Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий

Характеристика требований в части расчета концентраций вредных веществ в атмосферном воздухе при размещении и проектировании предприятий, при нормировании выбросов в атмосферу реконструируемых предприятий, при проектировании воздухозаборных сооружений.

Рубрика Экология и охрана природы
Вид методичка
Язык русский
Дата добавления 11.03.2012
Размер файла 4,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МЕТОДИКА РАСЧЕТА КОНЦЕНТРАЦИЙ В АТМОСФЕРНОМ ВОЗДУХЕ ВРЕДНЫХ ВЕЩЕСТВ, СОДЕРЖАЩИХСЯ В ВЫБРОСАХ ПРЕДПРИЯТИЙ

1. ОБЩИЕ ПОЛОЖЕНИЯ

Настоящие нормы устанавливают методику расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Нормы должны соблюдаться при проектировании предприятий, а также при нормировании выбросов в атмосферу реконструируемых и действующих предприятий.

Нормы предназначены для расчета приземных концентраций в двухметровом слое над поверхностью земли, а также вертикального распределение концентраций.

Степень опасности загрязнения атмосферного воздуха характеризуется наибольшим рассчитанным значением концентрации, соответствующим неблагоприятным метеорологическим условиям, в том числе опасной скорости ветра. Нормы не распространяются на расчет концентраций на дальних (более 100 км) расстояниях от источников выброса.

В зависимости от высоты Н устья источника выброса вредного вещества над уровнем земной поверхности указанный источник относится к одному из следующих четырех классов: а) высокие источники, Н 50 м; б) источники средней высоты, H = 10...50 м; в) низкие источники, H = 2...10 м; г) наземные источники, Н 2 м.

Для источников всех указанных классов в расчетных формулах длина (высота) выражена в метрах, время -- в секундах, масса вредных веществ -- в граммах, их концентрация в атмосферном воздухе -- в миллиграммах на кубический метр, концентрация на выходе из источника -- в граммах на кубический метр.

При одновременном совместном присутствии в атмосферном воздухе нескольких (n) веществ, обладающих в соответствии с перечнем, утвержденным Минздравом СССР, суммацией вредного действия, для каждой группы указанных веществ однонаправленного вредного действия рассчитывается безразмерная суммарная концентрация q или значения концентраций п вредных веществ, обладающих суммацией вредного действия, приводятся условно к значению концентрации с одного из них.

Безразмерная концентрация q определяется по формуле

, (1.1)

где с1, с2, ..., сn (мг/м3) -- расчетные концентрации вредных веществ в атмосферном воздухе в одной и той же точке местности; ПДК1, ПДК2, ..., ПДКn (мг/м3) -- соответствующие максимальные разовые предельно допустимые концентрации вредных веществ в атмосферном воздухе.

Приведенная концентрация с рассчитывается по формуле

, (1.2)

где с1 -- концентрация вещества, к которому осуществляется приведение; ПДК1 -- его ПДК; с2...сn и ПДК2...ПДКn -- концентрации и ПДК других веществ, входящих в рассматриваемую группу суммации.

Расчет концентрации вредных веществ, претерпевающих полностью или частично химические превращения (трансформацию) в более вредные вещества, проводится по каждому исходному и образующемуся веществу отдельно. При этом мощность источников для каждого вещества устанавливается с учетом максимально возможной трансформации исходных веществ в более токсичные. Степень указанной трансформации устанавливается по согласованию с Госкомгидрометом и Минздравом СССР.

Расчетами определяются разовые концентрации, относящиеся к 20 -- 30-минутному интервалу осреднения.

2. РАСЧЕТ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ ВЫБРОСАМИ ОДИНОЧНОГО ИСТОЧНИКА

Максимальное значение приземной концентрации вредного вещества см (мг/м3) при выбросе газовоздушной смеси из одиночного точечного источника с круглым устьем достигается при неблагоприятных метеорологических условиях на расстоянии хм (м) от источника и определяется по формуле

, (2.1)

где А -- коэффициент, зависящий от температурной стратификации атмосферы; М (г/с) -- масса вредного вещества, выбрасываемого в атмосферу в единицу времени; F -- безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе; m и n -- коэффициенты, учитывающие условия выхода газовоздушной смеси из устья источника выброса; H (м) -- высота источника выброса над уровнем земли (для наземных источников при расчетах принимается Н = 2 м); -- безразмерный коэффициент, учитывающий влияние рельефа местности (см. раздел 4), в случае ровной или слабопересеченной местности с перепадом высот, не превышающим 50 м на 1 км, = 1; T (°С) -- разность между температурой выбрасываемой газовоздушной смеси Тг и температурой окружающего атмосферного воздуха Тв; V13/с) -- расход газовоздушной смеси, определяемый по формуле

, (2.2)

где D (м) -- диаметр устья источника выброса; 0 (м/с) -- средняя скорость выхода газовоздушной смеси из устья источника выброса.

Значение коэффициента А, соответствующее неблагоприятным метеорологическим условиям, при которых концентрация вредных веществ в атмосферном воздухе максимальна, принимается равным:

а) 250 -- для районов Средней Азии южнее 40° с. ш., Бурятской АССР и Читинской области;

б) 200 -- для Европейской территории СССР: для районов РСФСР южнее 50° с. ш., для остальных районов Нижнего Поволжья, Кавказа, Молдавии; для Азиатской территории СССР: для Казахстана, Дальнего Востока и остальной территории Сибири и Средней Азии;

в) 180 -- для Европейской территории СССР и Урала от 50 до 52° с. ш., за исключением попадающих в эту зону перечисленных выше районов и Украины;

г) 160 -- для Европейской территории СССР и Урала севернее 52° с.ш. (за исключением Центра ETC), а также для Украины (для расположенных на Украине источников высотой менее 200 м в зоне от 50 до 52° с. ш. -- 180, а южнее 50° с.ш. -- 200);

д) 140 -- для Московской, Тульской, Рязанской, Владимирской, Калужской, Ивановской областей.

Примечание. Для других территорий значения коэффициента А должны приниматься соответствующими значениям коэффициента А для районов СССР со сходными климатическими условиями турбулентного обмена.

