Основы экологии

Понятие об адаптациях, механизмы их формирования. Распределение особей популяций в пространстве и механизмы регуляций их численности. Структура биоценоза и функции живого вещества в биосфере. Международное сотрудничество в области окружающей среды.

Рубрика Экология и охрана природы
Вид шпаргалка
Язык русский
Дата добавления 04.03.2012
Размер файла 111,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

1 Классификация живых организмов по типу питания. Круговорот веществ в экосистеме

2 Пищевые цепи и сети. Понятие трофического уровня

3 Поток энергий в экосистеме. Правила экологических пирамид

4 Биомасса и продуктивность. Виды продуктивности

5 Классификация экосистем по продуктивности

6 Понятие сукцессий, ее ход и причины. Классификация сукцессий

7 Климаксовые экосистемы и типы климакса. Гомеостаз

8 Среды жизни на земле

9 Понятие экологического фактора. Классификации экологических факторов

10 Понятие о биологическом оптимуме. Закон оптимума

11 Взаимодействие экологических факторов

12 Законы минимума и лимитирующих факторов

13 Экологическая пластичность вида

14 Понятие об адаптациях, механизмы их формирования

15 Свет, как экологический фактор

16 Адаптация к температуре, как экологическому фактору

17 Адаптация к влагообеспеченности, как экологическому фактору

18 Понятие о виде и популяций. Ареал. Распределение особей популяций в пространстве

19 Численность и плотность (общая, экологическая) популяций. Прямые и косвенные методы учёта численности и плотности популяций в природе

20 Возрастная, половая и экологическая структура популяций

21 Рождаемость и смертность в популяции (абсолютная, удельная, теоретическая, экологическая)

22 Выживаемость в популяции. Кривые выживания

23 Рост популяций (экспоненциальный, логистический). Биотический потенциал и сопротивление среды

24 Модифицирующие и регулирующие факторы динамики численности популяций. Механизмы регуляций численности популяций в природе на различных уровнях плотности

25 Равновесные и оппортунистические популяций. r- и k-отбор соответствующие стратегий популяций

26 Закон конкурентного вытеснения

27 Видовая и пространственная структура биоценоза

28 Виды биотических связей в биоценозе

29 Круговорот углерода. Круговорот кислорода

30 Круговорот кислорода

31 Круговорот азота

32 Круговорот фосфора

33 Функция живого вещества в биосфере

34 Лесные экосистемы и их рациональное использование

35 Водные экосистемы и их рациональное использование

36 Степные, луговые и болотные экосистемы и их рациональное использование

37 Экологическая экспертиза

38 Экологический аудит

39 Договор на природопользование, лицензия и лимит

40 Рациональное использование и понятие об экологическом нормировании. Кадастры

41 Почва как важнейший компонент агроэкосистемы. Рациональное землепользование. Земельный кадастр

42 Загрязнение и деградация почв

43 Нитраты как загрязнители окружающей среды

44 Экстенсивные и интенсивные агроэкосистемы

45 Альтернативные агроэкосистемы и производство экологически безопасной продукции

46 Адаптивный подход в сельском хозяйстве и задачи агроэкологий

47 Общая характеристика городских экосистем и задачи городской экологии

48 Понятие о загрязнении ОС. Классификация загрязнений

49 Нормирование загрязнении

50 Проблема твёрдых промышленных и бытовых отходов

51 Тяжёлые металлы как важнейшие загрязнители окружающей среды (свойства, значение, источники, меры борьбы)

52 Загрязнение атмосферы

53 Экологический мониторинг. Виды мониторинг

54 Управление качеством окружающей среда

55 Пути ресурсо- и энергосбережения и их роль в решении экол. проблем современности

56 Экологическое мировоззрение современности и стратегии развития цивилизаций

57 Концепция устойчивого развития мирового сообщества

58 Международное сотрудничество в области окружающей среды

59 Природоохранное законодательство. Профессиональная ответственность за экологические правонарушения

1 КЛАССИФИКАЦИЯ ЖИВЫХ ОРГАНИЗМОВ ПО ТИПУ ПИТАНИЯ. КРУГОВОРОТ ВЕЩЕСТВ В ЭКОСИСТЕМЕ

По способу питания все организмы подразделяются на автотрофов и гетеротрофов.

Автотрофы (от греч. autos - сам) - осуществляют превращение неорганических веществ в органические (зеленые растения и некоторые микроорганизмы).

Гетеротрофы (от греч. heteros - разный) - используют для питания готовые органические вещества (паразитные высшие растения, грибы, некоторые микроорганизмы, все животные и человек).

Существуют организмы и со смешанным типом питания, которые П. Пфеффер назвал миксотрофами (от англ. mix - смешивать).

По механизму превращения неорганических веществ в органические среди автотрофов можно выделить фототрофы и хемотрофы.

Фототрофы осуществляют образование органических веществ в процессе фотосинтеза (зеленые растения, сине-зеленые водоросли и др.).

Хемотрофы создают органические вещества за счет энергии химических реакций (серные бактерии и др.).

По отношению к трофическим (пищевым) связям организмы экосистемы подразделяются на продуцентов, консументов и редуцентов.

Продуценты (производители первичной продукции) - организмы-автотрофы, производящие органическое вещество из неорганических соединений - они представляют комплекс зеленых растений, обеспечивающих органическим веществом все живое население нашей планеты.

Консументы (от лат. consumo - потребляю) - организмы-гетеротрофы, потребляющие органические вещества, созданные продуцентами. К ним относятся животные, большинство микроорганизмов, частично насекомоядные растения.

