т.д. Одной из распространенных ошибок является использование надвидовых таксонов как индикаторов качества воды без критического рассмотрения набора входящих в этот таксон видов.

Большую роль для результатов биоиндикации состояния водоема играет выбор тех групп живых организмов, которые учитываются исследователем. Дело в том, что водные сообщества очень разнообразны и включают в себя несколько крупных экологических группировок, реакции которых на загрязнения могут серьезно различаться. Это экологические группы животных: зоопланктон, зообентос, перифитон, нектон; и растений: фитопланктон, фитобентос. Каждая группа организмов в качестве индикатора имеет свои преимущества и свои недостатки.

Так, сообщества планктонных организмов (т.е. пассивно парящих в толще воды) очень быстро реагируют на любые изменения ее качества. Они представляют собой как бы "моментальный снимок" состояния водоема. Но методы биоиндикации, основанные на реакциях планктонных сообществ, применимы прежде всего для озер, и только с большой осторожностью - для текущих водоемов.

Кроме того, организмы фитопланктона (водоросли и сине-зеленые бактерии) не обладают достаточной чувствительностью к фекальному загрязнению и тяжелым металлам. Зоопланктон, в свою очередь, слабо реагирует на изменения в водоеме концентрации соединений азота и фосфора.

Организмы бентоса менее динамично реагируют на быстрые изменения уровня загрязненности. Зато, благодаря продолжительному жизненному циклу многих донных животных, их сообщества надежно характеризуют изменения водной среды за длительные периоды времени.

Необходимо помнить, что в своем естественном состоянии различные природные водоемы могут сильно отличаться друг от друга. На водную флору и фауну действуют такие показатели как глубина водоема, наличие и скорость течения, кислотность воды, мутность, температурный режим, количество растворенной органики, соединений азота и фосфора.

На все эти параметры влияет как антропогенная нагрузка, так и естественные процессы, происходящие в водоемах. Значит, для водоемов разных типов в норме будет характерен разный видовой состав и обилие гидробионтов. Более того, в водоемах с наиболее чистой водой количество видов животных и растений, и их обилие обычно ниже, чем в тех водоемах, где органические вещества, соединения азота и фосфора присутствуют в умеренных концентрациях. Для многих водных организмов умеренный уровень загрязнения является оптимальным состоянием среды обитания. Существуют также "виды-универсалы", обладающие высокой экологической пластичностью и способные переносить значительные колебания степени загрязненности водоема. Понятно, что такие виды не представляют интереса для биоиндикации. Таким образом, для оценки состояния воды при помощи биологических объектов необходимо выбирать надежный, проверенный метод, подходящий для данного типа водоема и поставленных задач, нужно четко придерживаться методики отбора и обработки проб, все биологические закономерности являются закономерностями статистическими. Поэтому объем используемого материала должен быть достаточно велик.

И сами живые организмы, и сообщества, которые они образуют чрезвычайно сложные системы. Любая особь и любой вид в природе испытывает на себе влияние огромного количества факторов и, в свою очередь, сам влияет на них. Все многообразие этих связей учесть практически невозможно. Также трудно предсказать и реакцию конкретного организма на внешнее воздействие: ведь двух одинаковых организмов в природе не существует.

Поэтому нельзя делать выводы об уровне загрязненности воды на основе реакций одной особи тест-организма или одной-двух проб, взятых в исследуемом водоеме. Не исключено, что может попасться "нетипичная" особь, устойчивость которой к загрязнению будет значительно выше или ниже, чем средняя для организмов этого вида. Точно также и единственная отобранная в водоеме проба может быть взята в "нетипичном" месте. И все выводы, сделанные на основе таких "наблюдений", будут неверными.

