Альтернативные и традиционные источники энергии

Оценка современных проблем энергетики и общая характеристика традиционных источников энергии. Причины перехода к альтернативным источникам энергии, солнечная, геотермальная и космическая мощь. Достижения РФ в использовании альтернативной энергетики.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 12.11.2012
Размер файла 338,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию РФ

Московский Государственный Университет леса

Факультет ландшафтной архитектуры

Кафедра экологии и защиты леса

КУРСОВАЯ РАБОТА

по экологии

на тему: «Альтернативные и традиционные источники энергии»

Выполнила:

Валуйчикова Д.Ю.

Группа ЛА-51

Приняла:

Беднова О.В.

Москва - 2012

Содержание

Введение

1. Проблемы энергетики

2. Виды традиционных источников энергии

3. Виды альтернативных источников энергии

4. Основные причины перехода к АИЭ

5. Недостатки альтернативных источников энергии

6. Проблемы широкого использования альтернативных источников энергии

7. Альтернативная энергетика в России

8. Достижения России в использовании альтернативной энергетики

9. Перспективы развития альтернативной энергетики

Заключение

Список источников

Введение

Производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на природу и окружающую человека среду. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения комплекса вопросов, среди которых перераспределение средств на покрытие нужд человечества, практическое использование в народном хозяйстве достижений, поиск и разработка новых альтернативных технологий для выработки тепла и электроэнергии и т.д.

Во второй половине ХХ столетия перед человечеством восстала глобальная проблема - это загрязнение окружающей среды продуктами сгорания органического топлива. Даже если рассматривать отдельно каждую отрасль этой проблемы, то картина будет складываться ужасная. К примеру, вот данные статистики по выбросам в окружающую среду вредных веществ автомобилями: с выхлопными газами автомобилей в атмосферу попало 14,7 миллиона тонн оксида углерода, 3,4 миллиона тонн углеводородов, около одного миллиона тонн оксидов азота, более 5,5 тысячи тонн высокотоксичных соединений свинца. И это данные на далекий 1993 год и если учесть, что каждый год с конвейеров автомобильных заводов сходит свыше 40 миллионов машин, и темпы производства растут, то можно сказать, что уже через десять лет все крупные города мира увязнут в смоге. К этому еще необходимо добавить продукты сгорания топлива на тепловых электростанциях, затопление огромных территорий гидроэлектростанциями и постоянная опасность в районах АЭС. Но у этой проблемы есть и вторая сторона медали: все ныне используемые источники энергии являются исчерпаемыми ресурсами. То есть через столетие при таких темпах потребления угля, нефти и газа население Земли увязнет в энергетическом кризисе.

Потому ныне перед всеми учеными мира стоит проблема нахождения и разработки новых альтернативных источников энергии. В данной работе будут рассмотрены проблемы нахождения новых видов топлива, которые можно было бы назвать безотходными и неисчерпаемыми. [15]

С традиционными источниками энергии каждый из нас знаком с детства. Традиционные источники энергии используются широко и давно. Традиционная энергетика прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях.

Первая проблема традиционных источников связана с тем, что способы получения энергии не всегда благоприятно влияют на окружающую среду, это происходит из - за сжигания угля, нефти, газа, применения прочих веществ продукты переработки, которых очень часто вредны или даже смертельны для человека.

Вторая проблема заключается в том, что ресурсы не безграничны, рано или поздно кончатся, поэтому в противовес традиционным способам получения энергии разрабатываются и внедряются альтернативные способы получения энергии. [17]

альтернатива солнечный геотермальный источник энергии

1. Проблемы энергетики

Современный период развития человечества иногда характеризуют через: энергетику, экономику, экологию. Энергетика в этом ряду занимает особое место. Она является определяющей и для экономики, и для экологии. От нее в решающей мере зависит экономический потенциал государств и благосостояние людей. Она же оказывает наиболее сильное воздействие на окружающую среду, экосистемы и биосферу в целом. Самые острые экологические проблемы (изменение климата, кислотные осадки, всеобщее загрязнение среды и другие) прямо или косвенно связаны с производством, либо с использованием энергии. Энергетике принадлежит первенство не только в химическом, но и в других видах загрязнения: тепловом, аэрозольном, электромагнитном, радиоактивном. Поэтому не будет преувеличением сказать, что от решения энергетических проблем зависит возможность решения основных экологических проблем. Энергетика - это та отрасль производства, которая развивается невиданно быстрыми темпами. Если численность населения в условиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12-15 лет. При таком соотношении темпов роста населения и энергетики, энерговооруженность лавинообразно увеличивается не только в суммарном выражении, но и в расчете на душу населения.

Нет основания ожидать, что темпы производства и потребления энергии в ближайшей перспективе существенно изменятся (некоторое замедление их в промышленно развитых странах компенсируется ростом энерговооруженности стран третьего мира), поэтому важно получить ответы на следующие вопросы:

- какое влияние на биосферу и отдельные ее элементы оказывают основные виды современной (тепловой, водной, атомной) энергетики и как будет изменяться соотношение этих видов в энергетическом балансе в ближайшей и отдаленной перспективе;

- можно ли уменьшить отрицательное воздействие на среду современных (традиционных) методов получения и использования энергии;

- каковы возможности производства энергии за счет альтернативных (нетрадиционных) ресурсов, таких как энергия солнца, ветра, термальных вод и других источников, которые относятся к неисчерпаемым и экологически чистым.