Редуценты (от лат. reductio - возвращение) - организмы, разлагающие органические вещества и превращающие их в неорганические вещества, усваиваемые другими организмами. К редуцентам относятся: бактерии, грибы, сапрофаги, копрофаги, некрофаги и др. Они являются завершающим звеном биологического круговорота веществ. Экосистема представляет собой любое непрерывно меняющееся единство, включающее все организмы на данном участке и взаимодействующее с окружающей средой таким образом, что поток вещества и энергии создает определенную трофическую структуру, видовое разнообразие и круговорот веществ внутри системы. Круговорот вещества в экосистеме. Общее понятие о круговоротах веществ в биосфере. Под круговоротом веществ понимают многократное участие химических веществ в процессах, происходящих в атмосфере, гидросфере и литосфере, в том числе в тех частях геосфер Земли, которые включены в биосферу планеты. При этом рассматривают геологический, биологический (биотический), биогеохимический круговороты, а также круговороты отдельных веществ, например, воды и отдельных химических элементов, в частности, биогенных элементов - углерода, водорода, кислорода, азота, серы, фосфора и др., имеющих важное значение для функционирования биосферы. С точки зрения процессов, протекающих в экосистемах, наибольший интерес для изучения в рамках нашей дисциплины представляет биогеохимический круговорот вещества. Круговорот веществ - условие существования жизни. Он возник в процессе становления жизни и усложнялся в ходе эволюции живой природы. Чтобы круговорот веществ в экосистеме был возможен, необходимо наличие в ней организмов-продуцентов, создающих органические вещества из неорганических и преобразующие энергию излучения Солнца, а также организмов, которые используют эти органические вещества и превращают их в неорганические соединения. Но в любом биогеоценозе очень скоро иссякли бы все запасы неорганических соединений, если бы они не возобновлялись в процессе жизнедеятельности организмов. В результате дыхания, разложения трупов животных и растительных остатков органические вещества превращаются в неорганические соединения, которые возвращаются снова в природную среду и могут опять использоваться автотрофами.

Т.о, в биогеоценозе в результате жизнедеятельности организмов непрерывно осуществляется поток атомов из неживой природы в живую и обратно, замыкаясь в круговорот. Для круговорота веществ необходим приток энергии извне. Источником внешней энергии является Солнце. Движение вещества, вызываемое деятельностью организмов, происходит, как показано ранее, циклически, в то время как поток энергии в этом процессе имеет однонаправленный характер. Из всего сказанного ясно, что круговорот веществ в биогеоценозе - необходимое условие существования жизни.

Биогеохимические циклы. Круговорот веществ - это обмен химическими элементами между живыми организмами и неорганической средой, различные стадии которого происходят внутри экосистемы. Осуществление круговорота веществ и высвобождение запасенной в органическом веществе энергии - важная функция трофических цепей в экосистеме. Если трофическую цепь дополнить редуцентами, превращающими органическое вещество в минеральные неорганические соединения, потребляемые продуцентами в процессе образования органического вещества, то получим замкнутую цепь, по которой происходит направленное циклическое движение химических веществ, т.е. круговорот веществ. Такие круговороты называются биогеохимическими круговоротами, или биогеохимическими циклами

Следовательно, биогеохимические циклы - круговороты питательных веществ, участниками которых являются как живые, так и неживые компоненты экосистемы. Термин биогеохимические циклы был предложен В.И. Вернадским для обозначения замкнутых (в большей или меньшей степени) путей циркулирования в биосфере химических веществ и элементов, которые сначала поглощаются живым веществом, заряжаясь биохимической энергией, и затем покидают живое вещество, отдавая накопленную энергию, с многократным циклическим повторением этих процессов. Движение химических элементов по замкнутым циклам является результатом эколого-физиологической взаимосвязи автотрофов и гетеротрофов по цепям питания. Различные виды организмов непрерывно ищут и поглощают в виде пищи вещества, необходимые им для роста, поддержания жизни и воспроизводства вида.

Заметим, что несмотря на то, что из всех водных компонентов биосферы атмосферная влага содержит наименьшую массу воды (ее объем втрое меньше объема поверхностных вод суши и в 150 тысяч раз меньше объема Мирового океана), она имеет наибольшее значение для осуществления биогеохимических циклов, являясь источником осадков и вовлекая в круговорот химические вещества, в том числе и вредные для природных экосистем загрязнители.

2 ПИЩЕВЫЕ ЦЕПИ И СЕТИ. ПОНЯТИЕ ТРОФИЧЕСКОГО УРОВНЯ

Пищевая цепь - это путь движения вещества (источник энергии и строительный материал) в экосистеме от одного организма к другому.

Трофический уровень - это совокупность организмов, занимающих определенное положение в общей цепи питания. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

В схемах пищевых цепей каждый организм представлен питающимся организмами какого-то определённого типа. Действительность намного сложнее, и организмы (особенно, хищники) могут питаться самыми разными организмами, даже из различных пищевых цепей. Таким образом, пищевые цепи переплетаются, образуя пищевые сети. Органическое вещество, производимое автотрофами, называется первичной продукцией. Скорость накопления энергии первичными продуцентами называется валовой первичной продуктивностью, а скорость накопления органических веществ - чистой первичной продуктивностью. ВПП примерно на 20% выше, чем ЧПП, так как часть энергии растения тратят на дыхание. Всего растения усваивают около процента солнечной энергии, поглощённой ими.

При поедании одних организмов другими вещество и пища переходят на следующий трофический уровень. Количество органического вещества, накопленного гетеротрофами, называется вторичной продукцией. Поскольку гетеротрофы дышат и выделяют непереваренные остатки, в каждом звене часть энергии теряется. Это накладывает существенное ограничение на длину пищевых цепей; количество звеньев в них редко бывает больше 6. Отметим, что эффективность переноса энергии от одних организмов к другим значительно выше, чем эффективность производства первичной продукции. Средняя эффективность переноса энергии от растения к животному составляет около 10%, а от животного к животному - 20%. Обычно растительная пища энергетически менее ценна, так как в ней содержится большое количество целлюлозы и древесины, не перевариваемых большинством животных. Существует 2 основных типа трофических цепей - пастбищные и детритные. В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийся фитопланктоном), потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон), хищники 2-го порядка (например, щука, питающаяся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка. В детритных трофических цепях (цепи разложения), наиболее распространенных в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита, идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям - хищникам. В водных экосистемах (особенно в эвтрофных водоемах и на больших глубинах океана) часть продукции растений и животных также поступает в детритные трофические цепи.

3 ПОТОК ЭНЕРГИЙ В ЭКОСИСТЕМЕ. ПРАВИЛА ЭКОЛОГИЧЕСКИХ ПИРАМИД

Поток энергии в экосистеме (по Ф. Рамаду, 1981)В отличие от веществ, непрерывно циркулирующих по разным блокам экосистемы, которые всегда могут повторно использоваться, входить в круговорот, энергия может быть использована только раз, т. е. имеет место линейный поток энергии через экосистему.