Значения мощности выброса М (г/с) и расхода газовоздушной смеси V13/с) при проектировании предприятий определяются расчетом в технологической части проекта или принимаются в соответствии с действующими для данного производства (процесса) нормативами. В расчете принимаются сочетания М и V1, реально имеющие место в течение года при установленных (обычных) условиях эксплуатации предприятия, при которых достигается максимальное значение см.

Примечания: 1. Значение М следует относить к 20 -- 30-минутному периоду осреднения, в том числе и в случаях, когда продолжительность выброса менее 20 мин.

2. Расчеты концентраций, как правило, проводятся по тем веществам, выбросы которых удовлетворяют требованиям п. 5.21.

При определении значения Т (°С) следует принимать температуру окружающего атмосферного воздуха Тв (°С), равной средней максимальной температуре наружного воздуха наиболее жаркого месяца года по СНиП 2.01.01-82, а температуру выбрасываемой в атмосферу газовоздушной смеси Тг (°С) -- по действующим для данного производства технологическим нормативам.

Примечания: 1. Для котельных, работающих по отопительному графику, допускается при расчетах принимать значения Тв равными средним температурам наружного воздуха за самый холодный месяц по СНиП 2.01.01-82.

2. При отсутствии данных по Тв в СНиП 2.01.01-82 они запрашиваются в территориальном управлении Госкомгидромета (УГКС) по месту расположения предприятия.

Значение безразмерного коэффициента F принимается:

а) для газообразных вредных веществ и мелкодисперсных аэрозолей (пыли, золы и т.п., скорость упорядоченного оседания которых практически равна нулю) -- 1;

б) для мелкодисперсных аэрозолей (кроме указанных в п. 2.5а) при среднем эксплуатационном коэффициенте очистки выбросов не менее 90 % -- 2; от 75 до 90 % -- 2,5; менее 75 % и при отсутствии очистки -- 3-

Примечания: 1. При наличии данных о распределении на выбросе частиц аэрозолей по размерам определяются диаметр dg, так что масса всех частиц диаметром больше dg составляет 5 % общей массы частиц, и соответствующая dg скорость оседания g (м/с). Значение коэффициента F устанавливается в зависимости от безразмерного отношения g / uм, где uм -- опасная скорость ветра (см.п. 2.9). При этом F= 1 в случае s / uм 0,015 и F = 1,5 в случае 0,015 < g / uм 0,030. Для остальных значений g / uм коэффициент - F устанавливается согласно п. 2.56.

2. Вне зависимости от эффективности очистки значение коэффициента F принимается равным 3 при расчетах концентраций пыли в атмосферном воздухе для производств, в которых содержание водяного пара в выбросах достаточно для того, чтобы в течение всего года наблюдалась его интенсивная конденсация сразу же после выхода в атмосферу, а также коагуляция влажных пылевых частиц (например, при производстве глинозема мокрым способом).

Значения коэффициентов т и п определяются в зависимости от параметров f; м, и fe:

; (2.3)

; (2.4)

; (2.5)

. (2.6)

Коэффициент т определяется в зависимости от f по рис. 2.1 или по формулам:

при f < 100; (2.7а)

при f 100. (2.7б)

Рис. 2.1

Рис. 2.2

Для fe < f < 100 значение коэффициента т вычисляется при f = fe.

Коэффициент п при f < 100 определяется в зависимости от м по рис. 2.2 или формулам:

n = 1 при м 2; (2.8а)

п = 0,532 - 2,13м + 3,13 при 0,5 м < 2; (2.86)

n = 4,4м при м < 0,5. (2.8в)

При f 100 или T 0 коэффициент п вычисляется по п. 2.7.

Для f 100 (или T 0) и 0,5 (холодные выбросы) при расчете см вместо формулы (2.1) используется формула

, (2.9)

, (2.10)

причем п определяется по формулам (2.8а) -- (2.8в) при м = .

Аналогично при f < 100 и м < 0,5 или f 100 и < 0,5 (случаи предельно малых опасных скоростей ветра) расчет см вместо (2.1) производится по формуле

, (2.11)

т' = 2,86m при f < 100, м < 0,5; (2.12а)

т' = 0,9 при f 100, < 0,5. (2.126)

Примечание. Формулы (2.9), (2.11) являются частными случаями общей формулы (2.1).

Расстояние хм (м) от источника выбросов, на котором приземная концентрация с (мг/м3) при неблагоприятных метеорологических условиях достигает максимального значения см, определяется по формуле

, (2.13)

где безразмерный коэффициент d при f < 100 находится по формулам:

d = 2,48 (1 + 0,28 ) при м 0,5; (2.14а)

d = 4,95 м (l + 0,28 ) при 0,5 < м 2; (2.14б)

d = 7(1 + 0,28 ) при м > 2. (2.14в)

При f > 100 или Т 0 значение d находится по формулам:

d =5,7 при 0,5; (2.15a)

d = 11,4 при 0,5 < 2; (2.156)

d = 16 при > 2. (2.15в)

Значение опасной скорости им (м/с) на уровне флюгера (обычно 10 м от уровня земли), при которой достигается наибольшее значение приземной концентрации вредных веществ см, в случае f > 100 определяется по формулам:

им = 0,5 при м 0,5; (2.16а)

им = м при 0,5 < м 2; (2.16б)

им = м (1 + 0,12) при м > 2 (2.16в)

При f 100 или Т 0 значение им вычисляется по формулам:

им = 0,5 при 0,5; (2.17а)

им = при 0,5 < 2; (2.176)

им = 2,2 при > 2. (2.17в)

Максимальное значение приземной концентрации вредного вещества сми (мг/м3) при неблагоприятных метеорологических условиях и скорости ветра и (м/с), отличающейся от опасной скорости ветра им (м/с), определяется по формуле

сми = rсм, (2.18)

где r -- безразмерная величина, определяемая в зависимости от отношения и/им по рис. 2.3 или по формулам:

r = 0,67 (u/uм) + 1,67 (u/uм)2 - 1,34 (u/uм)3 при u/uм 1; (2.19а)

при u/uм > 1. (2.19б)

Примечание. При проведении расчетов не используются значения скорости ветра и < 0,5 м/с, а также скорости ветра и > и*, где и* -- значение скорости ветра, превышаемое в данной местности в среднем многолетнем режиме в 5 % случаев. Это значение запрашивается в УГКС Госкомгидромета, на территории которого располагается предприятие, или определяется по климатическому справочнику.