В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия используются человеком после превращения ее в электрическую энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой, и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, а, следовательно, и с поступлением продуктов горения в окружающую среду. Познакомимся с основными экологическими последствиями современных способов получения и использования энергии.

2. Виды традиционных источников энергии

Тепловые электростанции (ТЭС) вырабатывают электроэнергию в результате преобразования тепловой энергии, которая выделяется при сжигании органического топлива (угля, нефти, газа). Невосполнимость этих природных ресурсов заставляет задуматься о рациональном их применении и замене более дешевыми способами получения электроэнергии. [12]

Доказанные запасы нефти в мире оцениваются в 140 млрд. тонн, а ежегодная добыча составляет около 3,5 млрд. тонн. Однако вряд ли стоит предрекать наступление через 40 лет глобального кризиса в связи с исчерпанием нефти в недрах Земли, ведь экономическая статистика оперирует цифрами доказанных запасов, то есть запасов, которые полностью разведаны, описаны и исчислены. А это далеко не все запасы планеты. Даже в пределах многих разведанных месторождений сохраняются неучтённые или не вполне учтённые нефтеносные секторы, а сколько месторождений ещё ждёт своих открывателей.

За последние два десятилетия человечество вычерпало из недр более 60 млрд. тонн нефти. Вы думаете, доказанные запасы при этом сократились на такую же величину? Ничуть не бывало. Ситуация парадоксальна: чем больше добываем, тем больше остаётся. Между тем этот геологический парадокс вовсе не кажется парадоксом экономическим.

Ведь чем выше спрос на нефть, чем больше её добывают, тем большие капиталы вливаются в отрасль, тем активнее идёт разведка на нефть, тем больше людей, техники, мозгов вовлекается в разведку и тем быстрее открываются и описываются новые месторождения. Кроме того, совершенствование техники добычи нефти позволяет включать в состав запасов ту нефть, наличие (и количество) которой было ранее известно, но достать которую было нельзя при техническом уровне прошлых лет. Конечно, это не означает, что запасы нефти безграничны, но очевидно, что у человечества есть ещё не одно сорокалетие, чтобы совершенствовать энергосберегательные технологии и вводить в оборот альтернативные источники энергии.

Наиболее яркой особенностью размещения запасов нефти является и сверх концентрация в одном сравнительно небольшом регионе - бассейне Персидского залива. Здесь, в арабских монархиях Иране и Ираке, сосредоточено 2/3 доказанных запасов, причём большая их часть (более 2/5 мировых запасов) приходится на три аравийские страны с немногочисленным коренным населением - Саудовскую Аравию, Кувейт и Объединённые Арабские Эмираты. Даже с учётом огромного количества иностранных рабочих, наводнивших эти страны во второй половине 20 века, здесь насчитывается немногим больше 20 млн. человек - около 0,3% мирового населения.

Среди стран, обладающих очень большими запасами (более 10 млрд. тонн в каждой или более 6% мировых),- Ирак, Иран и Венесуэла. Эти страны издавна имеют значительное население и, более или менее развитую экономику, а Ирак и Иран - и вовсе старейшие центры мировой цивилизации.

Во всех крупных регионах мира, кроме Зарубежной Европы и территории Российской Федерации, отношение запасов нефти по состоянию на 1997 г. составляет более 100%. Даже Северная Америка, несмотря на «консервирование запасов» в США, значительно увеличила общие доказанные запасы благодаря интенсивной разведке в Мексике.

В Европе исчерпание запасов связано со сравнительно небольшой природной нефтеносностью региона и очень интенсивной добычей в последние десятилетия: форсируя добычу, страны Западной Европы стремятся разрушить монополию ближневосточных экспортёров. Однако шельф Северного моря - главная нефтяная бочка Европы - не бесконечно нефтеносен.

Что же касается заметного уменьшения доказанных запасов на территории Российской Федерации, то это связано не только с физическим исчерпанием недр, как в Западной Европе, и несколько с желанием попридержать свою нефть, как в США, сколько с кризисом отечественной геологоразведочной отрасли. Темпы разведки новых запасов отстают от темпа других стран.

Уголь.

Единой системы учёта запасов угля и его классификации не существует. Оценки запасов пересматриваются как отдельными специалистами, так и специализированными организациями. На 10 сессии Мировой энергетической конференции (МИРЭК) в 1983г. достоверные запасы углей всех видов были определены в 1520 млрд. тонн. Извлекаемыми с технико-экономической точки зрения признаются пить 2/3 достоверных запасов. На начало 90-х годов, по оценке МИРЭК, около 1040 млрд. тонн.