Односторонний приток энергии как универсальное явление природы происходит в результате действия законов термодинамики. Первый закон гласит, что энергия может превращаться из одной формы (например, света) в другую (например, потенциальную энергию пищи), но не может быть создана или уничтожена. Второй закон утверждает, что не может быть ни одного процесса, связанного с превращением энергии, без потерь некоторой ее части. Определенное количество энергии в таких превращениях рассеивается в недоступную тепловую энергию, а следовательно, теряется. Отсюда не может быть превращений, к примеру, пищевых веществ в вещество, из которого состоит тело организма, идущих со 100-процентной эффективностью.

Таким образом, живые организмы являются преобразователями энергии. И каждый раз, когда происходит превращение энергии, часть ее теряется в виде тепла. В конечном итоге вся энергия, поступающая в биотический круговорот экосистемы, рассеивается в виде тепла. Живые организмы фактически не используют тепло как источник энергии для совершения работы - они используют свет и химическую энергию.

Экологические пирамиды - это графические изображения численности, и др структуры между продуцентами, консументами и редуцентами. Основанием пирамиды служит уровень продуцентов, а последующие уровни питания образуют этажи и вершину пирамиды. Известны три основных типа экологических пирамид:

- пирамида чисел, отражающая численность организмов на каждом уровне (пирамида Элтона);

- пирамида биомассы, характеризующая массу живого вещества, - общий сухой вес, калорийность и т. д.;

- пирамида продукции (или энергии), имеющая универсальный характер, показывает изменение первичной продукции (или энергии) на последовательных трофических уровнях.

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается. В основе этой закономерности лежит, во-первых, тот факт, что для уравновешивания массы большого тела необходимо много маленьких тел; во-вторых, от низших трофических уровней к высшим теряется количество энергии (от каждого уровня до предыдущего доходит лишь 10% энергии) и, в-третьих - обратная зависимость метаболизма or размера особей (чем мельче организм, тем интенсивнее обмен веществ, тем выше скорость роста их численности и биомассы).

4 БИОМАССА И ПРОДУКТИВНОСТЬ. ВИДЫ ПРОДУКТИВНОСТИ

Продуктивность. Продукция. Важным функциональным показателем сообществ является их способность к созданию (продуцированию) новой биомассы. Это свойство лежит в основе понятия продуктивность, сходного по смыслу с понятием плодородие, которое используется по отношению к сельскохозяйственным или иным экосистемам, чье функционирование подчинено потребностям человека (как, например, рыбоводство, лесоразведение).

Прирост биомассы сообщества выражают суммарным приростом биомассы его элементов (автотрофного и гетеротрофного компонентов, отдельных трофических уровней, популяций каких-либо видов). Скорость продуцирования биомассы определяют в экологии специальным показателем - продукцией. В популяции продукция - это общая (суммарная) величина приращения ее биомассы за единицу времени. Продукция трофического уровня - это суммарная продукция всех популяций, занимающих этот уровень. Собственно продуцирование, или синтез нового биологического вещества, происходит за счет роста организмов и нарождения новых особей. И тот и другой процесс требует определенных затрат энергии и вещества.

Автотрофы получают эти ресурсы, используя свободную энергию солнечного излучения и запасы минеральных веществ. Ресурсом гетеротрофов являются организмы предшествующих трофических уровней.

Продуцирование - непрерывный процесс. Общий прирост биомассы, или общая продукция, за тот или иной временной отрезок складывается из приростов массы не только выживших, но и погибших в течение этого интервала особей, ибо они тоже росли и тем самым участвовали в формировании продукции сообщества.

Фактическая скорость наращивания биомассы, или чистая продукция, всегда меньше общей энергии, полученной организмами с пищей, так как некоторая ее часть теряется при отмирании организмов или расходуется на выполняемую ими работу. В экологии эти расходы называют дыханием.

В сообществе, сохраняющем устойчивое состояние, фактическая продукция данного трофического уровня должна покрывать пищевые потребности организмов следующего уровня; в противном случае общий запас биологического вещества данного трофического уровня будет неуклонно снижаться из-за выедания.

Как и энергия, продукция резко убывает при переходе от низших трофических уровней к высшим.

Продукцию чаще всего выражают в энергетических эквивалентах (например, в джоулях или калориях на 1 м2 за одни сутки) или в количестве сухого (обезвоженного) органического вещества (например, в килограммах на 1 га за один год).

Первичная продукция - это скорость образования органического вещества первичными продуцентами (растениями). Количество органического вещества оценивается его массой или энергией, запасенной в этом веществе. Общая масса живых организмов называется биомассой. Соответственно первичную продукцию оценивают величиной биомассы, произведенной за единицу времени. Чистая первичная продукция (т. е. фактический прирост биомассы растений) всегда меньше энергии, зафиксированной в процессе фотосинтеза. Именно первичную продукцию растений потребляют гетеротрофы - бактерии, грибы, животные.

Вторичной продукцией называют скорость продуцирования биомассы гетеротрофами.

5 КЛАССИФИКАЦИЯ ЭКОСИСТЕМ ПО ПРОДУКТИВНОСТИ

Продуктивность и плодородие экосистем. Изучение продуктивности - крайне важное направление экологических исследований. В течение 10 лет (с 1964 по 1974 г.) во всем мире проводился согласованный сбор данных о продуктивности экосистем и о влияющих на нее факторах. Он иро. чп. дил. в рамках Международной биологической программы, выполнение которой сыграло важную роль в понимании человечеством возможных способов повышения своего благосостояния. Оно позволило получить более точные сведения о продуктивности суши, пресных и соленых вод. Эти данные потребовались в связи с быстрым ростом народонаселения и были необходимы для создания рациональной системы управления природными ресурсами.

