Световой режим и адаптация к нему организмов

Температура, свет и влажность как важные факторы внешней среды, закономерности их изменения в течение года. Принципы адаптации живых организмов к световому режиму окружающей среды. Экологические стратегии выживания и регуляция плотности популяции.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 13.03.2013
Размер файла 41,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Световой режим и адаптация к нему организмов

Температура, свет и влажность являются наиболее важными факторами внешней среды. Эти факторы закономерно изменяются как в течение года и суток, так и в связи с географической зональностью. К этим факторам организмы обнаруживают зональный и сезонный характер приспособления.

Солнечное излучение является основным источником энергии для всех процессов, происходящих на Земле. В спектре солнечного излучения можно выделить три области, различные по биологическому действию: ультрафиолетовую, видимую и инфракрасную.

Около 45% солнечной энергии излучается в инфракрасной области, 45% - в видимой, 10% - в ультрафиолетовой и рентгеновской областях.

Для живых организмов важны качественные признаки света - длина волны, интенсивность и продолжительность воздействия.

Ультрафиолетовая часть спектра (УФ) характеризуется самой высокой энергией квантов и высокой фотохимической активностью.

Короткие УФ-лучи с длиной волны 150-400 нм губительны для всего живого. Они практически полностью поглощаются озоновым экраном, который представляет собой тонкий слой атмосферы, содержащий молекулы озона. Озоновый экран находится на высоте около 25-35 км от поверхности Земли.

До поверхности Земли доходит лишь небольшая часть более длинных ультрафиолетовых лучей (290-380 нм). Эти лучи обладают высокой химической активностью - при большой дозе могут повреждать живые организмы. В небольших количествах, однако, они необходимы.

У животных и человека длинноволновые УФ-лучи способствуют синтезу витамина D. Они имеют загарное и бактерицидное действия. Насекомые зрительно различают эти лучи, т.е. видят в ультрафиолетовом свете. Они могут ориентироваться по поляризованному свету. У растений длинноволновые УФ-лучи способствуют синтезу некоторых биологически активных соединений (витаминов, пигментов).

Инфракрасные лучи (800-1000 нм) глаз человека не воспринимает, но они являются основным источником тепловой энергии.

Эти лучи поглощаются тканями животных и растений, вследствие чего ткани нагреваются. Многие холоднокровные животные (ящерицы, змеи, насекомые) используют солнечный свет для повышения температуры тела.

Инфракрасные лучи ускоряют ферментативные и иммунобиологические реакции, рост клеток и регенерацию тканей. У растений под их влиянием осуществляется транспирация, создаются оптимальные условия для работы устьичного аппарата.

Видимые лучи с длиной волны от 400 до 750 нм, достигающие поверхности Земли, имеют особенно большое значение для организмов.

С областью видимой радиации, воспринимаемой глазом человека, практически совпадает область физиологической радиации (от 300 до 800 нм). При этом предел от 380 до 710 нм относится к зоне высокой фотосинтетической активности.

Область физиологической радиации можно условно разделить на ряд зон:

¦ УФ - более 400 нм;

¦ сине-фиолетовую - от 400 до 500 нм;

¦ желто-зеленую - 500-600 нм;

¦ оранжево-красную - 600-700 нм;

¦ дальнюю красную - более 700 нм.

Видимый свет обеспечивает фотосинтез, имеет сигнальное и условно-рефлекторное значение для ориентировки в пространстве, усиливает биохимические процессы, иммунобиологическую реактивность.

Свет имеет разное экологическое значение для автотрофных и гетеротрофных организмов.

Растениям свет необходим для:

1) образования хлорофилла;

2) образования гран хлоропластов;

3) регуляции работы устьичного аппарата;

4) газообмена и транспирации;

5) активации ряда ферментов;

6) биосинтеза нуклеиновых кислот и белков;

7) влияния на сроки размножения, роста, цветения, плодоношения и формообразования.

Интенсивность фотосинтеза зависит от изменения длины волны света. Например, при прохождении света через воду красная и синяя части спектра отфильтровываются, а получающийся зеленоватый свет слабо поглощается хлорофиллом. Однако красные водоросли имеют дополнительные пигменты, позволяющие им использовать эту энергию и жить на больших глубинах, чем зеленые водоросли.

У некоторых растений, например у эвкалипта, фотосинтез не ингибируется прямым солнечным светом. В данном случае имеет место компенсация факторов, так как отдельные растения и целые сообщества приспосабливаются к различным интенсивностям света, становясь адаптированными к тени (диатомовые, фитопланктон) или к прямому солнечному свету.