Небольшими за пределами территории Российской Федерации достоверными запасами располагают США (1/4 мировых запасов), КНР (1/6), Польша, ЮАР и Австралия (по 5-9% мировых запасов), более 9/10 достоверных запасов каменного угля, извлекаемых с использованием существующих в настоящее время технологий (оцениваемых в целом по миру примерно 515 млрд. тонн) сосредоточено, по оценке МИРЕК 1983г., в США (1/4), на территории Российской Федерации (более 1/5), КНР (около 1/5), ЮАР (более 1/10), ФРГ, Великобритании, Австралии и Польши. Из других промышленно развитых стран значительными запасами каменного угля располагают Канада и Япония, из развивающихся - в Азии - Индия и Индонезия, в Африке - Ботсвана, Свазиленд, Зимбабве и Мозамбик, в Латинской Америке - Колумбия и Венесуэла.

Наиболее экономична разработка месторождений каменного угля открытым способом - карьерами. В Канаде, Мозамбике и Венесуэле этим способом могут разрабатываться до 4/5 всех запасов, в Индии - 2/3, в Австралии - около 1/3, в США - более 1/5, в Китае - 1/10. Эти запасы используются более интенсивно, и доля угля, разрабатываемого открытым способом, составляет, например, в Австралии более 1/2, в США более 3/5.

Из общей мировой добычи каменного угля на экспорт идёт около 11%, из которых более 4/5 отправляется морским транспортом. Основные направления вывоза угля: из Австралии и Канады - в Японию, из США и ЮАР - в Западную Европу. ФРГ, в 70 - 80-е годы была крупным нетто - экспортёром коксующегося угля и крупнейшим в мире экспортёром кокса, превратилась в нетто - импортёра угля с неуклонно сокращающимися мощностями и добычей угля.

Почти на нет, сошёл экспорт угля и из Великобритании - страны, которая в начале 20 века была крупнейшим поставщиком угля на мировой рынок.

Подавляющая часть разведанных запасов бурого угля и его добычи сосредоточена в промышленно развитых странах. Размерами запасов выделяются США, Германия и Австралия, а наибольшее значение добычи и использование бурого угля имеют в энергетике Германии и Греции. Большая часть бурого угля (более 4/5) потребляется на ТЭС, расположенных вблизи разработок. Дешевизна этого угля, добываемого почти исключительно открытым способом, обеспечивает, несмотря на его низкую теплотворную способность, производство дешёвой электроэнергии, что привлекает к районам крупных буроугольных разработок электроёмкие производства. В капитале, инвестируемом в буроугольную отрасль, велика доля средств электроэнергетических компаний. [15]

Гидроэлектростанция (ГЭС) -- комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. При их сооружении также наносится вред окружающей среде: перегораживаются реки, меняется их русло, затопляются долины рек.

Важнейшая особенность гидротехнических ресурсов в сравнении с топливно-энергетическими -- их непрерывная возобновляемость.

Атомная электростанция (АЭС) -- электростанция, в которой атомная (ядерная) энергия используется для получения электрической. Генератором энергии здесь является атомный реактор. Тепло, выделяемое в нем в результате цепной реакции деления ядер некоторых тяжелых элементов, преобразуется в электроэнергию. АЭС работают на ядерном горючем (уран, плутоний и др.), мировые запасы которого значительно превышают запасы органического топлива. [12]

На сегодняшний день энергия атома широко используется во многих отраслях экономики. Строятся мощные подводные лодки и надводные корабли с ядерными энергетическими установками. С помощью мирного атома осуществляется поиск полезных ископаемых. Массовое применение в биологии, сельском хозяйстве, медицине, в освоении космоса нашли радиоактивные изотопы.

Значение атомных электростанций в энергобалансе любой страны трудно переоценить. Гидроэнергетика требует создания крупных водохранилищ, под которые затапливаются большие площади плодородных земель. Вода в них застаивается и теряет свое качество, что, в свою очередь, обостряет проблемы водоснабжения, рыбного хозяйства и индустрии досуга.

Теплоэнергетические станции в наибольшей степени способствуют разрушению биосферы и природной среды Земли. Они уже израсходовали десятки тонн органического топлива (угля). Для его добычи в сельском хозяйстве и других сферах экономики изымаются огромные земельные площади.

В местах открытой добычи угля образуются «лунные ландшафты», а повышенное содержание золы в топливе является основной причиной выброса в воздух десятков миллионов тонн SO2. Тепловые энергетические установки во всем мире выбрасывают в атмосферу за год до 250 млн. тонн золы и около 60 млн. тонн сернистого ангидрида.

Атомные электростанции (АЭС) - это третий «кит» в системе современной мировой энергетики. Техническая обеспеченность АЭС, бесспорно, являются крупнейшим достижением научно-технического прогресса (НТП). В случае их безаварийной работы не производится практически никакого загрязнения окружающей среды, кроме теплового. Правда, в результате работы АЭС (и предприятий атомного топливного цикла) образуются радиоактивные отходы, представляющие потенциальную опасность для всего живого. Обнадеживает тот факт, что объем радиоактивных отходов довольно мал, они весьма компактны, и их можно хранить в таких условиях, которые гарантируют отсутствие утечки. АЭС много экономичнее обычных тепловых электростанций, а, самое главное, при их правильной эксплуатации - это чистые источники энергии.