Продуктивность экосистем тесно связана с потоком энергии, проходящим через ту или иную экосистему. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, накапливается в виде органических соединений. Безостановочное производство биомассы (живой материи) - один из фундаментальных процессов биосферы. Органическое вещество, создаваемое продуцентами в процессе фотосинтеза или хемосинтеза, называют первичной продукцией экосистемы (сообщества). Количественно ее выражают в сырой или сухой массе растений или в энергетических единицах - эквивалентном числе ккалорий или джоулей. Первичной продукцией определяется общий поток энергии через биотический компонент экосистемы, а следовательно, и биомасса живых организмов, которые могут существовать в экосистеме

Теоретически возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. А как известно, лишь часть энергии света, получаемой зеленой поверхностью, может быть использована растениями. Из коротковолнового излучения Солнца только 44% относится к фотосинтетически активной радиации (ФАР) - свет по длине волны, пригодный для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза 10-12% энергии ФАР, что составляет около половины от теоретически возможного, отмечается в зарослях джугары и тростника в Таджикистане в кратковременные, наиболее благоприятные периоды. КПД фотосинтеза в 5% считается очень высоким для фитоценоза. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1% из-за ограничения фотосинтетической активности растений множеством факторов, среди них таких, как недостаток тепла и влаги, неблагоприятные физические и химические свойства почвы и т. д. Мировое распределение первичной биологической продукции весьма неравномерно. Чистая продукция меняется от 3000 г / м2 / год до нуля в экстрааридных пустынях, лишенных растений, или в условиях Антарктиды с ее вечными льдами на поверхности суши, а запас биомассы - соответственно от 60 кг / м2 до нуля. Р. Уиттекер (1980) делит по продуктивности все сообщества на четыре класса.

1. Сообщества высшей продуктивности, 3000-2000 г / м2 / год. Сюда относятся тропические леса, посевы риса и сахарного тростника. Запас биомассы в этом классе продуктивности весьма различен и превышает 50 кг / м2 в лесных сообществах и равен продуктивности у однолетних сельскохозяйственных культур.

2. Сообщества высокой продуктивности, 2000-1000 г / м2 / год. В этот класс включены листопадные леса умеренной полосы, луга при применении удобрений, посевы кукурузы. Максимальная биомасса приближается к биомассе первого класса. Минимальная биомасса соответственно равна чистой биологической продукции однолетних культур.

3. Сообщества умеренной продуктивности, 1000-250 г / м2 / год. К этому классу относится основная масса возделываемых сельскохозяйственных культур, кустарники, степи. Биомасса степей меняется в пределах 0,2-5 кг / м2.

4. Сообщества низкой продуктивности, ниже 250 г / м2 год - пустыни, полупустыни (в отечественной литературе их называют чаще опустыненными степями), тундры. Понятие экосистема, биогеоценоз и биом. Основные биомы земли Экосистема (от греч. oikos - жилище и systema - объединение) - это сообщество живых организмов вместе с физической средой их обитания, объединенные обменом веществ и энергии в единый комплекс. BR > Виды связаны не только друг с другом, но и с неживой природой. Эта связь осуществляется через вещество и энергию. Примером экосистемы может служить пруд, включающий сообщество его обитателей, физические свойства и химический состав воды, особенности рельефа дна, состав и структуру грунта, взаимодействующий с поверхностью воды атмосферный воздух, солнечную радиацию.

В экосистемах происходит непрерывный обмен энергией и веществом между живой и неживой природой. Энергия и вещество постоянно необходимы живым организмам, и они черпают их из окружающей неживой природы. Количества вещества и энергии, проходящие через живые организмы, чрезвычайно велики. Экосистема - очень широкое понятие, применимое как к естественным (например, тундра, океан), так и к искусственным (например, аквариум) комплексам. Для обозначения элементарной природной экосистемы экологи часто используют термин «биогеоценоз» (от гроч. bios - жизнь, geo - Земля, koinos - сообща, вместе). Виогеоценоз - составная часть природного ландшафта. Граница биогеоценоза устанавливается, как правило, по границе! растительного сообщества (фитоценоза) - важнейшего компонента биогеоценоза. Из биоценозов (или, точнее, экосистем) складываются основные климатические и растительные зоны нашей планеты. Их основу составляют растительные формации, такие, как тропические дождевые леса, горные леса, саванны, тундра, тайга или пустыни. Эти растительные сообщества вместе с приспособившимися к ним животными называют (томами. По сравнению с биоценозом биом-единица высшего порядка. Так, биом сухих саванн состоит из растительной формации «сухая саванна» и характерной для нее фауны. Биомы располагаются на нашей Земле в соответствии с климатическими зонами. Биом включает все биоценозы определенного типа на разных ступенях их развития. Все сообщества, развитие которых завершается одной и той же конечной стадией (климаксом), принадлежат к одному биому. Лишь глобальные изменения климата могут отразиться на структуре биома. Основные биомы земли - это климаксовые экосистемы соответствующих географических областей.

6 ПОНЯТИЕ СУКЦЕССИЙ, ЕЕ ХОД И ПРИЧИНЫ. КЛАССИФИКАЦИЯ СУКЦЕССИЙ

Последовательная смена одного биоценоза другим называется экологической сукцессией (от лат. succession - последовательность, смена). Сукцессия является процессом саморазвития экосистем. В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Известно, что живые организмы в результате жизнедеятельности меняют вокруг себя среду, изымая из нее часть веществ и насыщая ее продуктами метаболизма. При сравнительно длительном существовании популяций они меняют свое окружение в неблагоприятную сторону и как результат - оказываются вытесненными популяциями других видов, для которых вызванные преобразования среды оказываются экологически выгодными. В биоценозе происходит, таким образом, смена господствующих видов. Здесь четко прослеживается правило (принцип) экологического дублирования. Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних живых организмов благоприятны для других, с противоположными требованиями.

На основе конкурентных взаимодействий видов в ходе сукцессии происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Пример сукцессии, приводящей к смене одного сообщества другим, - зарастание небольшого озера с последующим появлением на его месте болота, а затем леса.

Выделяют два главных типа сукцессионных смен: 1 - с участием автотрофного и гетеротрофного населения; 2 - с участием только гетеротрофов. Сукцессии второго типа совершаются лишь в таких условиях, где создается предварительный запас или постоянное поступление органических соединений, за счет которых и существует сообщество: в кучах или буртах навоза, в разлагающейся растительной массе, в загрязненных органическими веществами водоемах и т. д.