Рис. 2.3

Расстояние от источника выброса хми (м), на котором при скорости ветра и и неблагоприятных метеорологических условиях приземная концентрация вредных веществ достигает максимального значения сми (мг/м3), определяется по формуле

хми = рхм, (2.20)

где р -- безразмерный коэффициент, определяемый в зависимости от отношения и/им по рис. 2.3 или по формулам:

р = 3 при и/им 0,25; (2.2la)

р = 8,43 (1 - и/им)5 + 1 при 0,25 < и/им 1; (2.21б)

р = 0,32 и/им + 0,68 при и/им > 1. (2.21в)

При опасной скорости ветра им приземная концентрация вредных веществ с (мг/м3) в атмосфере по оси факела выброса на различных расстояниях х (м) от источника выброса определяется по формуле

с = s1см, (2.22)

где s1 -- безразмерный коэффициент, определяемый в зависимости от отношения х/хм и коэффициента F по рис. 2.4 или по формулам:

s1 = 3 (х/хм)4 - 8 (х/хм)3 + 6 (х/хм)2 при (х/хм) 1; (2.23а)

при 1 < х/хм 8; (2.23б)

при F 1,5 и х/хм > 8 (2.23в)

при F > 1,5 и х/хм > 8 (2.23г)

Для низких и наземных источников (высотой H не более 10 м) при значениях х/хм < 1 величина s1 в (2.22) заменяется на величину , определяемую в зависимости от х/хм и H по рис. 2.5 или по формуле

= 0,125 (10 - H) + 0,125 (H - 2)s1 при 2 Н < 10. (2.24)

Примечание. Аналогично определяется значение концентрации вредных веществ на различных расстояниях по оси факела при других значениях скоростей ветра u и неблагоприятных метеорологических условиях. По формулам (2.18), (2.20) определяются значения величин сми и хми. В зависимости от отношения х/хми определяется значение s1 по рис. 2.4, 2.5 или по формулам (2.23), (2.24). Искомое значение концентрации вредного вещества определяется путем умножения сми на s1,.

Значение приземной концентрации вредных веществ в атмосфере cу (мг/м3) на расстоянии у (м) по перпендикуляру к оси факела выброса определяется по формуле

cу = s2 c, (2.25)

где s2 -- безразмерный коэффициент, определяемый в зависимости от скорости ветра и (м/с) и отношения у/х по значению аргумента ty:

Рис. 2.4

при u 5; (2.26а)

при u > 5; (2.26б)

по рис. 2.6 или по формуле

, (2.27)

Рис. 2.5

Рис. 2.6

Максимальная концентрация смх (мг/м3), достигающаяся на расстоянии х от источника выброса на оси факела при скорости ветра имх, определяется по формуле

, (2.28)

где безразмерный коэффициент, находится в зависимости от отношения х/хм по рис. 2.7 или по формулам:

= 3 (х/хм)4 - 8 (х/хм)3 + 6 (х/хм)2 при х/хм 1; (2.29а)

при 1 < х/хм 8; (2.29б)

при 8 < х/хм 24; (2.29в)

при 24 < х/хм 80; F 1,5 (2.29г)

при 24 < х/хм < 80; F > 1,5 (2.29д)

при х/хм > 80; F 1,5 (2.29e)

при х/хм > 80; F < 1,5 (2.29ж)

Рис. 2.7

Скорость ветра их при этом рассчитывается по формуле

uмх = f1 uм, (2.30)

где безразмерный коэффициент f1 определяется в зависимости от отношения х/хм по рис. 2.8 или по формулам:

f1 = 1 при х/хм 1; (2.31а)

при 1< х/хм 8; (2.31б)

f1 = 025 при 8 < х/хм < 80; (2.31в)

f1 = 1,0 при х/хм 80; (2.31г)

Примечание. Если рассчитанная по формуле (2.30) скорость ветра имх < 0,5 м/с или имх > и* (см. п. 2.10), то величина смх определяется как максимальное значение из концентраций на расстоянии х, рассчитанных при трех скоростях ветра: 0,5 м/с, им, и*; соответствующая смх скорость ветра принимается за имх.

Расчеты распределения концентраций сz (мг/м3) на разных высотах z (м) над подстилающей поверхностью при х < хм производятся по формуле

cz = r cм sz s2. (2.32)

Рис. 2.8

Значения см, r и s2 вычисляются согласно пп. 2.1, 2.7, 2.10 и 2.13, а коэффициент sz определяется в зависимости от параметров b1 и b2 по рис. 2.9 или по формулам:

при b1 1; (2.33а)

sz = s1 (b1) при b1 > 1. (2.33б)

Здесь

b1 = х/хми; (2.34)

; (2.35)

при f < 100; (2.36а)

Рис. 2.9

при f > 100. (2.36б)

При fe f < 100 коэффициент d2 вычисляется по формуле (2.36а) при f = fe, при м < 0,5 или < 0,5 соответственно в (2.36а) и (2.36б) принимается м = 0,5 или = 0,5.

Опасная скорость ветра имz (м/с) на уровне флюгера, при которой на высоте z достигается максимальная концентрация, определяется по формуле

uмz = l1 uм. (2.37)

Коэффициент l1 определяется в зависимости от х/хм по рис. 2.10.

Расчеты загрязнения атмосферы при выбросах газовоздушной смеси из источника с прямоугольным устьем (шахты) производятся по приведенным выше формулам при средней скорости 0 и значениях D = Dэ (м) и V1 = V3/с).

Рис. 2.10

Средняя скорость выхода в атмосферу газовоздушной смеси 0 (м/с) определяется по формуле

, (2.38)

где L (м) -- длина устья; b (м) -- ширина устья.

Эффективный диаметр устья Dэ (м) определяется по формуле

. (2.39)

Эффективный расход выходящей в атмосферу в единицу времени газовоздушной смеси V3/с) определяется по формуле

. (2.40)

Примечание. Для источников с квадратными устьем (L = b) эффективный диаметр Dэ, равняется длине стороны квадрата. В остальном расчет рассеивания вредных веществ производится как для выбросов из источника с круглым устьем.

Решение обратных задач по определению мощности выброса М и высоты H, соответствующих заданному уровню максимальной приземной концентрации см при прочих фиксированных параметрах выброса, находится следующим образом.