В 1990 году атомными электростанциями мира производилось 16% всей электроэнергии. Такие электростанции работали в 31 стране и строились еще в 6 странах. Ядерный сектор энергетики наиболее значителен во Франции, Бельгии, Финляндии, Швеции, Болгарии и Швейцарии, т.е. в тех промышленно развитых странах, где недостаточно природных энергоресурсов. Эти страны производят от четверти до половины своей электроэнергии на АЭС. США производят на АЭС только восьмую часть своей электроэнергии, но это составляет около одной пятой ее мирового производства.

Вместе с тем, развивая ядерную энергетику в интересах экономики, нельзя забывать и о безопасности и здоровье людей, так как ошибки могут привести к катастрофическим последствиям. Всего с момента начала эксплуатации атомных станций в 14 странах мира произошло более 150 инцидентов и аварий различной степени сложности. Наиболее характерные из них: в 1957 г. - в Уиндскейле (Англия), в 1959 г. - в Санта-Сюзанне (США), в 1961 г. - в Айдахо-Фолсе (США), в 1979 г. - на АЭС Три-Майл-Айленд (США), в 1986 г. - на Чернобыльской АЭС (бывший СССР, сейчас Украина) [5; стр. 15]

Атомная энергетика по-прежнему остается предметом острых дебатов. Сторонники и противники атомной энергетики резко расходятся в оценках ее безопасности, надежности и экономической эффективности. Кроме того, широко pаспpостpанено мнение о возможной утечке ядерного топлива из сферы выработки электpоэнеpгии и его использовании для создания ядерного оружия.[15]

3. Виды альтернативных источников энергии

Энергия биомассы. Понятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х годов в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение получило производство спирта.

Одно из наиболее перспективных направлений энергетического использования биомассы - производство из неё биогаза, состоящего на 50-80% из метана и на 20-50% из углекислоты. Его теплотворная способность - 5-6 тыс. ккал/м3 .

Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 10-12 куб. м метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома злаковых культур, может дать около 20 млрд. куб. м метана. В хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника, из которых можно получить до 2 млрд. куб. м метана. Для тех же целей возможна утилизация ботвы культурных растений, трав и др.

Биогаз можно конвертировать в тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтезгаза и искусственного бензина.

Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую.

Установки по производству биогаза размещают, как правило, в районе крупных городов, центров переработки сельскохозяйственного сырья. [11]

Солнечная энергетика -- направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

Способы получения электричества и тепла из солнечного излучения:

- фотовольтаика -- получение электроэнергии с помощью фотоэлементов;

- гелиотермальная энергетика -- нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP - Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч солнца. Этот луч солнца используется как источник тепловой энергии для нагрева рабочей жидкости, которая расходуется для электрогенерации по аналогии с обычными ТЭЦ или накапливается для сохранения энергии. Преобразование солнечной энергии в электричество осуществляется с помощью тепловых машин:

- паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

- двигатель Стирлинга;

- термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).

- солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество -- запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.[10]

Ветроэнергетика -- отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2010 года общая установленная мощность всех ветрогенераторов составила 196,6 гигаватт. В том же году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 430 тераватт-часов (2,5 % всей произведённой человечеством электрической энергии). Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2011 год в Дании с помощью ветрогенераторов производится 28 % всего электричества, в Португалии -- 19 %, в Ирландии -- 14 %, в Испании -- 16 % и в Германии -- 8 %. В мае 2009 года 80 стран мира использовали ветроэнергетику на коммерческой основе.

Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии. Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии.[16]

Мощность ветрогенератора зависит от площади, ометаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Воздушные потоки у поверхности земли/моря являются ламинарными -- нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 1 км, но резко снижается уже на высотах больше 100 метров. Высота расположения генератора выше этого пограничного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире. Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность пропорциональна третьей степени скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в восемь раз. [16]

Гидроэнергетика -- область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования энергию водного потока в электрическую энергию.

На 2006 год гидроэнергетика обеспечивает производство до 88 % возобновляемой и до 20 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 777 ГВт.

Абсолютным лидером по выработке гидроэнергии на душу населения является Исландия. Кроме неё этот показатель наиболее высок в Норвегии (доля ГЭС в суммарной выработке -- 98 %), Канаде и Швеции. В Парагвае 100 % производимой энергии вырабатывается на гидроэлектростанциях.

Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии. В этой стране размещено до половины малых гидроэлектростанций мира, а также крупнейшая ГЭС мира «Три ущелья» на реке Янцзы и строящийся крупнейший по мощности каскад ГЭС. Ещё более крупная ГЭС «Гранд Инга» мощностью 39 ГВт планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир). [16]

Геотермальная энергетика -- направление энергетики, основанное на производстве электрической энергии за счёт энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.

В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.

Геотермальная энергетика подразделяется на два направления: петротермальная энергетика и гидротермальная энергетика. Ниже описана гидротермальная энергетика.

Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.[16]

Космическая энергетика -- вид альтернативной энергетики, предусматривающий использование энергии Солнца для выработки электроэнергии, с расположением энергетической станции на Луне или земной орбите.

Космический спутник по сбору солнечной энергии по существу состоит из трех частей:

- средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга.

- средства передачи энергии на землю, например, через СВЧ или лазер.

- средства получения энергии на земле, например, через ректенны.