Процесс сукцессии. По Ф. Клементсу (1916), процесс сукцессии состоит из следующих этапов:

- возникновение незанятого жизнью участка;

- миграция на него различных организмов или их зачатков;

- приживание их на данном участке;

- конкуренции их между собой и вытеснение отдельных видов;

- преобразование живыми организмами местообитания, постепенной стабилизации условий и отношений.

Сукцессии со сменой растительности могут быть первичными и вторичными. Первичная сукцессия процесс развития и смены экосистем на незаселенных ранее участках, начинающихся с их колонизации. Классический пример - постоянное обрастание голых скал с развитием в конечном итоге на них леса. Так, в первичных сукцессиях, протекающих на скалах Уральских гор, различают следующие этапы.

1. Поселение эндолитических и накипных лишайников, сплошь покрывающих каменистую поверхность. Накипные лишайники несут своеобразную микрофлору и содержат богатую фауну простейших, коловраток, нематод. Мелкие клещи - сапрофаги и первичнобескрылые насекомые обнаруживаются сначала только в трещинах. Активность всего населения прерывиста, отмечается главным образом после выпадения осадков в виде дождя или смачивания скал влагой туманов. Данные сообщества организмов называют пионерными.

2. Преобладание листоватых лишайников, которые постепенно образуют сплошной ковер. Под круговинками лишайников в результате выделяемых ими кислот и механического сокращения слоевищ при высыхании образуются выщербленности, идет отмирание слоевищ и накопление детрита. В большом количестве под лишайниками встречаются мелкие членистоногие: коллемболы, панцирные клещи, личинки комаров-толкунчиков, сеноеды и другие. Образуется микрогоризонт, состоящий из их экскрементов.

3. Поселение литофильных мхов Hedwidia u Pleurozium schreberi. Под ними погребаются лишайники и подлишайниковые пленочные почвы. Ризоиды мхов здесь прикрепляются не к камню, а к мелкозему, который имеет мощность не менее 3 см. Колебания температуры и влажности под мхами в несколько раз меньше, чем под лишайниками. Усиливается деятельность микроорганизмов, увеличивается разнообразие групп животных.

4. Появление гипновых мхов и сосудистых растений. В разложении растительных остатков и формировании почвенного профиля постепенно уменьшается роль мелких членистоногих и растет участие более крупных беспозвоночных - сапрофагов: энхитреид, дождевых червей, личинок насекомых.

5. Заселение крупными растениями, способствующее дальнейшему накоплению и образованию почвы. Ее слой оказывается достаточным для развития кустарников и деревьев. Их опадающие листья и ветви не дают расти мхам и большинству других мелких видов, начавших сукцессию. Так, постепенно на изначально голых скалах идет процесс смены лишайников мхами, мхов травами и, наконец, лесом. Такие сукцессии в геоботанике называют экогенетическими, так как они ведут к преобразованию самого местообитания.

Вторичная сукцессия - это восстановление экосистемы, когда-то уже существовавшей на данной территории. Она начинается в том случае, если уже в сложившемся биоценозе нарушены установившиеся взаимосвязи организмов в результате извержения вулкана, пожара, вырубки, вспашки и т. Д

7 КЛИМАКСОВЫЕ ЭКОСИСТЕМЫ И ТИПЫ КЛИМАКСА. ГОМЕОСТАЗ

Климаксовоя экосистема. Сукцессия завершается стадией, когда все виды экосистемы, размножаясь, сохраняют относительно постоянную численность и дальнейшей смены ее состава не происходит. Такое равновесное состояние называют климаксом, а экосистему - климаксовой. В разных абиотических условиях формируются неодинаковые климаксовые экосистемы. В жарком и влажном климате это будет дождевой тропический лес, в сухом и жарком - пустыня. Основные биомы земли - это климаксовые экосистемы соответствующих географических областей. Процент площадей, способных поддерживать сообщества в состоянии климатического климакса, различен для разных областей. Но поскольку стратегия развития любой экосистемы состоит в достижении климатического климакса, главными наземными экосистемами можно считать биомы. Они легко выделяются, в частности, по климатической климаксной растительности. На рис. 14.3 показано влияние регионального климата на распределение сообществ климатического климакса; их резкая смена соответствует зоне перехода гумидного климата в аридный.

Для каждой природной зоны удобно различать единственный климатический климакс и различное число эдафических климаксов. Климатический климакс - это теоретическое сообщество, к достижению которого направлено все развитие экосистемы в данном районе, находящееся в равновесии с общими климатическими условиями. Теоретическое сообщество реализуется там, где физические условия среды не столь экстремальны, чтобы изменять воздействие преобладающего климата. Там, где рельеф местности, почва, водоемы, заболачивание и другие факторы препятствуют развитию климатического климакса, сукцессия заканчивается формированием эдафического климакса. Так, в зависимости от рельефа и особенностей почвы на примыкающих друг к другу морских террасах с одинаковой материнской породой развиваются различные сообщества. Поскольку основным модифицирующим фактором экосистемы является биотическое сообщество, то чем более экстремальны физические условия среды, тем больше вероятность того, что развитие экосистемы прекратится, не достигнув равновесия с общими климатическими условиями.

Человек часто влияет на развитие экосистемы, препятствуя достижению ею климаксного состояния. Когда сообщество, не представляющее собой климатический или эдафический климакс для данной местности, поддерживается человеком или домашними животными, его называют дисклимаксом, или антропогенным субклимаксом. Например, чрезмерный выпас может породить пустынное сообщество там, где по условиям регионального климата могла бы сохраняться степь. Пустынное сообщество в данном случае - дисклимакс, а степь - климатический климакс.

Гомеостаз (от греч. homoios - тот же, statos - состояние) - способность биологических систем противостоять изменениям и сохранять относительное динамическое постоянство своей структуры и свойств. Поддержание гомеостаза - непременное условие существования как отдельных клеток и организмов, так целых биологических сообществ и экосистем.

В гомеостазе (устойчивости) живых систем выделяют:

- выносливость (живучесть, толерантность - способность переносить изменения среды без нарушения основных свойств системы;

- упругость (резистентность, сопротивляемость) - способность быстро самостоятельно возвращаться в нормальное состояние из неустойчивого, которое возникло в результате внешнего неблагоприятного воздействия на систему.