Световой режим отдельных растительных видов зависит от:

¦ географического положения местности;

¦ высоты над уровнем моря;

¦ рельефа местности;

¦ состояния атмосферы;

¦ времени суток;

¦ сезона года;

¦ солнечной активности.

По отношению к свету выделяют три группы растений:

1. Светолюбивые - растения открытых мест с хорошей освещенностью. Это растения степей, пустынь, полупустынь (ковыль, полынь, злаки) или верхних ярусов лесов (сосна, береза).

2. Теневыносливые - растения, которые могут произрастать в условиях хорошего освещения или легко переносить некоторое затенение. Например, дуб, ель, береза, осина, сосна, зверобой, земляника.

3. Тенелюбивые - растения, которые не выносят прямого света и нормально развиваются в условиях затенения. Сюда относят растения нижних ярусов лесов - мох, папоротники, ландыши, звездчатку.

Четких границ между тремя вышеописанными экологическими группами растений не существует, так как среди них есть и переходные формы.

Для многих растений важны не только спектральный состав и интенсивность света, но и продолжительность светового времени.

Фотопериодизм - это регуляция биоритмов живых существ при помощи света. Он бывает суточный и сезонный. С фотопериодизмом у растений связано явление фототропизма - это движение отдельных органов растения к свету.

Например, движение соцветий подсолнуха в течение дня по ходу движения Солнца, раскрытие соцветий одуванчика утром и закрытие их вечером, рост комнатных растений в освещенную сторону. Это примеры суточного фотопериодизма. Растения воспринимают изменение длины дня с помощью специальных пигментов, расположенных в листьях. Их рецепторы реагируют на раздражения и вызывают ряд биохимических реакций (активация ферментов или выделение гормонов), а позднее проявляются физиологические или поведенческие реакции.

Размер соотношения длительности дня и ночи возрастает от тропиков к полярному кругу. В высоких широтах обитают растения длинного дня, для начала их цветения нужен фотопериод больше 14-15 ч. В тропиках растут растения короткого дня - фотопериод меньше 10-11 ч.

Сезонный фотопериодизм хорошо выражен в средних и северных широтах, связан со сменой времен года. С удлинением светлого времени суток и ростом температуры (весной) в растениях начинается движение сока, набухают и раскрываются почки. С наступлением осени, когда растения реагируют на изменение длины светового дня, а не на температуру, начинается листопад, подготовка к зиме.

Для животных свет не является таким необходимым фактором, как для растений. Солнечная энергия непосредственно животными не усваивается, но является источником их жизнедеятельности:

1. Солнечный свет определяет суточный фотопериодизм жизни животных и их распределение по экологическим нишам.

Всех животных можно подразделить на дневных и ночных. Большинство из них проявляет наибольшую активность днем (жаворонки, волки, зайцы). Некоторые виды (летучие мыши, совы) приспособились к ночному образу жизни. Имеются также виды, живущие в постоянной темноте и не выносящие яркого солнечного света (например, в почве, глубоких пещерах).

Дневной и ночной образы жизни почти исключают конкуренцию между животными за источники пищи.

2. Солнечный свет позволяет животным легко ориентироваться в пространстве. Эволюционно он способствовал развитию органов зрения. Цветовое зрение распространено в разных группах животных неодинаково: оно хорошо развито у некоторых видов членистоногих, рыб, птиц и млекопитающих, но у других видов этих же групп оно может отсутствовать.

3. Свет определяет и сезонный фотопериодизм. Изменение длины светового дня является пусковым механизмом последовательности физиологических процессов, приводящих к линьке и накоплению жира, размножению у птиц и млекопитающих и к наступлению диапаузы у насекомых.

Изменение длины светового дня животные воспринимают с помощью органов зрения. Животные, для которых характерны миграции (перелеты птиц), готовятся к ним, мигрируют, несмотря на еще достаточное количество тепла и кормовой базы.

Изучение фотопериодизма растений и животных показало, что их реакция на свет основана не на количестве получаемого света, а на чередовании в течение суток периодов света и темноты определенной длительности. Все организмы (от одноклеточных до человека) способны измерять время, т.е. обладают «биологическими часами». «Биологические часы» также управляются сезонными циклами и другими биологическими явлениями. «Биологические часы» определяют суточный ритм активности как целых организмов, так и процессов, происходящих даже на уровне клеток, например деление клеток.