Мощность выброса М (г/с), соответствующая заданному значению максимальной концентрации см (мг/м3), определяется по формуле

. (2.41)

В случае f 100 или T 0

. (2.42)

Высота источника Н, соответствующая заданному значению см, в случае T 0 определяется по формуле

. (2.43)

Если вычисленному по формуле (2.43) значению H соответствует < 2 м/с, то H уточняется методом последовательных приближений по формуле

, (2.44)

где ni и пi-1 - значения определенного по рис. 2.2 или по формулам (2.8) коэффициента п, полученные соответственно по значениям Hi и Hi-1 (при i = 1 в формуле (2.44) принимается n0=1, а значение Hi определяется по (2.43)).

Формулы (2.43), (2.44) используются также для определения H при T > 0. Если при этом выполняется условие , то найденное H является точным. Если же , то для определения предварительного значения высоты H используется формула

. (2.45)

По найденному значению H определяются на основании формул (2.3) -- (2.6) величины f, м, и fe и устанавливается в первом приближении произведение коэффициентов m и n. Дальнейшие уточнения значения H выполняются по формуле

, (2.46)

где mi, ni соответствуют Hi, а тi-1, пi-1 -- Нi (при i = 1 принимается т0 = n0 = 1, a H0 определяется по (2.45)).

Примечания: 1. Уточнение значения Н по формулам (2.44) и (2.46) производится до тех пор, пока два последовательно найденных значения Н (Нi и Hi+i) будут различаться менее чем на 1 м.

2. При одновременной необходимости учета влияния рельефа местности и застройки в формулах (2.41) -- (2.43) и (2.45) за величину принимается произведение поправок к максимальной концентрации на рельеф и застройку, определенных согласно разделу 4 и приложению 2.

В случае выбросов в атмосферу, обусловленных сжиганием топлива, при фиксированных высоте и диаметре устья трубы соответствующий см расход топлива Р (т/ч) определяется по формуле

, (2.47)

где d3 (г/кг) - количество выбрасываемого в атмосферу вредного вещества на единицу массы топлива (в необходимых случаях с учетом пылегазоочистки); d43/кг) -- расход газовоздушной смеси, выделяющейся на единицу массы топлива. Для каждого источника радиус зоны влияния рассчитывается как наибольшее из двух расстояний от источника х1 и х2, где х1 = 10хм, а величина х2 определяется как расстояние от источника, начиная с которого с 0,05 ПДК.

Примечание. Значение х2 при ручных расчетах находится графически с помощью рис. 2.4 а, б. На вертикальной оси откладывается точка 0,05 ПДК/см, через которую проводится параллельная горизонтальной оси линия до пересечения с графиком функции s1 за максимумом. Из точки пересечения опускается перпендикуляр на горизонтальную ось, полученное значение х/хм умножается на хм, в результате чего определяется искомое значение. При см 0,05 ПДК значение х2 полагается равным нулю.

При полной нагрузке оборудования средняя концентрация (г/м3) в устье источника, равная

, (2.48)

определяется по формулам:

при f < 100; (2.49а)

при f 100 или T 0, (2.49б)

где см (мг/м3) -- соответствующая максимальная приземная концентрация.

3. РАСЧЕТ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ ВЫБРОСАМИ ЛИНЕЙНОГО ИСТОЧНИКА

При расчете рассеивания выбросов от линейного источника длиной L наибольшая концентрация вредной примеси см достигается в случае ветра вдоль источника на расстоянии хм от проекции его центра на земную поверхность. При рассмотрении аэрационного фонаря (рис.3.1) как линейного источника значения см (мг/м3) и расстояния хм (м) определяются по формулам:

; (3.1)

. (3.2)

Рис. 3.1

Здесь значения и , а также соответствующее им значение принимаются равными максимальной концентрации см, расстоянию хм и опасной скорости им для одиночного источника той же мощности М с круглым устьем диаметром Dэ, и расходом выбрасываемой газовоздушной смеси V. При этом эффективный диаметр устья фонаря Dэ (м) определяется по формуле

, (3.3)

где V13/с) -- расход выбрасываемой из фонаря в единицу времени газоводзушной смеси, 0 (м/с) -- средняя скорость выхода из фонаря газовоздушной смеси. Величина V определяется по найденному значению Dэ и формуле (2.40).

За высоту источника выброса H (м) принимается высота над уровнем земли верхней кромки ветроотбойных щитов фонаря или верхней кромки фонаря при отсутствии ветроотбойных щитов. Средняя скорость выхода в атмосферу газовоздушной смеси из аэрационного фонаря 0 (м/с) определяется экспериментальным путем или по расчету аэрации. Масса выбрасываемого в атмосферу в единицу времени вредного вещества М (г/с) принимается равной суммарному выбросу из всего фонаря. Величина T (°С) принимается такой же, как для одиночного источника выброса.

Безразмерные коэффициенты s3 и s4 в (3.1) и (3.2) определяются в зависимости от отношения по рис. 3.2 или по формулам:

; (3.4)

Опасная скорость ветра им определяется по формуле

. (3.6)

Распределение концентраций вредных веществ с на расстоянии х от центра аэрационного фонаря при ветре, направленном вдоль или поперек фонаря, рассчитывается по формулам приложения 1.

При произвольном направлении ветра по отношению к линейному источнику типа аэрационного фонаря этот источник условно представляется в виде группы N одинаковых равноудаленных точечных источников. Для каждого из этих одиночных источников значения максимальной концентрации вредной примеси см и соответствующих ей расстояния хм и опасной скорости им определяются как

, (3.7)

, . (3.8)

Примечание. Расчеты концентраций по формулам данного раздела производятся для расстояний от производственного корпуса, больших . Для расстояний, меньших , необходимо учитывать влияние здания, на котором расположен фонарь, в соответствии с формулами приложения 2.

Рис. 3.2

Число одинаковых равноудаленных одиночных источников N, на которое делится аэрационный фонарь при расчетах, определяется (с округлением до ближайшего большего целого числа) по формуле

, (3.9)

где х (м) -- наименьшее расстояние от аэрационного фонаря до расчетной точки на местности, и -- расчетная скорость ветра.

Примечания: 1.С увеличением протяженности L аэрационного фонаря N увеличивается но, как правило, достаточно принимать N не более 10.