Понятие «гомеостаз» широко используется в экологии для характеристики устойчивости различных систем. Гомеостаз клетки определяется специфическими физико-химическими условиями, отличными от условий внешней среды; гомеостаз многоклеточного организма - поддержанием постоянства внутренней среды. Константами гомеостаза животных являются объем, состав крови и других жидкостей организма.

Гомеостаз популяции определяется поддержанием пространственной структуры, плотности и генетического разнообразия. Вследствие гомеостатической регуляции поддерживается постоянство состава и численности популяций в сообществах.

На уровне экосистем гомеостаз проявляется в наиболее устойчивых формах взаимодействия между видами, что выражается в приспособленности к особенностям среды и поддержании циклов круговорота биогенов. Можно рассматривать даже гомеостаз биосферы, в которой взаимодействие разнообразных организмов поддерживает постоянство газового состава атмосферы, состав почв, состава и концентрации солей мирового океана и др.

Гомеостаз обеспечивается работой механизмов регулирования, действующих по принципу отрицательной обратной связи. Тогда нарушения в функционировании живой системы, используя кибернетические термины, следует констатировать как появление в канале обратной связи «помех» или «шумов».

Роль помех могу т играть различные факторы, например погодные условия, деятельность человека и т. п. Резкие изменения характеристик окружающей среды, при которых они (или одна из них) выходят за границы допустимого, называют экологическим стрессом.

8 СРЕДЫ ЖИЗНИ НА ЗЕМЛЕ

Жизненные среды. В пределах биосферы можно выделить четыре основные среды обитания. Это водная среда, на-земно-воздушная среда, почва и среда, образуемая самими живыми организмами.

Вода служит средой обитания для многих организмов. Из воды же они получают все необходимые для жизни вещества: пищу, воду, газы. Поэтому, как бы ни были разнообразны водные организмы, все они должны быть приспособлены к главным особенностям жизни в водной среде. Эти особенности определяются физическими и химическими свойствами воды.

В толще воды постоянно парит множество мелких растений и животных, ведущих жизнь во взвешенном состоянии. Способность к парению обеспечивается не только физическими свойствами воды, обладающей выталкивающей силой, но и специальными приспособлениями самих организмов, например многочисленными выростами и придатками, значительно увеличивающими поверхность их тела и, следовательно, повышающими трение об окружающую жидкость. Плотность тела таких животных, как медузы, очень близка к плотности воды. Удерживаться в толще воды помогает им к тому же характерная форма тела, напоминающая парашют.

У активных пловцов (рыб, дельфинов, тюленей и др.) веретенообразная форма тела, а конечности в виде ласт. Их передвижение в водной среде облегчается, кроме того, благодаря особому строению внешних покровов, выделяющих специальную смазку - слизь, снижающую трение о воду.

Вода обладает очень высокой теплоемкостью, т.е. свойством накапливать и удерживать тепло. По этой причине в воде не бывает резких колебаний температуры, которые часто случаются на суше. Очень глубокие воды могут быть очень холодными, однако благодаря постоянству температуры у животных смог развиться ряд приспособлений, обеспечивающих жизнь даже в этих условиях.

Животные могут жить на огромных океанских глубинах. Растения же выживают только в верхнем слое воды, куда попадает лучистая энергия, необходимая для фотосинтеза. Этот слой называют фотической зоной. Так как поверхность воды отражает большую часть света, даже в наиболее прозрачных океанских водах толщина фотической зоны непревышает 100 м. Животные больших глубин питаются либо живыми организмами, либо останками животных и растений, постоянно опускающимися вниз из верхнего слоя.

Подобно наземным организмам водные животные и растения дышат, им требуется кислород. Количество растворенного в воде кислорода снижается с увеличением температуры. Причем в морской воде кислород растворяется хуже, чем в пресной. По этой причине воды открытого моря тропического пояса бедны живыми организмами. И наоборот, полярные воды богаты планктоном - мелкими рачками, которыми кормятся рыбы и крупные китообразные.

Очень важен для жизни солевой состав воды. Особенное значение для организмов имеют ионы Са2+. Моллюскам и ракообразным кальций необходим для построения раковины или панциря. Концентрация солей в воде может сильно изменяться. Вода считается пресной, если в одном ее литре содержится менее 0,5 г растворенных солей. Морская вода отличается постоянством солености и содержит в среднем 35 г солей в одном литре.

Наземно-воздушная среда, освоенная в ходе эволюции позже водной, более сложна и разнообразна, и ее населяют более высокоорганизованные живые организмы.

Наиболее важным фактором жизни обитающих здесь организмов являются свойства и состав окружающих их воздушных масс. Плотность воздуха гораздо ниже плотности воды, поэтому у наземных организмов сильно развиты опорные ткани - внутренний и наружный скелет. Формы движения очень разнообразны: бегание, прыгание, ползание, полет и др. В воздухе летают птицы и некоторые виды насекомых. Потоки воздуха разносят семена растений, споры, микроорганизмы.

Воздушные массы постоянно находятся в движении. Температура воздуха может меняться очень быстро и на больших пространствах, поэтому живущие на суше организмы имеют многочисленные приспособления, позволяющие выдерживать резкие перепады температуры или избегать их. Наиболее замечательным из них является развитие теплокровности, возникшее именно в наземно-воздушной среде

9 ПОНЯТИЕ ЭКОЛОГИЧЕСКОГО ФАКТОРА. КЛАССИФИКАЦИИ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы подразделяется на две большие группы: абиотические и биотические. Абиотические факторы - это комплекс условий неорганической среды, влияющих на организм. Cреди них различают физические, химические и эдафические.

Ф.Ф - это те источником которых служат физич. состояние или явление. Например температ. если высокая то вызывает ожог, если низкая - обморожение.

ХФ. - которые происходят от химического состава среды. напр. соленость воды, если высокая то жизнь отсутствует.

ЭФ. - почвенные - совокупность химических физических и механических св-в почв и горных пород оказывающих воздействие как на организм живущие в них. т.е.для которых они яв-ся средой обитания так и на корневую систему растений.