2. Результаты исследования рыб, как биоиндикаторов водной экосистемы

2.2 Рыбы как индикаторы качества вод

Многочисленные публикации свидетельствуют об успешном использовании рыб как индикаторов нарушений "здоровья" экосистемы при токсичном загрязнении вод. Рыбы занимают верхний уровень в трофической системе водоемов. В условиях интенсивного загрязнения степень устойчивости организма рыб определяется способностью эффективно метаболизировать и выводить поступающие в организм токсиканты. Патологические изменения в их организме позволяют определить степень токсичности водной среды, оценить кумулятивные эффекты, а также сформировать представление о потенциальной опасности группы веществ, поступающих в водоем, и для человека. Изменения физиологических показателей рыб регистрируются численными значениями, которые возможно использовать при построении доза-эффектных зависимостей. Поэтому в ряде крупных международных проектов в оценках экологических последствий загрязнения вод предпочтение отдается исследованию рыб на уровне организма.

Для диагностики "здоровья" экосистемы, как отмечалось, важны системные исследования, а результаты - статистически обеспеченные. Однако многие методы, в особенности биохимические или физиологические, достаточно сложны, поэтому не могут быть массовыми при исследованиях на природных водоемах. Методический двухуровневый подход позволяет сочетать в оптимальном соотношении возможность получения массового материала и установления точного диагноза. Выделен первый макроуровень обследования индивидуумов, по которому заболевания выявляются на основе массового визуального обследования организмов и предварительный диагноз устанавливается по клиническим и патологоанатомическим симптомам отравлений.

Второй микроуровень диагностики включает в себя гематологические, гистологические, биохимические, инструментальные физиологические и другие методы. Последние не могут быть массовыми в силу трудоемкости, но используются для уточнения диагноза и оценки последствий патологических изменений в организме рыб. Необходимым условием является также отбор проб от здоровых особей для установления "нормы" физиологического состояния.

Метод клинического и патоморфологического анализа заболеваний (макроуровень). В 1970-е гг. методы патофизиологического исследования рыб получили широкое развитие в связи с участившимися случаями их массового отравления вследствие загрязнения природных водоемов. Методы клинического и патолого-анатомического обследования организмов, применяемые в ветеринарии и медицине, были использованы для обследования рыб с целью оценки последствий токсичного загрязнения водоемов. О.Н. Крылов и Н.М. Аршаница предложили схему описания симптомов отравления рыб и пятибалльную систему оценки тяжести их заболеваний, В настоящее время получено много данных о воздействии различных групп токсикантов на жизнедеятельность рыб, а также о многочисленных биохимических, физиологических и морфологических нарушениях, возникающих в организмах под их воздействием.

Метод клинического и патологоанатомического обследования организма применяется для массового обследования рыб в зонах загрязнения. Визуальное определение признаков интоксикации организма (макродиагностика) проводится в первый час после отлова рыбы. При внешнем осмотре обращают внимание на интенсивность окраски (состояние пигментных клеток - меланофоров): целостность плавниковой каймы и лучей; общее содержание слизи на теле рыбы; состояние чешуйного покрова, жаберных крышек, ротовой полости, анального отверстия; на случаи гиперемии, подкожных кровоизлияний или появления язв, гидремии тела; деформацию костей черепа и скелета, а также состояние хрусталика и роговицы глаза. При открытых жаберных крышках обследуют жабры, отмечают их цвет, наличие и количество слизи, состояние жаберных лепестков (срастание, слипание, расширение или истончение).

2.2 Анализ показателей состояния популяций рыб и их биоразнообразия на примере Обь-Иртышского бассейна

Рыбы являются удобными модельными объектами, позволяющими проследить изменения в окружающей среде под воздействием различных факторов. В частности, они удобны при изучении вопроса как острого, так и хронического загрязнения и водосборных площадей, и самих водоемов и водотоков, где в качестве видов-индикаторов выбираются соответственно либо типично наземные, либо околоводные и водные виды.