2. При расчетах загрязнения атмосферы для скорости ветра и, не равной им, для каждого из одиночных источников значение максимальной концентрации вредных веществ сми (мт/м3) определяется по формуле

(3.10)

а соответствующее расстояние хми (м) -- по формуле

. (3.11)

Здесь r и р -- безразмерные коэффициенты, определяемые в соответствии с пп. 2.10 и 2.11 по значению отношения и/им.

Расчеты приземных концентраций от линейного источника, аппроксимирующего совокупность одиночных источников выброса с близкими значениями высот, выполняются по тем же формулам, что для аэрационного фонаря, но при расчете вспомогательных величин , и вместо Dэ и V используются средние значения D и V1, характерные для одиночных источников.

При ветре, перпендикулярном линейному источнику, или при произвольном направлении ветра вычисления основываются на замене линейного источника совокупностью одинаковых равноудаленных условных точечных источников.

При ветре вдоль линейного источника значения максимальной концентрации см, расстояния хм и опасной скорости ветра им определяются по формулам (3.1), (3.2) и (3.6) с использованием формул (3.4), (3.5) или рис. 3.2. Концентрация с вдоль оси факела на расстоянии х от центра линейного источника при скорости ветра им определяется по формуле (1) приложения 1.

Примечание. Если расчетной точке соответствует определенное по формуле (3.9) значение N > 10, то линейный источник представляется в виде суммы нескольких меньших по размеру линейных источников таким образом, чтобы выделить участки линейного источника, для которых N 10. Оставшиеся линейные источники делятся на равноудаленные точечные источники так, чтобы расстояние между ними не превышало .

Мощность выброса М, соответствующая заданному значению максимальной концентрации см, для случая выбросов от одиночного аэрационного фонаря определяется по формуле

, (3.12)

где М0 как соответствующая см мощность выброса из одиночного источника находится по формуле (2.41) или (2.42) при V1 = V и D = Dэ, определяемым по (2.40), (3.3).

4. УЧЕТ ВЛИЯНИЯ РЕЛЬЕФА МЕСТНОСТИ ПРИ РАСЧЕТЕ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

Влияние рельефа местности на значение максимальной приземной концентрации см от одиночного точечного источника учитывается безразмерным коэффициентом h в формулах (2.1), (2.9), (2.11). Значение устанавливается на основе анализа картографического материала, освещающего рельеф местности в радиусе до 50 высот наиболее высокого из размещаемых на промплощадке источника, но не менее чем до 2 км.

Если в окрестности рассматриваемого источника выбросов (предприятия) можно выделить отдельные изолированные препятствия, вытянутые в одном направлении (гряду, гребень, ложбину, уступ), то поправочный коэффициент на рельеф определяется по формуле

= 1+ 1 (m - 1), (4.1)

где m определяется по табл. 4.1 в зависимости от форм рельефа, сечения которых представлены на рис. 4.1, и безразмерных величин п1 = H/h0, и n2 = a0/h0 (n1 определяется с точность до десятых, а п2 -- с точностью до целых). Здесь H -- высота источника, h0 -- высота (глубина) препятствия, a0 -- полуширина гряды (холма), ложбины или протяженность бокового склона уступа, x0 -- расстояние от середины препятствия в случае гряды или ложбины и от верхней кромки склона в случае уступа до источника, как указано на рис. 4.1. Значение функции 1 определяется в зависимости от отношения по графикам (см. рис. 4.1), соответствующим различным формам рельефа. Если источник расположен на верхнем плато уступа, в качестве аргумента функции 1 вместо принимается .

Таблица 4.1

Ложбина (впадина)

Уступ

Гряда (холм)

n1

n2

4-5

6-9

10-15

16-20

4-5

6-9

10-15

16-20

4-5

6-9

10-15

16-20

< 0,5

4,0

2,0

1,6

1,3

3,5

1,8

1,5

1,2

3,0

1,5

1,4

1,2

0,6- 1

3,0

1,6

1,5

1,2

2,7

1,5

1,3

1,2

2,2

1,4

1,3

1,0

1,1 - 2.9

1,8

1,5

1,4

1,1

1,6

1,4

1,2

1,1

1,4

1,3

1,2

1,0

3-5

1,4

1,3

1,2

1,0

1,3

1,2

1,1

1,0

1,2

1,2

1,1

1,0

> 5

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

Рис. 4.1

Если препятствия представляют собой гряды (ложбины), вытянутые в одном направлении, значения h0 и a0 определяются для поперечного сечения, перпендикулярного этому направлению. Если изолированное препятствие представляет собой отдельный холм (впадину), то h0 выбирается соответствующим максимальной (минимальной) отметке препятствия, а п2 -- максимальной крутизне склона, обращенного к источнику.

Для источников выброса, расположенных в зоне влияния нескольких изолированных препятствий, определяются значения для каждого препятствия и используется максимальное из них.

Примечание. В случае более сложного рельефа местности или перепадов высот более 250 м на 1 км за указаниями по учету рельефа следует обращаться в территориальные органы Госкомгидромета или в Главную геофизическую обсерваторию им. А.И. Воейкова, приложив к запросу соответствующий картографический материал.

Учет влияния рельефа местности при определении расстояния, где достигается максимум приземной концентрации, осуществляется путем умножения коэффициента d в формуле (2.13) на отношение .

Расчет приземных концентраций по оси факела на различных расстояниях от источника производится по формуле (2.22). При этом для расстояний х от источника, удовлетворяющих неравенству

, (4.2)

(здесь -- значение хм для рассматриваемого источника в условиях ровной или слабопересеченной местности, т.е. при = 1), отношение х/хм определяется с использованием хм, вычисленного в соответствии с п. 4.3. Для больших значений х при вычислении отношения х/хм используется значение .

Примечания: 1. При других скоростях ветра расчет проводится аналогичным образом, причем вместо в (4.2) используется значение величины хми, определенной в соответствии с п. 2.11 для условий ровной или слабопересеченной местности.

2. Если источник выбросов располагается в долине шириной Lдол и его высота Н меньше 2/3 глубины долины, то расчеты по формуле (2.22) для направления ветра вдоль долины производятся до расстояний х, удовлетворяющих условию

. (4.3)

Для больших расстояний функция s1 умножается на величину .

