Вплив абiотичних факторiв на стiйкiсть популяцiй рослин, тварин та мiкроорганiзмiв

Абіотичні фактори - сукупність неорганічних факторів (неживої природи) фізичної та хімічної дії, їх вплив на живі організми. Вплив факторiв середовища на популяцiї мікроорганізмів. Процес адаптації до абіотичних факторів. Типи стійкості систем організмів.

Рубрика Экология и охрана природы
Вид реферат
Язык украинский
Дата добавления 25.02.2012
Размер файла 65,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МIНIСТЕРСТВО ОСВIТИ I НАУКИ УКРАIНИ

ДЕРЖАВНИЙ ВИЩИЙ НАВЧАЛЬНИЙ ЗАКЛАД

Iндивiдуальне завдання на тему:

Вплив абiотичних факторiв на стiйкiсть популяцiй рослин, тварин та мiкроорганiзмiв.

УЖГОРОД 2011

Змiст

  • 1. Вступ
  • 2. Основна частина
  • 2.1 Вплив абiотичних факторiв на живi органiзми
  • 2.2 Вплив факторiв середовища на популяцiї мiкроорганiзмiв
  • 2.3 Адаптація до абіотичних факторів середовища
  • 2.4 Стiйкiсть систем органiзмiв
  • Висновки
  • Лiтература

1. Вступ

Незважаючи на те, що всі абіотичні фактори навколишнього середовища впливають на живі організми комплексно, дія кожного з них нерівноцінна.

Абіотичні фактори - сукупність неорганічних факторів (неживої природи) фізичної або хімічної дії (клімат, світло, температура, тиск, вологість повітря, вітер, радіоактивне випромінювання, склад води, повітря, рельєф місцевості тощо), які прямо або опосередковано впливають на живі організми.

Для свого нормального розвитку і функціонування будь-який живий організм повинен зберігати сталість внутрішнього середовища організму - гомеостаз.

Зміна цієї сталості (гомеостаза) - дезадаптація може привести до загибелі організму. Найбільш жорстка константа - кислотна-лужна рівновага (зрушення рН на 0,4 призводить до загибелі). Тому будь-який організм повинен пристосовуватися (адаптуватися) в умовах зміни екологічних факторів. Під адаптацією розуміють сукупність морфологічних, фізіологічних, генетичних і поведінкових пристосувань до певних умов середовища.

Стабільність екосистеми забезпечується безперервним потоком енергії, який задає та підтримує круговороти речовин; а також розвиненими інформаційними мережами, що включають потоки фізичних і хімічних сигналів, що зв'язують всі частини системи і керуючих (або регулюючих) нею як одним цілим. У результаті взаємодії кругообігу речовин та потоків енергії, а також сигналів зворотного зв'язку від субсістем (коли частина сигналів з виходу надходить на вхід) в екосистемах виникає саморегулюючий гомеостаз без регуляції ззовні (як це буває в механічних системах; наприклад, у звичайній системі регулювання температури в приміщенні термостат управляє піччю) або "постійної точки" (так у теплокровних тварин регуляція температури тіла здійснюється спеціальним центром в мозку). Керуючі функції екосистеми зосереджені всередині неї та дифузний (а не спрямовані назовні та спеціалізовані).

2. Основна частина

2.1 Вплив абiотичних факторiв на живi органiзми

Незважаючи на те, що всі абіотичні фактори навколишнього середовища впливають на живі організми комплексно, дія кожного з них нерівноцінна. Розглянемо більш детально кожний фактор окремо.

Температура є надзвичайно важливим екологічним фактором, і в першу чергу, через її вплив на швидкість хімічних реакцій у широкому розумінні цього слова.

За відношенням до температури виділяють дві екологічні групи рослин: теплолюбні - термофіли (гр. thermos - теплий і philos - люблю); холодолюбні - психрофіли (гр. psychros - холодний і philos). Теплолюбними називають рослини, що добре ростуть і розвиваються в областях тропічного, субтропічного та помірного поясів в умовах високих температур. До них належать види, що живуть у полярних і високогірних областях, або ті, що займають холодні екологічні ніші [6].

Більшість термофільних рослин в умовах тропічного і субтропічного клімату здатні перенести дуже високу температуру. Окремі частини рослини можуть нагріватися до +60…+65°С (інколи протягом тривалого періоду), наприклад, наскальні лишайники. Найвища температура, при якій знайдено живі синьо-зелені водорості в термальних водах, +85°C, бактерії +88°C. Вищі рослини в термальних водах відсутні. В природі ж уже при 40°C більшість видів виявляють ознаки пригніченості.

Рослини здатні витримувати і гранично низькі температури до ?80°C (водорості в товщі льоду в Антарктиді), в районах, де живуть вищі рослини, відмічена температура ?65°C (Якутія) - модринові ліси.