Космический аппарат будет находиться на ГСО и ему не нужно поддерживать себя против силы тяжести. Он также не нуждается в защите от наземного ветра или погоды, но будет иметь дело с космическими опасностями, такими как микрометеориты и солнечные бури.

Водородная энергетика -- развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики). Водородная энергетика относится к нетрадиционным видам энергетики.

Квантовый генератор -- общее название источников электромагнитного излучения, работающих на основе вынужденного излучения атомов и молекул. В зависимости от того, какую длину волны излучает квантовый генератор, он может называться по разному: лазер, мазер, разер, газер.

Квантовый генератор основан на принципе вынужденного излучения, предложенного А. Эйнштейном: когда квантовая система возбуждена и одновременно присутствует излучение соответствующей квантовому переходу частоты, вероятность скачка системы на более низкий энергетический уровень повышается пропорционально плотности уже присутствующих фотонов излучения. На возможность создания квантового генератора на этой основе указал советский физик В. А. Фабрикант в конце 40-х годов.

Первый мазер на молекулах аммиака был сделан в 1954 году одновременно и независимо в Физическом институте Академии наук СССР Н.Г. Басовым и А.М. Прохоровым и в Колумбийском университете Ч. Таунсом с сотрудниками. В 1964 году за эту работу им была присуждена Нобелевская премия по физике. [16]

Наиболее популярными, среди альтернативных источников энергии являются энергии солнечная, ветровая и биоэнергетика. Они имеют определенные недостатки, которые будут рассмотрены ниже.

4. Основные причины перехода к АИЭ

Основные причины, указывающие на важность скорейшего перехода к АИЭ:

- Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

- Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы;

- Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную - постоянно растут;

- Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, - всё это увеличивает социальную напряженность.

- Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.[15]

5. Недостатки альтернативных источников энергии

Энергию, вырабатываемую современными солнечными элементами нельзя назвать настолько уж чистой. Это связано с тем, что производство солнечных панелей сегодня довольно ресурсоемко, кроме того, не стоит забывать, что при их изготовлении используют, в том числе и довольно редкие химические элементы, запасы которых ограничены. Группа ученых из Стенфорда предложила радикальное решение - делать фотоэлементы из углерода. [10]

Главными недостатками ветрогенераторов считают достаточно высокой уровень шума (что накладывает определенные ограничения на установку подобных систем в городской черте), а также наличие движущихся деталей (износ и сложность конструкции). Однако есть и другие способы получения энергии с помощью ветра. Уже разработан эффективный ветрогенератор, который вообще не содержит в своей конструкции вращающихся лопастей - ветрогенератор без лопастей. [10]

И, хотя альтернативные источники энергии не являются абсолютно безопасными и мало затратными, но, тем не менее, как видно из текста выше, все их недостатки достаточно легко устранимы.

6. Проблемы широкого использования альтернативных источников энергии

На пути широкого внедрения альтернативных источников энергии стоят трудно разрешимые экономические и социальные проблемы. Прежде всего это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологии. Во-вторых, высокая материалоемкость : создание мощных ПЭС требует, к примеру, огромных количеств металла, бетона и т.д, В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживается также нехваткой специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию.

Рост цен на традиционные энергоносители (нефть и газ), несмотря на произошедшее в середине 1980-х годов резкое их понижение, возобновится и будет продолжаться по мере исчерпания ресурсов традиционных энергоносителей (относительно нефти последнее может случиться, по некоторым данным, уже через 50-70 лет, т.е. еще до истечения расчетного срока эксплуатации огромного числа уже существующих и строящихся капитальных зданий);

Учитывая рост потребностей в нефти и газе многих производственных технологий (прежде всего, быстро развивающейся химической промышленности), использование нефти, нефтепродуктов, а в скором будущем и газа в качестве топлива следует признать бесперспективным;

Развитие энергетики на базе угля и кокса сопряжено с неизбежным ухудшением экологической обстановки, т.к. безвредные технологии в данной области требуют чрезмерно больших капиталовложений;

Развитие гидроэнергетики будет иметь крайне ограниченные масштабы в силу сложности экологических проблем, возникающих при устройстве ГЭС;

Развитие атомной энергетики требует значительных трудовых, материальных затрат и сопряжено с повышенным риском возникновения аварий континентального масштаба (аналогичных Чернобыльской), что предполагает целесообразность постепенного свертывания АЭС вплоть до полного отказа от их использования в энергетике (например, в Швеции, где на АЭС получают до 50% всей энергии, принята государственная программа по свертыванию атомной энергетики к 2010 г.; несмотря на дефицит энергии законодательно запрещено строительство АЭС в Дании); жизненно необходим скорейший переход к получению энергии на основе термоядерного синтеза (по прогнозам отечественных ученых, в промышленных масштабах этот переход может произойти не ранее 2030-х годов);

Выработку электроэнергии за счет традиционных методов сжигания топлива следует признать бесперспективным вследствие высокой ресурсоемкости данного способа производства (в среднем, на получение 1 усл. ед. электроэнергии затрачивается более 2.5 усл. ед. сжигаемого топлива, при этом к 2000 г. доля электроэнергии в мировом энергобалансе достигнет, по некоторым прогнозам, 18%);