Проведенные исследования влияния нефтяного загрязнения на рыб Объ - Иртышского бассейна показали, что под воздействием в слабой степени различных антропогенных исходное сообщество рыб чаще всего увеличивает показатели видового разнообразия и обилия: увеличение степени антропогенной нагрузки ведет к закономерному снижению отмеченных выше показателей, при сильных нагрузках приводя к полной гибели сообществ.

Для оценки экологического состояния Обь-Иртышского бассейна были проведены исследования морфофункционального состояния половых желез, печени и жаберного аппарата у ряда видов сиговых, карповых и окуневых рыб из разнотипных водоемов разных природно-климатических зон, которые показали высокую надежность их оценки с применением гистологических методов биоиндикации.

Жаберный аппарат первым подвергается воздействию экотоксикантов различной природы, и потому цитоморфологические характеристики жаберного эпителия являются важнейшими индикаторами состояния окружающей водной среды. Проявляющиеся в нем отклонения можно рассматривать в качестве следствия морфофункциональных изменений адаптационного характера - от изменения длины респираторных ламелл, увеличения толщины афферентной зоны (дистанции "кровь-среда"), количества и размеров респираторных клеток, до формирования "чехла" на поверхности жаберных лепестков как морфофункционального барьера, препятствующего интоксикации. В жабрах рыб из загрязненных водоемов отмечены гиперплазия и гипертрофия эпителия филаментов (первичного) и ламелл (вторичного), хронические застойные явления в жаберных лепестках, кровоизлияния, сосудистые изменения. Установлена адгезия филаментов респираторных ламелл, некроз эпителиальных клеток и редукция ламелл. их отечность, вызванная повышением капиллярной проницаемости.

Наиболее значительные патологические изменения выявляются у сиговых рыб в период их зимовки в Обской губе и нерестовой миграции в загрязненную Среднюю Обь. Количественная оценка приводится в численности (%) рыб, обладающих отклонениями в жаберном эпителии, составляющими 5% и более его поверхности. В отличие от сиговых, отклонения в жаберном аппарате у карповых рыб выявлены в наиболее загрязненных участках притоков Средней Оби или в водоемах вблизи промышленных зон и жилищной застройки.

Печень, являясь одним из основных органов, принимающих активное участие в процессах модификации и детоксикации ксенобиотиков, в условиях токсичных нагрузок накапливает загрязняющие вещества и сама подвергается патологическим изменениям. Исследования, проводимые на рыбах из бассейна Оби, показали, что в их печени отмечаются гиперемия и очаговый стаз крови в венозных сосудах и капиллярной сети. Застойная гиперемия нередко сопровождается дистрофией, жировой дегенерацией паренхимы, отеками и водянкой. Отмечаются также разлитые и очаговые кровоизлияния, структурные изменения гепатоцитов и деструкция печеночной ткани, инфильтрация органа лимфоидными клетками, скопления эозинофильных клеток, находящихся в различной степени распада и др. В наибольшей мере выявленные отклонения проявляются в конце летнего периода, т.е. при завершении сезона роста у целого ряда видов печень и другие исследуемые органы имели различные нарушения.

Гистологическое состояние органа описывается на срезах, окрашенных железным гематоксилином по Гейденгайну с докраской эозином. Количественная оценка качественных отклонений в развитии и функционировании гепатоцитов печени дается по их количеству на единицу поля, ядер и ядерно-плазматическому отношению (%) в мерах площади.

Состояние репродуктивной системы рыб оценивается на разных стадиях зрелости ее эффекторного звена - половых желез. Яичники характеризуются визуально, а на гистологических препаратах рассчитывается соотношение (%) половых клеток разных генераций, размеры и состояние ооцитов старшей генерации, наличие атретических тел, и у фертильных особей - степень дегенерации опустевших фолликулов, позволяющая оценить уровень репарационных процессов. В семенниках измеряются диаметры ампул (семенных канальцев), наличие митозов сперматогониев, соотношение половых клеток разных состояний (%), усредненное по трем полям в пределах гистологического среза во фронтальной проекции.