Для тваринних організмів температурний фактор визначає швидкість протікання біохімічних реакцій та активності ферментів, а відповідно й активності усього організму, особливо в пойкілотермних видів. Температура тіла останніх залежить від температури середовища і чим вища температура середовища, тим активнішими будуть пойкілотермні організми. Проте, зростання температури середовища може призвести до перегріву організму й загибелі тварини, тому нас цікавитимуть три основні аспекти температури як екологічного фактору: загрозливо низькі температури, загрозливо високі та проміжні. Якщо перші два інтервали температур, здебільшого, спричинюють смерть, то проміжне між ними значення вміщує зону оптимуму (закон оптимуму або толерантності Шелфорда), в межах якої при зростання температури на 10оС, у пойкілотермних тварин, швидкість метаболізму зростає у 2,5 рази. Окрім того температура може виступати як імпульсний або стимулюючий фактор - в розвитку багатьох видів комах помірної або полярної кліматичних зон, змінна температура спричинює прискорення розвитку ембріону, личинки чи німфи, тоді як постійна спричинює сповільнення цих процесів [3].

Світло - це важливий фактор середовища, який визначає біологічні ритми (добові, місячні, річні) у житті більшості тварин та здатність їх орієнтації у просторі. Джерелами світла на Землі є Сонце, Місяць, зірки і біолюмінесценція. Важливим аспектом світла, як екологічного фактору, є його інтенсивність та спектр, як у видимому, так і в ультрафіолетовому, й інфрачервоному діапазонах довжин хвилі.

Світло є основним джерелом енергії, яка засвоюється рослинами у вигляді хімічних зв'язків у цукрах, а ті з рослинною біомасою є їжею для тварин. Сонячна енергія, яку зелені рослини поглинають і використовують у процесі фотосинтезу, називається фізіологічно-активною радіацією (ФАР). Це промені з довжиною хвилі 0,4…071 мкм, проте рослина поглинає енергію в цих межах неоднаково. До того ж, в житті рослини поза якістю світлових променів велике значення має кількість світла, тобто інтенсивність освітлення, яка буває неоднаковою в різні місяці вегетаційного періоду і залежить також від широти місцевості. Рослини на нашій планеті ростуть у різних світлових умовах: від надмірно освітлених гір, пустель, степів до напівтемних печер та морських глибин. Тому в рослин у процесі природного добору виникли численні пристосування до життя відповідно до того чи іншого світлового режиму. За відношенням до світла рослини поділяються на три основні групи: світлолюбні, або геліофіти (гр. helios - сонце і phyton), тінелюбні, або сциофіти (гр. skia - тінь і phyton), та тіневитривалі.

Світло впливає на біологічні ритми тварин, у зв'язку із адаптацією тварин до природних джерел світла на поверхні планети. Добові зміни освітленості відзначаються високою регулярністю, оскільки відбуваються завдяки астрономічним процесам - обертання Землі довкола своєї осі, і спричинюють добові зміни активності поведінки тварин. Так само річні зміни освітленості зумовлені кутом нахилу планети до своєї осі, і зумовлюють виникнення річних біоритмів у тварин. Місячні біоритми тварин зумовлені циклічністю зміни фаз Місяця, а відповідно й наростання чи спадання рівня нічної освітленості. Сприйняття тваринами спектральних відмінностей світла називається зором, який може бути монохромним або чорно-білим (наприклад, деякі черви, двостулкові й черевоногі молюски), дихромним або двоколірним - сприймається синє та червоне (наприклад, більшість ссавців), трихромним або триколірним - сприймається синє, жовте і червоне (наприклад, примати і людина) та тетрахромним або чотириколірним - сприймається ультрафіолетове, синє, жовте і червоне (наприклад, більшість комах, птахи, плазуни, риби, головоногі молюски та ін.). Деякі тварини (наприклад, гримучі змії, комарі) сприймають ще й інфрачервоне випромінювання, яке вже є теплом, або тепловим випромінюванням [10].

Тривалість дня (фотоперіод) на екваторі більш постійна (12 годин), але в більш високих широтах вона змінюється залежно від пори року. Для рослин і тварин таких широт характерна реакція на фотоперіод, яка синхронізує їх активність із порою року. Прикладами можуть бути цвітіння і проростання насіння в рослин, міграція, зимова сплячка і розмноження тварин. Світло впливає на структуру угруповань живих організмів.

Важливе значення має інтенсивність освітлення. Наприклад, рослини за відношенням до освітленості поділяються на світлолюбні, тіньовитривалі і тіньолюбні. Є також рослини довгого (фотоперіод не менше 12 год.) і короткого (8-10 годин) дня та нейтральні.

Вода необхідна для життя і може бути важливим лімітуючим фактором у наземних екосистемах. Вода надходить з атмосфери у вигляді опадів. Розподілення по суші залежить від гідрологічного циклу (кругообігу води). Важливе значення має вологість повітря. Вологість здатна змінювати ефекти температури: зниження вологості нижче деякої межі при даній температурі приводить до висушуючої дії повітря, що особливо впливає на рослини.

Велике значення для життя водних організмів має солоність води. Значні коливання цього фактора для багатьох організмів є згубними.