Необходим и неизбежен форсированный переход на широкое использование альтернативных возобновляемых источников энергии: солнца, ветра, грунта, водоемов, биомассы и др. (так, в США к 2000 году предполагалось довести долю солнечной энергии в общем энергобалансе страны до 30%, а в Японии - до 70%);

Жизненно необходимы усиленные научные и инженерно-технические разработки в области альтернативной энергетики, наращивание масштабов их внедрения во все сферы жизнедеятельности, т.к. сегодня переориентация энергетики на преобладающее использование возобновляемых источников невозможна в силу низкой экономической эффективности имеющихся технологий: высокой стоимости при небольшом к.п.д. (например, в Дании, ориентирующейся на развитие ветроэнергетики, несмотря на ее экспериментально подтвержденную высокую экономическую эффективность, энергией с ветровых электростанций в обозримой перспективе рассчитывают обеспечить лишь 10% общей потребности; а в практике использования солнечной энергии экономически приемлемые результаты сегодня показывают лишь пассивные - не требующие монтажа специальных технических систем - средства ее утилизации, что наглядно, хотя и косвенно, выразилось значительным снижением в конце 1980-х годов объемов производства солнечных энергетических установок на основе гелио коллекторов;

Основным источником энергии на ближайшую перспективу станет ее экономия: затраты на экономию 1 т. условного топлива в настоящее время в 2-3 раза меньше затрат на добычу эквивалентного количества дополнительного топлива.

Так, сегодня в России экономия и продажа 1% энергии может принести около 1 млрд. $ прибыли. А если учесть, что энергоемкость российских промышленного и строительного комплексов в 4-5 раз выше, чем в среднем в западных странах, можно говорить о фантастической эффективности капиталовложений в энергосберегающие мероприятия, и прежде всего, за счет продажи сэкономленной энергии. Например, в отечественном строительном комплексе резервы энергосбережения специалисты оценивают в 50-60% от общего потенциала.

Международный опыт показывает, что направление вырученных средств на технологические разработки в области энергосбережения, выплату льготных кредитов населению для проведения мероприятий по снижению энергопотребления и т.п. дает возможность существенного и безболезненного сокращения энергозатрат, повышения эффективности и одновременно удешевления технологий по использованию альтернативных источников энергии.

Необходимо отметить, что глобальные качественные изменения среды обитания человека и его образа жизни, в наибольшей степени должны определяться не столько новым строительством, сколько реконструкцией уже существующего фонда недвижимости: в максимальной степени актуальна проблема энергетической реконструкции именно существующих архитектурных и градостроительных объектов, эксплуатация которых и привела к известным последствиям. Эти реконструктивные мероприятия, очевидно, должны приобрести первостепенное значение в современном архитектурно-строительном процессе, стать приоритетным направлением экономической политики, проектной и строительной деятельности, и прежде всего, в России, где в условиях финансовой нестабильности и слишком затянувшегося процесса перераспределения собственности остаются пока неясными экономические механизмы решения проблемы: отсутствие инвестиций на соответствующие современным требованиям реконструктивные мероприятия (во многом это связано с недостаточной гибкостью новых или непригодностью устаревших нормативных документов и требований, в том числе по вопросам охраны культурного наследия), недостаточная компетентность подавляющего числа занятых в строительстве специалистов обусловливает слабую разработанность проблемы, как на теоретическом, так и на практическом уровне.

Приоритетность реконструктивных мероприятий целесообразна еще и в силу существенно меньшей, относительно нового строительства, стоимости при высокой экономической эффективности капиталовложений, что особенно важно в условиях жесткого и, по-видимому, длительного финансового дефицита, имеющего место в России. Так, энергетическая реконструкция "хрущевок", ведущаяся в Литве при участии датских специалистов, дала ошеломляющие результаты: в среднем, комплекс мер по энергосбережению в одной квартире обходится приблизительно в 6000 $, но при этом доход от сокращения эксплуатационных затрат составляет около 4000 $ в год! То есть, срок окупаемости затрат в данном случае равен 1.3 года, что является очень высоким показателем для современного строительства, где окупаемость капиталовложений наступает, в среднем, через 5-8 лет. Такую же высокую эффективность - со сроками окупаемости от 1.5 до 3-х лет показывают мероприятия по реконструкции и замене систем инженерного обеспечения (в основном, отопления, вентиляции и кондиционирования воздуха) общественных и производственных зданий. Однако, значимым экономическим стимулом энергосбережение может стать только при отмене государственных дотаций на оплату коммунальных услуг: к примеру, в 1992 году население России платило за тепло только 3%, а за электричество - только10% от реальной стоимости, что, понятно, слабо стимулирует действия населения по сокращению энергопотребления.

Кроме того, в современных условиях, характеризующихся тенденцией к неизбежному росту стоимости энергоносителей, при оценке энергоэффективности зданий существенное значение стали приобретать показатели энергозатрат на производство и транспортировку строительных материалов и конструкций, определяя проектную стратегию их выбора в направлении снижения массы и энергоемкости. [11]

7. Альтернативная энергетика в России

Альтернативная энергетика в России -- развиваемая со времён довоенного СССР совокупность технологий получения электроэнергии из нетрадиционных (альтернативных) возобновляемых источников энергии в Российской Федерации.