Биотические факторы - это совокупность влияний жизнедеятельности одних организмов на другие. В отдельных случаях антропогенные факторы выделяют в самостоятельную группу факторов наряду с абиотическими и биотическими, подчеркивая тем самым чрезвычайное действие антропогенного фактора:

- влияние растений на других членов биоциноза;

- влияние животных на др. член биоценоза;

- антропогенные факторы, возникающие в результате деятель. человека. (загрязнение, эрозия почвы, уничтожение лесов…)

Большинство факторов качественно и количественно изменяются во времени + = климатические - в течение суток сезона по годам (температура, освещенность. Факторы изменения которых во времени повторяются регулярно называют периодическими. К ним относятся не только климат, но и некоторые гидрографические приливы и отливы. Факторы возникающие неожиданно (извержение вулкана, нападение хищ.) назыв. непереодическими.

10 ПОНЯТИЕ О БИОЛОГИЧЕСКОМ ОПТИМУМЕ. ЗАКОН ОПТИМУМА

При определенных значениях фактора создаются условия, наиб. благоприятные для жизнедеятельности организмов; эти условия называются оптимальными, а соответствующая им область по шкале значений фактора - оптимумом;

Чем больше отклоняются значения фактора от оптимальных, сильнее угнетается жизнедеятельность особей; в связи с этим выделяется зона их нормальной жизнедеятельности; Диапазон значений фактора, за границами которого нормальной жизнедеятельность особей становится невозможной, называется пределами выносливости; различают нижний и верхний предел выносливости.

При взгляде на «купол толерантности» сбоку можно увидеть, что в зоне нормальной жизнедеятельности возможны рост и развитие особей, тогда как для размножения нужны оптимальные условия. Так называемая экологическая толерантность охватывает диапазон от нижнего предела, или нижнего пессимума (ему соответствует экологический минимум на шкале значений фактора), до верхнего предела, или верхнего пессимума (экологический максимум). Таким образом, видовые приспособления проявляются и в различной степени выносливости к действию фактора. Виды, особи которых устойчивы лишь к небольшим отклонениям значений фактора от оптимума, называются стенобионтными, а виды, способные выдерживать значительные изменения фактора, - эврибионтными.

11 ВЗАИМОДЕЙСТВИЕ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ

В природных условиях организм подвержен воздействию многочисленных факторов. Если действие одного фактора описывается соответствующей функцией, то одновременное действие двух факторов можно изобразить в виде графика, представленного на рис. 3.8. В таком случае зависимость жизнедеятельности особей вида от этих факторов примет вид: у = Дхь х2). В практической деятельности это находит следующее выражение. Допустим, свойства вида таковы, что он более чувствителен к фактору х{ (например, температура), чем к фактору х2 (влажность почвы). Если осушить заболоченный лес в Московской области, где температурные условия для роста сосны оптимальны, она станет быстро расти. Но на севере Архангельской области осушение не приведет к заметному ускорению роста сосны, так как здесь он ограничивается не только избыточной влажностью, но и неблагоприятной температурой.

При одновременном действии многих факторов зависимость примет следующий вид: у = f(xb хъ хп). Для того чтобы определить выносливость вида по отношению к одновременному действию нескольких факторов, надо иметь экспериментальные данные по выносливости к каждому фактору. Кроме того, решение этого уравнения возможно лишь при условии, что интенсивность действия одного фактора не зависит от интенсивности другого. Так ли это?

Повседневный опыт показывает, что действие одного фактора, как правило, проявляется в совокупности с действием другого (или других). Так, мороз в Кировской области переносится легче, чем в Санкт-Петербурге, поскольку в Санкт-Петербурге влажность выше. Высокую температуру также легче перенести при низкой влажности. Хорошим примером взаимодействия между экологическими факторами, изменяющего пределы выносливости вида, может служить распространение прямокрылого Podisma pedestris. Этот типично бореально-альпийский вид обитает в Европе-в горных районах и на Крайнем Севере, а также в Сибири. Он относится к стенотермным организмам, но его стенотермность, изменяющаяся с влажностью, выражена во влажном климате гораздо сильнее, чем в сухом. В результате этот вид широко распространен в сухих районах Южных Альп, тогда как в северных влажных районах он встречается только на немногочисленных, относительно теплых участках.

Совместное влияние факторов можно рассмотреть на примере зависимости смертности личинок крабов от температуры, солености и присутствия кадмия (рис. 3.9). В отсутствие кадмия экологический оптимум (минимальная смертность) наблюдается в интервале температур от 20 до 28° С и солености - от 24 до 34%. Если в воду добавляется токсичный для ракообразных кадмий, то экологический оптимум смещается: температура лежит в интервале от 13 до 26° С, а соленость - от 25 до 29%. Изменяются и пределы толерантности. Разница между экологическим максимумом и минимумом для солености после добавления кадмия уменьшается с 11-47 до 14-40%. Пределы толерантности для температурного фактора, наоборот, расширяются с 9-38 до 0-42° С.

Организмы всегда приспосабливаются ко всему комплексу условий, а не к одному какому-либо фактору. Но в комплексном действии среды значение отдельных факторов неравноценно. Факторы могут быть ведущими (главными) и второстепенными. Ведущие факторы различаются для разных организмов, даже если они живут в одном месте, а также и для одного организма в разные периоды его жизни. Так, для ряда ранневесенних растений ведущим фактором служит свет, а после отцветания - влага и наличие питательных веществ. В жизни многих культурных злаков в период прорастания ведущим фактором является температура, в период колошения и цветения - почвенная влага, в период созревания - количество питательных веществ и влажность воздуха.