2. Экологические стратегии выживания и регуляция плотности популяции

Понятие популяции

Объектом изучения демоэкологии, или популяционной экологии, служит популяция. Ее определяют как группу организмов одного вида (внутри которой особи могут обмениваться генетической информацией), занимающую конкретное пространство и функционирующую как часть биотического сообщества. Популяция характеризуется рядом признаков; единственным их носителем является группа, но не особи в этой группе.

Популяция - это совокупность особей одного вида, обитающих на определенной территории, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций.

Популяция обладает только ей присущими особенностями: численностью, плотностью, пространственным распределением особей. Различают возрастную, половую, размерную структуру популяции. Соотношение разных по возрасту и полу групп в популяции определяют ее основные функции. Соотношение разных возрастных групп зависит от двух причин: от особенностей жизненного цикла вида и от внешних условий.

Состав. Условно в популяции можно выделить три экологические возрастные группы: пререпродуктивная - группа особей, возраст которых не достиг способности воспроизведения; репродуктивная - группа, воспроизводящая новые особи; пострепродуктивная - особи, утратившие способность участвовать в воспроизведении новых поколений. Длительность этих возрастов по отношению к общей продолжительности жизни сильно варьирует у разных организмов.

Выделяют виды с простой возрастной структурой, когда популяция представлена организмами одного возраста, и виды со сложной возрастной структурой, когда в популяции представлены все возрастные группы или одновременно живут несколько поколений.

Численность и плотность выражают количественные характеристики популяции как целого. Численность популяции выражается числом особей данного вида, обитающих на единице занимаемой ею площади. Динамика численности популяций во времени определяется соотношением показателей рождаемости, смертности, выживаемости, которые в свою очередь определяются условиями жизни.

Плотность популяции - это величина популяции, отнесенная к единице пространства: число особей, или биомасса, популяции на единицу площади или объема. Плотность зависит от трофического уровня, на котором находится популяция. Чем ниже трофический уровень, тем выше плотность.

Структура популяции

Под демографической структурой популяции понимаютпрежде всего ее половой и возрастной состав. Кроме того, принято говорить о пространственной структуре популяции-то есть об особенностях размещения особей популяции в пространстве.

Знание структуры популяции позволяет исследователю сделать выводы о ее благополучии или неблагополучии. Например, если в популяции отсутствуют генеративные (то есть способные дать потомство) особи и при этом много старовозрастных (сенильных) особей, то можно сделать неблагоприятный прогноз. У такой популяции может не быть будущего. Структуру популяции желательно изучать в динамике: зная ее изменение в течение нескольких лет, можно намного более уверенно говорить о тех или иных тенденциях.

Возрастная структура популяции. Этот тип структуры связан с соотношением особей различных возврастов в популяции. Особи одного возраста принято объединять в когорты, то есть возрастные группы.

Возрастная структура популяций растений описана очень подробно. В ней выделяют (по Т.А. Роботнову) следующие возрасты (возрастные группы организмов):

латентный период - состояние семени;

прегенеративный период (включает состояния проростка, ювенильного растения, имматурного растения и виргинильного растения);

генеративный период (обычно подразделяется на три подпериода - молодых, зрелых и старых генеративных особей);

постгенеративный период (включает состояния субсенильного растения, сенильного растения и фазу отмирания).

Разумеется, при этом возникает проблема соотношения календарного и биологического возраста. Принадлежность к определенному возрастному состоянию определяется по степени выраженности определенных морфологических (например, степень расчлененности сложного листа) и физиологических (например, способность дать потомство) признаков. Таким образом фиксируется, прежде всего, биологический возраст особи. Биологический возраст имеет для эколога большее значение, так как именно он определяет роль особи в популяционных процессах. В то же время, как правило, существует взаимосвязь между биологическим и календарным возрастом.

В популяциях животных также можно выделить различные возрастные стадии. Например, насекомые, развивающиеся с полным метаморфозом, проходят стадии яйца, личинки, куколки, имаго (взрослого насекомого). У других животных (развивающихся без метаморфоза) также можно выделить различные возрастные состояния, хотя границы между ними могут быть и не настолько четкими.