Расчет загрязнения воздуха на промплощадке с учетом влияния рельефа местности проводится в соответствии с рекомендациями приложения 2. При этом значения см и хм определяются по пп. 4.1 -- 4.4, а безразмерный коэффициент s1 -- с учетом рекомендаций п. 4.4.

В районах, где может происходить длительный застой примеси при сочетании слабых ветров с температурными инверсиями (например, в глубоких котловинах, в районах частого образования туманов, в том числе ниже плотин гидроэлектростанций и вблизи прудов-охладителей электростанций, в районах с суровой зимой, а также в районах возможного возникновения смогов), не следует размещать промышленные предприятия с выбросами вредных веществ; при необходимости строительства в таких районах следует принимать дополнительные меры по охране воздушного бассейна от загрязнения, согласованные с Госкомгидрометом и Минздравом СССР.

5. РАСЧЕТ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ ВЫБРОСАМИ ГРУППЫ ИСТОЧНИКОВ И ПЛОЩАДНЫХ ИСТОЧНИКОВ

Приземная концентрация вредных веществ с (мг/м3) в любой точке местности при наличии N источников определяется как сумма концентраций веществ от отдельных источников при заданных направлении и скорости ветра.

с = с1 + с2 + ... + сN, (5.1)

где с1, с2,..., сN -- концентрации вредного вещества соответственно от первого, второго N-го источников, расположенных с наветренной стороны при рассматриваемом направлении ветра.

Примечания 1. При проектировании предприятий, зданий и сооружений следует предусматривать минимальное число источников выброса вредных веществ в атмосферу, объединяя удаляемые вещества от ряда источников их выделения в одну трубу, шахту и т.п.

2. Учет влияния рельефа местности и застройки в случае необходимости осуществляется в соответствии с рекомендациями раздела 4 и приложения 2.

3. В необходимых случаях, когда известно, что имеются неучтенные (фоновые) источники выброса того же вредного вещества или веществ, обладающих с ним эффектом суммации (другие предприятия города, промрайона, транспорт, отопление и т.п.), в правой части (5.1) добавляется слагаемое сф, характеризующее фоновое загрязнение от неучтенных источников.

4. Если рассчитанная по формуле (5.1) концентрация с удовлетворяет неравенству с > 0,1 q0, где

, (5.2)

а Мi (г/с) и V1i3/с) -- мощность выброса и расход газовоздушной смеси i-го источника, то вместо (5.1) при расчете приземной концентрации с используется формула

. (5.3)

5. Как и для одиночного источника, при расчетах приземных концентраций выбросами группы источников принимается наиболее неблагоприятное сочетание значений Мi и V1i, реально осуществляющееся на всех рассматриваемых источниках одновременно.

В целях ускорения и упрощения расчетов количество рассматриваемых источников выброса сокращается путем их объединения (особенно мелких источников) в отдельные условные источники. Способ установления источников, подлежащих объединению, и определения их параметров выброса, изложенный в п. 5.4, обеспечивает относительную погрешность расчетных концентраций, удовлетворяющую условию

0,25. (5.4)

В случае использования машинного (ориентированного на применение ЭВМ) алгоритма объединения группы из N точечных источников значения см = смо, хм = хмо, им = имо, а также координаты размещения хи = хио, уи = уио для условного источника, заменяющего объединяемую группу, определяются по формулам:

; (5.5)

; (5.6)

; (5.7)

; (5.8)

. (5.9)

Здесь, как и выше, индексом i при величинах см, хм, им, хu, уu обозначены отдельные источники, объединяемые в группу.

Если рассматриваются мелкие источники, для каждого из которых выполняется хотя бы одно из условий:

; (5.10)

, (5.11)

то объединение таких источников осуществляется при одновременном выполнении условий:

; (5.12)

; (5.13)

; (5.14)

где lmin (м) -- минимальное расстояние от объединяемых источников до узлов расчетной сетки точек; Lм (м) -- максимальное расстояние между двумя из объединяемых источников; хм (м) и uм (м/с) -- соответственно максимальные отклонения величин хмi от хмо и имi от имо.

Если условия (5.10) и (5.11) одновременно не выполнены, то объединение таких источников осуществляется при одновременном выполнении условий:

; (5.15)

; (5.16)

. (5.17)

При равенстве нулю хм и uм числовой коэффициент в (5.12) и (5.15) следует увеличить в 1,7 раза. В 1,7 раза увеличивается также числовой коэффициент в (5.13) и (5.16) (при одинаковых имi и Lм Н), а также в (5.14) и (5.17) (при одинаковых хмi и Lм Н).

При выполнении для группы мелких источников условий (5.12) -- (5.14) или для группы более крупных источников условий (5.15) -- (5.17) эта группа разбивается на отдельные группы, для которых указанные неравенства выполняются.

Примечания: 1. При сведении в одну точку источников выбросов с одинаковыми значениями Н, D, V1 и Т расчетное значение максимальной концентрации вредного вещества от этой группы источников несколько завышается. Если в одну точку сводятся источники с различными Н, D, V1 и Т, то возможно как небольшое завышение, так и некоторое занижение см. С удалением от объединяемых источников погрешность за счет сведения группы источников в одну точку убывает.

2. Источники выброса, для которых принятие при расчетах одинаковых координат не сказывается заметно на величине см, называются близкорасположенными.

3. Результаты точных расчетов приземных концентраций не допускается корректировать по результатам приближенных расчетов с объединением источников.

4. При отсутствии возможности применения ЭВМ для расчетов по (5.5) -- (5.9) с учетом условий (5.10) -- (5.17) допускается проводить объединение источников выброса с близкими параметрами и координатами расположения вручную. При этом для условного объединенного источника принимаются значения суммарного выброса М от всех объединяемых источников, средние арифметические значения высоты Н, диаметра устья D, температуры Тг. и скорости выхода 0 газовоздушной смеси из устья источника, а также координат источников хи, уи. При большом разбросе указанных параметров и координат группа источников разбивается на более мелкие группы с близкими значениями параметров и координат. Большой разброс значений мощности выброса М не препятствует объединению.

5. Если расчеты приземных концентраций выполняются для участков местности, прилегающих к промплощадке, то под lmin следует понимать минимум из расстояний от каждого из объединяемых источников до ближайшей к нему границы промплощадки.