12 ЗАКОНЫ МИНИМУМА И ЛИМИТИРУЮЩИХ ФАКТОРОВ

В природе на любой организм действует сразу множество (десятки и сотни) разных факторов. Есть среди них и ограничивающие его существование. Это прежде всего лимитирующие ресурсы, т. е. те, которых на всех не хватает. Так, развитие растений ограничивается тем элементом, которого в почве меньше всего (как правило, азот, фосфор, калий). При его дефиците рост прекращается, даже если все остальные элементы имеются в избытке. Этот «закон минимума» открыл в XIX столетии немецкий агрохимик Юстус Либих. Любой фактор, присутствующий в слишком малых количествах, может оказаться

самым важным. Например, в небольшом лесу численность одних видов птиц ограничена количеством пищи, других - числом мест, пригодных для гнездовий, третьих - изобилием хищников. Однако закон Либиха «работает» далеко не всегда. Дело в том, что разные факторы часто взаимодействуют друг с другом и бывает трудно выделить среди них какой-то один лимитирующий. Скажем, пониженная влажность и недостаток питательных веществ снижают устойчивость растений к насекомым-вредителям и сорнякам. Напротив, изобилие корма в городах позволяет многим птицам не улетать зимой на юг, вопреки холодам и короткому световому дню. Для каждого фактора среды обычно имеются предельные (минимальные и максимальные) значения, которые способен вынести живой организм. Если же говорить не просто о выживании, а о благополучном существовании и размножении, то допустимый диапазон условий окажется ещё уже. Такой диапазон называется пределом толерантности (выносливости) этого вида организмов. Наилучшие же условия существования находятся где-то посередине, в так называемой зоне оптимума. Приспособление свойственно всему живому. Популяции приспосабливаются к своим местообитаниям и друг к другу: хищник приспосабливается ловить жертву, а та - убегать или прятаться. Приспосабливается и организм; его органы, ткани и даже отдельные клетки реагируют на изменения окружающей среды. Можно сказать, что способность к приспособлению - одна из главных черт всего живого.

13 ЭКОЛОГИЧЕСКАЯ ПЛАСТИЧНОСТЬ ВИДА

Отношение организмов к колебаниям того или иного определенного фактора выражается прибавлением приставки «эври-» или «стено-» к названию фактора. Например, по отношению к температуре различают эври- и стенотермные организмы, к концентрации солей - эвристеногалинные, к свету - эври- и стенофотные и др. По отношению ко всем факторам среды эврибионтные организмы встречаются редко. Чаще всего эври- или стенобионтность проявляется по отношению к одному фактору. Так, пресноводные и морские рыбы будут стеногалинными, тогда как ранее названная трехиглая колюшка - типичный эвригалинный представитель. Растение, являясь эвритермным, одновременно может относиться к стеногигробионтам, т. е. быть менее стойким относительно колебаний влажности. Эврибионтность, как правило, способствует широкому распространению видов. Многие простейшие, грибы (типичные эврибионты) являются космополитами и распространены повсеместно. Стенобионтность обычно ограничивает ареалы. В то же время, нередко благодаря высокой специализированности, стенобионтам принадлежат обширные территории. Например, рыбоядная птица скопа (Pandion haliaetus) - типичный стенофаг, а по отношению же к другим факторам является эврибионтом, обладает способностью в поисках пищи передвигаться на большие расстояния и занимает значительный ареал.

14 ПОНЯТИЕ ОБ АДАПТАЦИЯХ, МЕХАНИЗМЫ ИХ ФОРМИРОВАНИЯ

Адаптация (лат. «приспособление») - приспособление организмов к среде. Этот процесс охватывает строение и функции организмов (особей, видов, популяций) и их органов. Адаптация всегда развивается под воздействием трех основных факторов - изменчивости, наследственности и естественного отбора (равно как и искусственного - осуществляемого человеком). Периодические факторы

Основные адаптации организмов к факторам внешней среды наследственно обусловлены. Они формировались на историко-эволюционном пути биоты и изменялись вместе с изменчивостью экологических факторов. Организмы адаптированы к постоянно действующим периодическим факторам, но среди них важно различать первичные и вторичные.


Подобные документы

  • Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.

    методичка [66,2 K], добавлен 07.01.2012

  • Проблема рационализации природопользования и охраны окружающей природной среды. Основные принципы международного сотрудничества в области экологии. Международные конвенции и соглашения, посвященные проблемам охраны природы и участие в них России.

    реферат [43,5 K], добавлен 22.11.2010

  • Факторы воздействия на адаптации организма. Биогеохимические циклы, функции живого вещества в биосфере. Экологический ущерб эрозии почв. Способы очистки сточных вод от загрязнений. Роль воспитания и образования в развитии экологического сознания.

    контрольная работа [37,3 K], добавлен 05.06.2013

  • Экономика экологического кризиса. Рациональное природопользование как основа экологической безопасности государства. Система управления качеством окружающей природной среды в России. Международное сотрудничество в области экологии, участие России.

    курсовая работа [43,7 K], добавлен 23.02.2011

  • Международное сотрудничество в решении программ охраны природы: межгосударственные соглашения и конвенции по вопросам охраны окружающей среды и национального использования природных ресурсов; деятельность международных природоохранных организаций.

    контрольная работа [20,6 K], добавлен 09.12.2007

  • История развития экологии. Видовая и пространственная структура биоценоза. Природные ресурсы земли. Виды загрязнения гидросферы и биосферы отходами производства и потребления. Роль биотехнологий и государственных органов в охране окружающей среды.

    контрольная работа [34,8 K], добавлен 02.06.2010

  • Международно-правовая охрана атмосферы Земли, околоземного и космического пространства. Ответственность за экологические правонарушения. Природоохранительное сотрудничество стран-членов СНГ. Охрана окружающей среды от загрязнения радиоактивными отходами.

    реферат [37,7 K], добавлен 06.11.2012

  • Функции социальной экологии, ее вклад в современную экологическую науку. Правоохранительные органы РФ на страже норм социальной экологии. Понятие живого вещества в биосфере по Вернадскому, концепция ноосферы. Построение аминокислот в генетическом коде.

    контрольная работа [23,2 K], добавлен 27.07.2010

  • Решения, обеспечивающие увеличение или уменьшение степени ущерба окружающей среде. Затраты по улучшению состояния окружающей среды Балтийского моря, его проблемы, виды зягрязнений. Международное сотрудничество в области решения экологических проблем.

    курсовая работа [475,4 K], добавлен 25.03.2012

  • Международные конвенции и соглашения, посвященные проблемам охраны окружающей природной среды. Участие России в международном сотрудничестве. Общественные организации в области охраны окружающей среды. Green peace. Всемирный фонд охраны дикой природы.

    реферат [26,3 K], добавлен 14.03.2004

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.