Характер возрастной структуры (или как говорят, возрастного спектра) популяции зависит от типа так называемой кривой выживания, свойственной данной популяции. Кривая выживания отражает уровень смертности в различных возрастных группах. Так, если уровень смертности не зависит от возраста особей, то кривая выживания представляет собой снижающуюся линию (см. рисунок, тип I). То есть отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни. Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры - для нее свойственна кривая выживания, приближающаяся к прямой линии.

У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение в следствие естественной (физиологический) смертности. Тип II на рисунке. Близкий к этому типу характер кривой выживания свойственен человеку (хотя кривая выживания человека несколько более пологая и, таким образом, является чем-то средним между типами I и II). Этот тип носит названия типа дрозофиллы: именно его демонстрируют дрозофиллы в лабораторных условиях (не поедаемые хищниками).

Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие «критический» возраст, демонстрируют низкую смертность и доживают до больших возрастов. Тип носит название типа устрицы. Тип III на рисунке.

Изучение кривых выживания представляет большой интерес для эколога. Оно позволяет судить о том, в каком возрасте тот или иной вид наиболее уязвим. Если действие причин, способных изменить рождаемость или смертность, приходится на наиболее уязвимую стадию, то их влияние на последующее развитие популяции будет наибольшим. Эту закономерность необходимо учитывать при организации охоты или в борьбе с вредителями.

Половая структура популяции. О половой структуре популяции можно говорить, разумеется, только если речь идет о раздельнополом (бисексуальном) виде. Бисексуальность играет огромную роль в поддержании генетической разнокачественности особей популяции. Значение генетической разнокачественности для устойчивости популяции будет подробно раскрыто в следующем уроке. Сейчас же отметим, что половая структура, то есть соотношение полов, имеет прямое отношение к воспроизводству популяции и ее устойчивости.

Принято выделять первичное, вторичное и третичное соотношение полов в популяции. Первичное соотношение полов определяется генетическими механизмами - равномерностью расхождения половых хромосом. Например, у человека XY-хромосомы определяют развитие мужского пола, а XX - женского. В этом случае первичное соотношение полов 1:1, то есть равновероятно.

Вторичное соотношение полов - это соотношение полов на момент рождения (среди новорожденных). Оно может существенно отличаться от первичного по целому ряду причин: избирательность яйцеклеток к сперматозоидам, несущим X- или Y-хромосому, неодинаковой способностью таких сперматозоидов к оплодотворению, различными внешними факторами. Например, зоологами описано влияние температуры на вторичное соотношение полов у рептилий. Аналогичная закономерность характерна и для некоторых насекомых. Так, у муравьев оплодотворение обеспечивается при температуре выше 20 С, а при более низких температурах откладываются неоплодотворенные яйца. Из последних вылупляются самцы, а из оплодотворенных - преимущественно, самки.

Третичное соотношение полов - это соотношение полов среди взрослых животных.

Пространственная структура популяции. Пространственная структура популяции отражает характер размещение особей в пространстве.

Выделяют три основных типа распределения особей в пространстве:

единообразное (особи размещены в пространстве равномерно, на одинаковых расстояниях друг от друга), тип также носит название равномерного распределения;

конгрегационное, или мозаичное (то есть «пятнистое», особи размещаются в обособленных скоплениях);

случайное, или диффузное (особи распределены в пространстве случайным образом).

Если вы дружны со статистикой, то различие между этими типами пространственной структуры можно описать так. Возьмем некоторое число выборок, подсчитав число особей на равных площадях. Если дисперсия числа особей в выборках стремится к нулю - мы имеем дело с равномерным распределением. Если дисперсия близка к среднему арифметическому - это случайное распределение. Если же дисперсия на много больше среднего арифметического, то можно говорить о конгреационном размещении особей.

Равномерное распределение встречается в природе редко и чаще всего вызвано острой внутривидовой конкуренцией (как, например, у хищных рыб).

Случайное распределение можно наблюдать только в однородной среде и только у видов, которые не обнаруживают никакого стремление к объединению в группы. Как хрестоматийный пример равномерного распределения, обычно приводят распределение жука Tribolium в муке.

Распределение группами встречается намного чаще. Оно связано с особенностями микросреды или с особенностями поведения животных.

Пространственная структура имеет важное экологическое значение. Прежде всего, определенный тип использования территории позволяет популяции эффективно использовать ресурсы среды и снизить внутривидовую конкуренцию. Эффективность использования среды и снижение конкуренции между представителями популяции позволяют ей укрепить свои позиции по отношению к другим видам, населяющим данную экосистему.