Согласно принятой в научном сообществе классификации, все источники энергии подразделяют на две группы -- не возобновляемые и возобновляемые. К не возобновляемым относят нефть, уголь, газ и ядерную энергию. Группа возобновляемых, в свою очередь, делится ещё на две -- традиционных и нетрадиционных (альтернативных) источников энергии. К традиционным относят гидроэнергетику и энергию биомассы в части использования древесных отходов.

В мире альтернативная энергетика (АЭ) развивается ускоренными темпами после нефтяного кризиса 1973 года, когда человечество осознало как недопустимо высокую степень своей зависимости от не возобновляемых источников и цен на них. Разработки в направлении использования альтернативных источников велись и ранее.

Сегодня альтернативная энергетика является перспективным с точки зрения экономической и энергетической эффективности направлением деятельности, несмотря на активное противостояние нефтегазового лобби. Подстёгивающим развитие АЭ эффектом обладают случающиеся в последние годы всё чаще политические, экономические и экологические кризисы, они потенциально влияют на энергетическую безопасность государств и регионов. Среди них, в частности, нефтяной кризис (1973), теракты в США (2001), московская энергоавария (2005), перебои с газовым транзитом через Украину в ЕС (2009), авария на японской АЭС «Фукусима--1» (2011) и др.

Россия, обладающая значительными запасами нетрадиционного топлива и имеющая возможность использования одного (а иногда двух и более) возобновляемых источников энергии (ВИЭ) в каждом своём регионе, не торопилась с развитием альтернативной энергетики вплоть до 2000-х годов, хотя отдельные исследования и разработки в этом направлении активно велись с 1950--1960-х годов. Не прекратили работать построенные ещё в советское время электростанции на ВИЭ.

Сегодня у России есть успешный опыт создания электростанций практически на всех известных видах возобновляемых источников энергии. Проблемой является отсутствие реальной государственной поддержки альтернативных энергопроизводств, несмотря на принятие в конце 2000-х годов ряда основополагающих постановлений и курс правительства на инновации. [14]

В силу социально-экономических и политических перемен в советском государстве Энергетическая программа СССР не была выполнена. Однако в 1992--1993 годах Россия определила приоритетные географические районы и территории развития ВИЭ:

1. Районы децентрализованного тепло- и электроснабжения (около 70 % территории страны), в том числе Крайний Север. Цель использования здесь ВИЭ -- энергообеспечение территорий.

2. Зоны неустойчивого централизованного энергоснабжения. Цель использования здесь ВИЭ -- профилактика отключений, резервное энергообеспечение.

3. Отдельные населённые пункты, и, в частности, зоны массового отдыха. Цель использования здесь ВИЭ -- снижение вредных выбросов от работающих на неэкологичном традиционном топливе теплоэлектростанций.

Тем не менее, к 2000-м годам исследовательские работы в области альтернативной энергетики в России практически прекратились. Но несложные подсчёты показывали, что вслед за ростом народонаселения (в течение ХХ века в 3,75 раза) в мире выросло и энергопотребление (в течение ХХ века в 15 раз в целом и в 4 раза на душу населения), и что в будущем потребности в энергии, а значит и в новых способах её получения, будут только увеличиваться. Это понимание не дало полностью остановить российские «альтернативные» энергетические проекты, но выгодное для нефтегазовой отрасли России увеличение стоимости барреля нефти обеспечило трудности развитию альтернативной энергетики в стране. Основные же противостоящие силы ещё в 1980 году выделил и охарактеризовал Элвин Тоффлер. [14]

8. Достижения России в использовании альтернативной энергетики

В сфере ветроэнергетики на северо-западе России работают ВЭС в посёлке Куликово Калининградской области (мощность 5,1 МВт), ВЭС ООО «Красное» в Ленинградской области (75 кВт), ВЭС ЗАО «Ветроэнерго» в Мурманской области (200 кВт) и ВЭС в Коми «Воркутинских электросетей» (1,2 МВт). В центре и на юге страны -- Морпосадская ВЭС в Чувашии (200 кВт), ВЭС Тюпкельды в Башкирии (2,2 МВт), Калмыцкая ВЭС (1,0 МВт), Маркинская ВЭС в Ростовской области (300 кВт). На северо-востоке России -- Чукотская ВЭС (2,5 МВт) и ВЭС «Южных сетей» в селе Никольское на Камчатке (500 кВт). Суммарная мощность всех российских ветроэлектростанций, по информации Росстата 2004--2005 годов, -- 13,3 МВт.

В сфере геотермальной энергетики три ГеоЭС работают на Камчатке -- Паужетская (установленная мощность 12 МВт), Мутновская и Верхне-Мутновская (суммарная мощность 60 МВт).

В сфере космической энергетики Россия ведёт пока разрозненные научные исследования и существенно отстаёт от стран Запада, в частности, от США и Японии.