6. С учетом требований п. 5.4 в единый условный источник прежде всего объединяются группы примерно одинаковых шахт и других вентиляционных источников одного производственного здания или изолированного по воздухообмену производственного помещения, а также групп близкорасположенных источников однотипных технологических установок на открытом воздухе и т.п. Если имеется несколько групп однотипных источников, то рекомендуется сначала свести к одному источнику каждую из этих групп, а затем проработать возможности дальнейшего объединения источников.

7. Для аэрационных фонарей перед принятием решения об их сведении (в том числе совместно с точечными источниками) в один условный точечный источник вычисляются эффективные диаметр устья Dэ и расход выбрасываемой газовоздушной смеси V, по значениям которых после этого определяются , и (см. раздел 3).

8. Изложенный алгоритм объединения источников применим также для комбинации веществ с суммирующимся вредным действием. В этом случае для каждого (i-го) источника по формуле (6.2) вычисляется мощность выброса, приведенная к выбросу одного из веществ.

9. При расчете приземной концентрации на промплощадке в соответствии с приложением 2 вместо (5.12) и (5.15) критерием объединения источников, расположенных на одном здании, является условие Lм< L*, где L* определяется в соответствии с приложением 2 (п. 1.5). При расчетах концентрации на крыше здания от источников, расположенных на этой крыше, величины смi, хмi и uмi определяются с использованием в качестве высоты источника превышения его устья над крышей здания (но не менее 2 м).

Значение максимальной суммарной концентрации см (мг/м3) от N расположенных на площадке близко друг от друга (см. п. 5.4) одиночных источников, имеющих равные значения высоты, диаметра устья, скорости выхода в атмосферу и температуры газовоздушной смеси, определяется по формуле

, (5.18)

где М (г/с) -- суммарная мощность выброса всеми источниками в атмосферу; V (м3/с) -- суммарный расход выбрасываемой всеми источниками газовоздушной смеси, определяемый по формуле

V = V1 N. (5.19)

Значение параметра м определяется по формуле

. (5.20)

В остальном схема расчета концентраций веществ, обусловленных выбросами от группы близко расположенных друг к другу одинаковых одиночных источников выброса, не отличается от приведенной в разделе 2 настоящего ОНД схемы расчета для одиночного источника.

Расчет концентраций веществ, обусловленных выбросами из близко расположенных друг к другу одинаковых источников, когда Т 0 или значение параметра f 100, производится с использованием формул раздела 2 для одиночного источника со следующими изменениями:

;

М -- суммарная мощность выброса из всех источников; формула (2.10) преобразуется к виду:

. (5.21)

Значение максимальной приземной концентрации вредных веществ см (мг/м3) при выбросах через многоствольную трубу (N стволов) рассчитывается по формуле

; (5.22)

расстояние хм (м), на котором достигается максимальная концентрация см, определяется по формуле

; (5.23)

опасная скорость ветра им (м/с) вычисляется следующим образом:

; (5.24)

Здесь (мг/м3) -- максимальная приземная концентрация, определяемая по формуле (2.1) при значениях параметров выброса для одного ствола и мощности выброса М (г/с), равной суммарной мощности выброса из всех стволов; и -- соответственно расстояние, на котором наблюдается максимальная концентрация вредных веществ см (мг/м3), и опасная скорость ветра им (м/с), определяемые по формулам (2.13) -- (2.17) при параметрах выброса для одного ствола; (мг/м3) -- максимальная приземная концентрация, рассчитываемая по формуле (2.1) при мощности М (г/с), равной суммарной мощности выброса из всех стволов, диаметре D, равном эффективному диаметру источника выброса Dэ (м), который определяется по формуле

, (5.25)

и расходе выходящей газовоздушной смеси V1 равном эффективному расходу V3/с), вычисленному по формуле (2.40); и -- расстояние, соответствующее максимальной концентрации (мг/ м3), и опасная скорость ветра, определяемые по формулам (2.13) -- (2.17) с учетом D = Dэ, (м), V1 = V3/с); d1 - безразмерный коэффициент, определяемый по формуле

, (5.26)

где l (м) -- среднее расстояние между центрами устьев стволов; D (м) -- диаметр устья ствола; d2 -- безразмерный коэффициент, определяемый по формулам (2.36а), (2.36б). В остальном расчет производится как для одиночного источника выброса.

Примечания: 1. При l, большем или равном d2H, для многоствольной трубы в расчетах принимается: (мг/м3), (м) (м/с).

2. Если многоствольная труба представляет собой трубу, разделенную на секторы, т.е. состоит из стволов секторной формы, то расчеты выполняются так же, как для одноствольной трубы при D = Dэ, и V1 = V (см. (2.40)), где

. (5.27)

Здесь S -- суммарная площадь устьев всех действующих стволов.

3. В случае, когда температура Тг и скорость выхода 0 газовоздушной смеси для отдельных стволов различаются между собой, для расчетов принимаются их средневзвешенные значения, полученные с учетом расходов газовоздушной смеси для отдельных стволов.

Для источников выброса, имеющих различные параметры, расчет приземных концентраций начинается с определения для всех источников по каждому веществу максимальных приземных концентраций смм1, см2, .... сmN) и опасных скоростей ветра имм1, им2, ..., иmN). Если по какому-либо веществу сумма максимальных приземных концентраций см от всех источников окажется меньшей или равной ПДК (см1 + см2 + .... + сmN ПДК), то (при отсутствии необходимости учета суммарного действия нескольких вредных веществ и фонового загрязнения атмосферы) расчеты приземной концентрации этого вещества производятся по требованию органов Госкомгидромета и Минздрава СССР. Такие расчеты выполняются также при оценке фактического уровня загрязнения воздуха.

При расчетах определяется средневзвешенная опасная скорость ветра имс (м/с) для группы N источников по формуле

. (5.28)

Отдельно для всех веществ, к которым относятся вычисленные имс (для разных веществ они иногда существенно различаются), определяются значения и . Если по рассматриваемому веществу сумма меньше или равняется ПДК, то дальнейшие расчеты производятся главным образом при оценке фактического уровня загрязнения воздуха.