Используя данный методический подход, было установлено, что у сиговых рыб в современных условиях Обь-Иртышского бассейна отмечены некоторые особенности гаметогенеза, проявляющиеся в замедлении оогенеза в превителлогенный период, более продолжительном у муксуна и в меньшей степени у пеляди. Для части особей в ходе овариальных циклов характерен пропуск очередного нерестового сезона по причине пониженной репарационной активности репродуктивной системы. Формирования очередной генерации половых клеток резервного фонда у этих видов в период зимовки не происходит. Встречающиеся патологические изменения гонад редки и приходятся на время пребывания пеляди в Нижней Оби.

Для самцов этих видов вариабельность в состоянии гонад проявляется в большей степени. У муксуна в период зимовки отмечена митотичеекая активность сперматогониев, начало формирования сперматогониального фонда, а волна сперматогенеза приходится на начало летнего нагула. В это же время формируется сперматогониальный фонд у пеляди. Динамика сперматогенеза у одних особей ряпушки в период зимовки характеризуется более быстрым восстановлением генеративной функции, у других - длительным пребыванием в IV стадии зрелости. В целом нарушения гонад у сиговых рыб в наибольшей степени выявлены у неполовозрелых особей или у пропускающих нерест рыб. У карповых и окуневых рыб в загрязненных притоках Средней Оби выявленные нарушения гонадо - и гаметогенеза проявляются преимущественно в замедлении полового созревания (плотва, елец, язь, окунь), ослаблении пато-резистентности, резорбции ооцитов фазы вакуолизации, реже отмечается атрезия превителлогенных ооцитов.

Таким образом, использование гистологических методов биоиндикации состояния рыб Обь-Иртышского бассейна позволило сделать заключение о неудовлетворительном состоянии качества вод и "здоровья" континуума исследуемой водной экосистемы. В то же время, учитывая повышенную миграционную активность сиговых рыб, требуется внесение определенных корректив на использование их в качестве биоиндикаторов, ибо в течение сезона они могут находиться не только в разных биотопах, но и в разных широтных зонах Обь-Иртышского бассейна. В этом отношении эти виды следует рассматривать в качестве интегрального критерия благополучия/неблагополучия экосистемы Обь - Иртышского бассейна.

Использование в качестве интегрального показателя паразитологической ситуации индекса разнообразия паразитоценозов показало, что несмотря на достоверно более высокую зараженность плотвы в зимне-весенний период в Обь - Иртышском бассейне по сравнению с летним периодом и с другими пунктами, свидетельствующую о менее благоприятных условиях зимовки рыб, на биоценотическом уровне паразитоценоз рыб стабилен на всем исследованном участке. Преобладание в паразитофауне рыб Обь - Иртышского бассейна трематод (15 из 18 обнаруженных видов) обусловлено обилием моллюсков - их промежуточных хозяев и преобладанием видов рыб - бентофагов, заражение которых происходит при поедании моллюсков или активно проникающими церкариями трематод. Преобладание в паразитофауне рыб личинок трематод, заканчивающих свой жизненный цикл в рыбоядных птицах, характерно для эвтрофных водоемов, что наряду с обнаружением в гельминтофауне рыб из Обь - Иртышского бассейна паразитов-индикаторов эвтрофикации указывает на наличие этого процесса в обследованном водоеме. Высокая степень пространственной сопряженности популяций промежуточных и окончательных хозяев обуславливает стабильность паразитарных систем трематод в изменяющихся внешних условиях.