Другое важное значение пространственной структуры популяции состоит в том, что она обеспечивает взаимодействие особей внутри популяции. Без определенного уровня внутрипопуляционных контактов популяция не сможет выполнять как свои видовые функции (размножение, расселение), так и функции, связанные с участием в экосистеме (участие в круговоротах веществ, создание биологической продукции и так далее).

Заключение

Вопрос о том, как эволюционируют экосистемы, очень важен, поскольку его решение - ключ к пониманию существующего разнообразия сообществ живых организмов на нашей планете, смены флоры и фауны в ходе ее геологической истории. В основе эволюции живых организмов лежит естественный отбор, действующий на видовом или более низких уровнях. Но естественный отбор играет также важную роль и на уровне экосистем. Его можно подразделить на взаимный отбор зависящих друг от друга автотрофов и гетеротрофов (коэволюция) и групповой отбор, который ведет к сохранению признаков, благоприятных для экосистемы в целом, даже если они неблагоприятны для конкретных носителей этих признаков.

В самом широком смысле коэволюция означает совместную эволюцию двух (или более) таксонов, которые объединены тесными экологическими связями, но которые не обмениваются генами. Естественный отбор, действующий в популяции хищников, будет постоянно увеличивать эффективность поиска, ловли и поедания добычи. Но в ответ на это в популяции жертвы совершенствуются приспособления, позволяющие особям избежать поимки и уничтожения.

Следовательно, в процессе эволюции взаимоотношений «хищник-жертва» жертва действует так, чтобы освободиться от взаимодействия, а хищник-так, чтобы постоянно его поддерживать.

Существуют бесчисленные способы, позволяющие жертвам противостоять давлению хищников. Их можно свести к следующим категориям: защитное поведение (бегство, затаивание, использование убежищ и т.п.), защитная форма и окраска (покровительственная, отпугивающая, предупреждающая, мимикрия), несъедобность или ядовитость (обычно в сочетании с предупреждающей окраской), родительское и социальное поведение (защита потомства, предупреждающие сигналы, совместная защита группы и т.п.).

Защитные средства растений включают: жесткие листья, шипы и колючки, ядовитость, репеллентные и ингибирующие питание животных вещества.

Хищники и другие «эксплуататоры» имеют не менее изощренные способы настигнуть жертву. Вспомним, например, общественное охотничье поведение львов и волков, загнутые ядовитые зубы змей, длинные липкие языки лягушек, жаб и ящериц, а также пауков и их паутину, глубоководную рыбу-удильщика или удавов, которые душат свои жертвы.

Животный мир является национальным достоянием России, неотъемлемым элементом природной среды и биологического разнообразия Земли, возобновляющимся природным ресурсом, важным регулирующим и стабилизирующим компонентом биосферы, всемерно охраняемым и рационально используемым для удовлетворения духовных и материальных потребностей народов России.

В ст. 1 Федерального закона о животном мире, принятого Государственной

Думой 24 апреля 1995 г. сказано, что животный мир - совокупность живых организмов, всех видов диких животных, постоянно или временно населяющих территорию России, а также относящихся к природным ресурсам континентального шельфа и исключительной экономической зоны Российской Федерации.

Животный мир, являясь составной частью природной среды, выступает как неотъемлемое звено в цепи экологических систем, необходимый компонент в процессе круговорота веществ и энергии природы, активно влияющий на функционирование естественных сообществ, структуру и естественное плодородие почв, формирование растительного покрова, биологические свойства воды и качество окружающей среды в целом, Вместе с тем животный мир имеет большое экономическое значение.

Объектом использования и охраны животного мира выступают лишь дикие животные (млекопитающие, птицы, пресмыкающиеся, земноводные, рыбы, а также моллюски, насекомые и др.), обитающие в состоянии естественной свободы на суше, в воде, атмосфере, в почве, постоянно или временно населяющие территорию России или относящиеся к естественным богатствам континентального шельфа и экономической зоны РФ. Не являются таким объектом сельскохозяйственные и другие домашние животные, а также дикие животные, содержащиеся в неволе или полу неволе для хозяйственных, культурных, научных, эстетических и иных целей. Они являются имуществом, принадлежащим на праве собственности государству, юридическим или физически лицам и используются и охраняются в соответствии с гражданским законодательством.

Особенностью животного мира является то, что данный объект возобновляем, но для этого необходимо соблюдение определенных условий, непосредственного связанных с охраной животных. При истреблении, нарушении условий их существования определенные виды животных могут окончательно исчезнуть, и их возобновление будет невозможно.