В сфере солнечной энергетики компании Nitol Solar, «Хевел» (ГК «Ренова»), «Русский кремний» и Подольский химико-технический завод с конца 2000-х годов начали производство солнечного кремния, несмотря на то, что мировой рынок уже практически насыщен конкурентоспособными аналогами. ГК «Ренова», кроме налаживания в чувашском Новочебоксарске производства солнечных тонкоплёночных модулей по современным швейцарским технологиям в партнёрстве с «Роснано» (совместное предприятие назвали ООО «Хевел»), ранее вышла на зарубежный европейский рынок альтернативной энергетики под маркой Avelar Energy с планами проникновения на рынки Италии, Германии, Испании и Греции. В России компания также создаёт собственный научно-технический центр в сотрудничестве с ФТИ имени Иоффе, а при поддержке правительства Чувашской Республики реализует в регионе программу энергоэффективного жилищного строительства по технологии «умный дом» и создаёт систему подготовки кадров на базе ведущих учебных и научных учреждений Чувашии. В России наиболее перспективными для развития солнечной энергетики регионами ГК «Ренова» считает Якутию, Дальний Восток, Красноярск, Иркутск, Кубань, Ставрополье и Северный Кавказ. Компания планирует реализовывать в России 15 % своих солнечных батарей.

В сфере приливной энергетики на территории Мурманской области, в Кислой губе Баренцева моря, работает Кислогубская ПЭС, являющаяся одновременно научной базой НИИ энергетических сооружений (НИИЭС). В Архангельской области проектируется Мезенская ПЭС мощностью 11,4 ГВт, часть энергии она сможет передавать в зарубежную Европу. КПД её ортогональных турбин (это новая российская разработка) -- 63 %, что в два раза больше, чем у зарубежных аналогов. На Камчатке будут построены две мощные ПЭС, способные поделиться электроэнергией с энергодефицитными районами Юго-Восточной Азии. Мощность Тугурской ПЭС, что близ Николаевска-на-Амуре, составит 8 ГВт, а расположенной в Пенжинском заливе Пенжинской ПЭС -- 87 ГВт. [14]

9. Перспективы развития альтернативной энергетики

На возобновляемые (альтернативные) источники энергии приходится всего около 1 % мировой выработки электроэнергии. Речь идет прежде всего о геотермальных электростанциях (ГеоТЭС), которые вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах -- Франции, Великобритании, Канаде, России, Индии, Китае.

Солнечные электростанции (СЭС) работают более чем в 30 странах.

В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае. Дания получает 25% энергии из ветра.


Подобные документы

  • Загрязнение экосистемы продуктами переработки топлива. Увеличение глобального спроса на энергию. "Традиционные" виды альтернативной энергии - энергия воды, солнца, ветра, морских волн, приливов и отливов. Характеристика альтернативных источников энергии.

    реферат [43,4 K], добавлен 14.04.2011

  • Причины перехода на возобновляемые источники энергии. Возможные источники энергии. Энергия воды. Солнечная энергия. Энергия ветра. Другие источники энергии (биомасса).

    реферат [65,2 K], добавлен 21.12.2002

  • Нетрадиционные и возобновляемые источники энергии (солнечная, ветровая и геотермальная энергию, энергию морских приливов и волн). Их плюсы и минусы. Как может осуществляться альтернативное использование солнечной энергии при эксплуатации зданий.

    реферат [23,7 K], добавлен 26.12.2010

  • Способы получения электроэнергии и связанные с ними экологические проблемы. Решение экологических проблем для тепловых и атомных электростанций. Альтернативные источники энергии: солнца, ветра, припливов и отливов, геотермальная и энергия биомассы.

    презентация [4,0 M], добавлен 31.03.2015

  • Источники радиоактивного загрязнения. Экологические проблемы тепловой энергетики и гидроэнергетики. Приливные электростанции и их экологическая оценка. История использования энергии ветра. Экологическая оценка использования лучистой энергии Солнца.

    реферат [50,8 K], добавлен 02.12.2014

  • Понятие геотермальной энергии как энергии внутренних областей Земли. Перспективы использования геотермальных источников энергии, характеристика их преимуществ. Развитие и совершенствование геотермальных технологий. Экологические фонды: назначение, виды.

    реферат [202,7 K], добавлен 15.01.2014

  • Вклад теплоэнергетики в загрязнение атмосферы. Использование теплонасосной установки как альтернативного экологически чистого источника энергии в системах теплоснабжения жилых, общественных и производственных зданий. Применение нетрадиционной энергетики.

    реферат [57,7 K], добавлен 26.09.2016

  • Зависимость арабских стран от традиционного топлива. Запасы нефти в арабских странах, инвестирование в ее разведку. Экологические причины, формирующие спрос на альтернативную энергетику в Ближневосточном регионе. Традиционные источники энергии и экология.

    контрольная работа [334,2 K], добавлен 08.01.2017

  • Анализ возможности применения энергии солнца и ветра как совместно с традиционным источником энергии, так и автономного энергоснабжения совместного использования энергии солнца и ветра. Сравнение по более экономному использованию энергии ветра и солнца.

    контрольная работа [474,9 K], добавлен 03.11.2013

  • Структура топливно-энергетического комплекса: нефтяная, угольная, газовая промышленность, электроэнергетика. Влияние энергетики на окружающую среду. Основные факторы загрязнения. Источники природного топлива. Использование альтернативной энергетики.

    презентация [706,6 K], добавлен 26.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.