Если сумма больше ПДК, то для направлений ветра, соответствующих переносу вредных веществ от источников на расчетную область, при скоростях ветра: имс; 0,5 имс; 1,5 имс; 0,5 м/с -- производится расчет суммарных концентраций от всех источников в узлах расчетной сетки, после чего наибольшая из них принимается за максимальную концентрацию см.

Примечание. В (5.28) вместо смi и uмi допускается использовать значения смхi и uмхi для наветренных источников, определенные для каждой расчетной точки в соответствии с п. 2.14.

Расчеты приземных концентраций упрощаются, если среди N сгруппированных в порядке убывания смiм1 > см2 > ... > смN) источников выброса предприятия имеется N1 источников, которым по данному веществу соответствуют малые значения смi (вычисленные в необходимых случаях с учетом застройки). При этом определяется разность между ПДК и суммой смi от N1 источников и рассчитывается максимальная суммарная концентрация см для остальных N -- N1 источников. В тех случаях, когда сумма смi от них не превышает 0,05 ПДК (см. также примечание), указанные N1 источников могут быть исключены из рассмотрения.

Если N источников расположены в порядке убывания значений выбросов М, т.е. М1 > М2 > ... > МN, то N2 из этих источников с наименьшими значениями M также могут быть для упрощения расчетов загрязнения атмосферы отброшены, если

(5.29)

Примечание. Рекомендации п. 5.9 выполняются, если отношение средней высоты исключаемых из рассмотрения источников к средней высоте сохраняемых при расчетах источников превосходит 1/3.

Расчет приземных концентраций веществ от источников, группирующихся на площадке вдоль некоторой прямой, можно производить, считая все источники расположенными на этой линии, при условии, что каждому из них при и = имс соответствует , меньшее или равное 0,01 -- 0,02 (у (м) -- расстояние от источника до этой прямой). Для каждого источника строятся кривые распределения концентраций. Начало координат каждой кривой, характеризующей изменение концентрации с в зависимости от расстояния х, совмещается с местоположением источника, а концентрации суммируются. При этом рассматриваются два варианта. В одном из них принимается, что ветер направлен с 1-го на N-й источник, в другом -- в противоположном направлении. Для различных расстояний х производится сложение концентраций и определяются значения суммарной концентрации с. Наибольшее значение с принимается за максимальную концентрацию см.

Примечание. Указанным способом производятся ручные расчеты при наличии двух источников, расположенных далеко друг от друга (или двух групп источников).

Расчет приземных концентраций веществ от источников, которые не могут быть сведены в одну точку или на одну общую прямую, при отсутствии возможности применения ЭВМ упрощается, если можно провести прямую, около которой группируется большая часть основных источников. В этом случае осуществляется сложение значений концентраций для двух противоположных направлений ветра вдоль этой прямой; близлежащие источники переносятся на прямую, а при расчете концентраций от остальных источников используется формула (2.25). Если среди источников, перенесенных на ось, имеются крупные, для которых одновременно не выполняются условия (5.10), (5.11), то при каждом направлении ветра рассчитываются также суммарные концентрации в точках максимумов концентраций от крупных источников.

Расчет приземных концентраций при выбросах от большого числа источников, рассредоточенных на площадке значительных размеров, следует производить на электронных вычислительных машинах, тем более, что при разработках по проектированию и нормированию, как правило, рассматривается большое число вариантов объединения выбросов, размещения источников на площадке, способов очистки выбросов и других мероприятий. Шаги расчетной сетки выбираются в зависимости от размеров области, для которой проводятся расчеты. При этом общее количество узлов сетки, как правило, не должно превышать 1500 -- 2000. Размеры указанной области должны соответствовать размерам зоны влияния рассматриваемой совокупности источников.


Подобные документы

  • Методики расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Определение допустимых нормативов (лимитов) выбросов для каждого загрязняющего вещества. Расчет шумовых характеристик движущегося потока поездов.

    задача [64,7 K], добавлен 06.09.2009

  • Особенности методики расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Способы установления размеров санитарно-защитной зоны с учетом вытянутости розы ветров. Анализ факторов загрязнения окружающей среды.

    дипломная работа [422,4 K], добавлен 24.12.2013

  • Токсическое действие вредных веществ, показатели токсикометрии. Их предельно допустимая концентрация. Расчет аддитивного и антагонистического действия вредных веществ. Анализ концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах.

    курсовая работа [81,8 K], добавлен 19.11.2014

  • Рассмотрение особенностей методики расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий города Владивостока. Общая характеристика наиболее важных проблем методики расчета разбавления сточных вод в водотоке.

    курсовая работа [760,9 K], добавлен 08.03.2015

  • Основные компоненты, выбрасываемые в атмосферу при сжигании различных видов топлива в энергоустановках. Расчет суммарного расхода топлива и высоты дымовой трубы. Анализ зависимости концентрации вредных примесей от расстояния до источника выбросов.

    контрольная работа [196,9 K], добавлен 10.04.2011

  • Правовые основы и порядок проведения производственного экологического контроля выбросов в атмосферу. Расчет выбросов загрязняющих веществ на разных этапах производства автомобиля. Методика определения концентраций в атмосферном воздухе вредных веществ.

    курсовая работа [72,1 K], добавлен 07.12.2013

  • Места образования отходов производства. Организованные выбросы предприятия: расчёт загрязнения при образовании пыли, выделения паров загрязняющих веществ. Источники не организованных выбросов. Вычисление рассеивания от организованных источников.

    дипломная работа [312,5 K], добавлен 19.02.2011

  • Расчет мощности выброса и расхода газовоздушной смеси при проектировании предприятий в соответствии с действующими для данного производства нормативами. Концентрация вредных веществ в атмосферном воздухе при неблагоприятных метеорологических условиях.

    практическая работа [44,9 K], добавлен 10.02.2011

  • Определение расхода природного газа в котельной. Расчет выбросов окиси углерода и диоксида азота. Исследование концентрации вредных веществ в отходящих газах. Алгоритм расчета рассеивания загрязняющих веществ в атмосферном воздухе для холодных газов.

    контрольная работа [2,0 M], добавлен 14.03.2014

  • Определение границы санитарно-защитной зоны предприятия, высоты источников выброса. Обзор способа расчета загрязнения атмосферы выбросами одиночного источника. Оценка экологической обстановки с учетом фоновых концентраций вредных веществ на местности.

    контрольная работа [261,1 K], добавлен 22.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.