Указанный Федеральный закон регулирует отношения в области охраны и использования объектов животного мира (любые виды, популяции, живые организмы, относящиеся к животному миру) и среды их обитания в целях сохранения целостности естественных сообществ, биологического разнообразия и обеспечения устойчивого использования и воспроизводства объектов животного мира, а также для укрепления законности и правопорядка в указанной области.

В Федеральном законе предусмотрены традиционные методы охраны и использования объектов животного мира. Лица, чье существование и доходы полностью или частично основаны на традиционных системах жизнеобеспечения, включая охоту, рыболовство и собирательство, имеют право на применение традиционных методов добывания объектов животного мира и продуктов жизнедеятельности, если такие методы прямо или косвенно не ведут к снижению биологического разнообразия, не сокращают численность и устойчивое воспроизводство объектов животного мира, не нарушают среду их обитания и не представляют опасности для человека. Это право указанные лица могут осуществлять как индивидуально, так и коллективно, создавая объединения на различной основе (семейные, родовые, территориально-хозяйственные общины, союзы охотников, собирателей, рыболовов и иные).

Использованная литература

адаптация экологический выживание популяция

1. Краткий курс общей экологии, А.К. Бродский, СПб, «ДЕАН», 1999

2. 1000 экзаменационных билетов и готовых ответов. 9 кл., Москва, «ДРОФА»

Размещено на Allbest.ru


Подобные документы

  • Биотические (факторы живой природы), внутривидовое и межвидовое взаимодействие организмов. Действие основных прямодействующих абиотических факторов: температура, свет и влажность. Экологические группы растений в зависимости от требований к водному режиму.

    презентация [2,7 M], добавлен 03.08.2016

  • Понятие среды обитания. Ее экологические факторы: абиотические, биотические, антропогенные. Закономерности их воздействия на функции живых организмов. Приспособление растений и животных к изменению температуры. Основные пути температурных адаптаций.

    реферат [67,4 K], добавлен 11.03.2015

  • Влажность как один из абиотических факторов, адаптация к нему организмов. Основные показатели влажности. Сезонное распределение влаги. Экологические группы растений по отношению к водному режиму. Законы экологии Коммонера. Расчет предотвращенного ущерба.

    контрольная работа [34,4 K], добавлен 05.02.2013

  • Воздействие экологических факторов окружающей среды (климата, температуры, влажности) на живые организмы. Проявление биотических факторов во взаимоотношениях организмов при совместном обитании: хищничество, паразитизм, симбиоз. Свойства популяции.

    реферат [20,9 K], добавлен 06.07.2010

  • Изучение специфической среды (определенная пища, хищники, температура, соленость воды) к которой приспособлен каждый вид на Земле. Особенности света, как экологического фактора. Характеристика температуры и влажности, как важных экологических факторов.

    контрольная работа [28,8 K], добавлен 19.07.2010

  • Изучение законов лимитирующих факторов и минимума Ю. Либиха. Исследование сложных ситуаций во взаимоотношениях организмов и среды их обитания. Генетические системы как регуляторы процессов адаптации и видообразования (к системной теории микроэволюции).

    курсовая работа [931,6 K], добавлен 03.11.2015

  • Экологические факторы и их воздействие, понятие об экологической нише. Адаптация живых организмов, популяция, ее структура и динамика. Промышленное производство и его воздействие на окружающую среду, стандартизация и охрана окружающей природной среды.

    шпаргалка [297,9 K], добавлен 24.09.2010

  • Охрана окружающей среды и общественное движение за мир. Основные среды жизни живых организмов и их характеристика. Биосферные функции стратосферного озона. Значение леса в природе и жизни человека. Водоохранные зоны и их роль в охране окружающей среды.

    контрольная работа [1,9 M], добавлен 14.07.2009

  • Последствия загрязнения окружающей среды, которые отражаются на растениях. Характеристика биоиндикации и биотестирования. Принципы организации биологического мониторинга. Основные формы отклика живых организмов, области применения биоиндикаторов.

    курсовая работа [65,1 K], добавлен 20.04.2011

  • Понятие, состав биосферы. Биологический круговорот веществ. Классификация живых организмов по типу питания. Механизмы адаптации к температурному фактору организмов наземно-воздушной среды. Экология как научная основа рационального природопользования.

    реферат [19,2 K], добавлен 25.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.