Экологическая обстановка Западной Сибири, являющейся высокоэндемичным очагом описторхоза, в последние годы существенно изменилась из-за производственной деятельности человека, приводящей к загрязнению окружающей среды, главным образом, тяжелыми металлами, радионуклидами и нефтепродуктами, которые, поступая в водоемы, включаются в круговорот веществ; они могут длительно сохраняться в воде, кумулироваться в донных отложениях, мигрировать по пищевой цепи вплоть до рыб и их паразитов. Изменение эпизоотической обстановки по описторхозу под влиянием урбанизации в нефтепромысловом районе показано на примере популяции язя, обитающего в Обь - Иртышском бассейне, который имеет более высокие показатели инвазированности личинками (до 95% со средним значением интенсивности инвазии до 313 личинок на особь), чем язь, отловленный выше города по течению. Этим можно объяснить высокий уровень зараженности местного населения. Причем зараженность населения в поселках не меньше, чем в городе, но здесь имеет значение разница в общем количестве населения в городе и загородных территориях. Резкое возрастание инвазированности хозяев специфическим паразитом является показателем критического состояния популяции хозяина, маркером его неблагополучия.


Подобные документы

  • Специфичность водных экосистем Беларуси. Влияние естественных и антропогенных факторов воздействия на состояние водных экосистем. Водные экосистемы Бреста и Брестской области. Анализ их загрязнения. Карстовые озера. Озера-старицы. Водохранилища. Пруды.

    курсовая работа [804,8 K], добавлен 16.05.2016

  • Характеристика водных экосистем и методы оценки качества воды. Принципы и методы биохимической индикации состояния рыб в различных эколого-физиологических ситуациях. Определение роли лизосомальных ферментов в реакциях рыб на токсические воздействия.

    курсовая работа [65,6 K], добавлен 07.01.2017

  • Использование пресных вод. Характеристика бытовых и промышленных сточных вод. Физико-географическая характеристика района исследования. Методика оценки качества воды в водоеме, характеристика его химико-биологического состояния, степени загрязнения.

    дипломная работа [132,5 K], добавлен 25.05.2015

  • Проблемы использования воды на территории Уральского региона. Отходы животноводства и их влияние на состояние водоисточников. Первоуральско-Ревдинский животноводческий комплекс. Санитарно–гигиенические качества воды в водной экосистемы р. Чусовой.

    творческая работа [36,4 K], добавлен 25.11.2010

  • Комплексная характеристика бассейна р. Ждановка и стадиона Петровский. Интегральные показатели оценки экологического состояния водных объектов. Индекс оценки трофического состояния водоёма. Нормативы допустимого воздействия. Расчет фоновой концентрации.

    реферат [2,2 M], добавлен 24.12.2013

  • Классификация, виды и источники загрязнения водных объектов РФ. Важнейшие показатели качества воды. Общие положения организации и функционирования государственного мониторинга. Пункты контроля качества воды. Требования к испытательным лабораториям.

    курсовая работа [69,2 K], добавлен 12.06.2011

  • Понятие качества воды и круговорот органических веществ в водных экосистемах. Определение сапробности по Пантле и Букку при изучении санитарного состояния реки. Самозагрязнение и самоочищение водоемов, дрейссены и их личинки-идикаторы загрязнения.

    реферат [32,5 K], добавлен 30.11.2010

  • Роль и значение воды в природе, жизни и деятельности человека. Запасы воды на планете и ее распределение. Проблемы питьевого водоснабжения и его качества в Украине и в мире. Снижение самовосстановительной и самоочистительной способности водных экосистем.

    контрольная работа [63,9 K], добавлен 21.12.2010

  • Круговорот воды в природе, поверхностные и грунтовые воды. Проблемы водоснабжения, загрязнение водных ресурсов. Методические разработки: "Водные ресурсы планеты", "Исследование качества воды", "Определение качества воды методами химического анализа".

    дипломная работа [105,2 K], добавлен 06.10.2009

  • Проведение экологического мониторинга состояния питьевой воды. Выявление основных загрязнителей. Установление соответствия качества питьевой воды санитарным нормам. Характеристика основных методов очистки воды для хозяйственно-питьевого водоснабжения.

    презентация [1,1 M], добавлен 12.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.