Вода - це один із трьох найважливіших абіотичних екологічних факторів суходолу, що мають визначальне вплив на живі організми. Вода є основою внутрішнього середовища усіх клітинних живих організмів, виступає універсальним розчинником і середовищем протікання біохімічних реакцій. Вода, як екологічний фактор, виступає в ролі зовнішнього середовища, питної води та вологості повітря. Для водних організмів вода виступає також і зовнішнім - оточуючим середовищем, з яким вони вступають у водо-, газо- та сольовий обміни. Суходільні організми потребують постійного надходження води ззовні, тому вони розвинули низку пристосувань для використання, економії та поповнення води у своєму внутрішньому середовищі. Вологість повітря має визначальне значення для життєдіяльності та поширення живих істот, і визначається абсолютним і відносним її показниками. Абсолютна вологість повітря - це кількість водяної пари в 1 м3 повітря. Відносна вологість повітря - це співвідношення абсолютної та максимально можливої за конкретної температури повітря.

Важливим фактором водного середовища є її хімічний склад, а насамперед її солоність. Відповідно водне середовище поділяють на прісне (ріки, озера, ставки тощо), солонувате (гирла річок, опріснені морські акваторії та ін.) та солоне (морські басейни, океан, солоні озера тощо). Солоність води визначається в проміле (‰) - це одиниця маси солі розчинена в одиниці об'єму води (1‰ = 1г (NaCl) /1л (H2O)). Середня солоність Світового Океану становить 3,5‰. Відповідно організми поділяють на прісноводні та морські або солоноводні, окрім них також є прохідні - це такі організми (виключно тварини), які частину життєвого циклу проводять у прісних водоймах, а іншу - у солоних, причому для розмноження повертаються у прісні водойми або морські.

Повітря як кліматичний фактор постійно впливає на рослини. Цей вплив викликаний рухом повітря (вітром). Крім того, повітря є одним із джерел живлення рослин. Повітряне живлення зеленої рослини - фотосинтез - тісно пов'язане з використанням вуглецю. Майже половина сухої маси рослини припадає на вуглець, засвоєний нею з повітря.

Хімічний склад повітря в різних зонах земної кулі досить одноманітний. Його основні складові частини - азот (78,08%), кисень (20.95%), аргон (0,93%), і оксид вуглецю (IV) (0,03%). Зустрічаються також у невеликій кількості й інші гази. Екологічно важливим для рослин є наявність чистого повітря без різних домішок, багато з яких згубно впливають на рослину. Це оксид сірки (IV), вихлопні гази, різні оксиди, похідні ацетилену, свинцеві сполуки тощо.

Певну роль у житті рослин відіграє також рух повітря. Вплив вітру може бути прямим і непрямим. Прямий вплив багатогранний, це перш за все механічна дія: вітролом, пошкодження дерев і кущів. Формотворча роль вітру помітна на багатьох рослинах відкритих місць - тундр, степів, напівпустель, пустель (прапороподібні, сланкі і карликові форми тощо). При побічному впливі змінюється обстановка для зростання рослин: видування ґрунту, оголення коренів, засипання рослин піском, снігові заноси, висушування надземної частини, температурні перепади, зниження фотосинтезу тощо [8].

Позитивний вплив вітру в житті рослин виявляється в перехресному запиленні великої групи анемогамних рослин, до якої належить понад 10% усіх голонасінних та покритонасінних рослин. Насамперед це дерева (сосна, дуб, ялина, ліщина, тис та ін.), майже всі злакові, осоки, хміль, коноплі, рослини тундри і високогірних поясів, де немає комах. Насіння та плоди рослин також переносяться на великі відстані (до 40 км) за допомогою вітру.

Електромагнітні коливання - виникають в атмосфері за різних причин (антропогенних у тому числі) і можуть негативно впливати на живі організми - сповільнювати їх розвиток, знижувати життєздатність і підвищувати смертність.

Іонізуюче випромінювання - будь-яке випромінювання (безпосереднє і опосередковане), взаємодія якого із середовищем зумовлює утворення електричних зарядів різних знаків, тобто спричинює іонізацію. З цим поняттям пов'язане поняття радіоактивності. Розпад ядер атомів радіоактивних елементів (радіонуклідів) супроводжується виділенням енергії у вигляді іонізуючого випромінювання. Усе живе на Землі з моменту зародження життя зазнає впливу іонізуючої радіації. Еволюція відбувається в умовах постійної дії радіоактивного випромінювання, що свідчить про пристосованість організмів до фонових доз і відсутність їх негативного ефекту. Основним джерелом опромінення живих організмів на Землі є вторинне космічне випромінювання. Серед радіонуклідів земного походження основний внесок у формування радіаційної дози роблять 40К, 235U, 238U, 232Th, 82Rb, 222Rn, 236Ra. Проте, за останнє століття створено штучні джерела іонізуючого випромінювання, які сприяють збільшенню природного рівня радіації, що негативно позначається на живих системах. До джерел штучного іонізуючого випромінювання, що забруднюють навколишнє середовище радіонуклідами, належать: випробування ядерної зброї, промислові ядерні вибухи, підприємства атомної енергетики (зокрема, аварії ядерних реакторів) тощо.

Дію іонізуючого випромінювання живі організми не відчувають, оскільки вони не мають специфічних рецепторів для сприймання радіації. Ефект впливу радіації на живі організми залежить не тільки від спричинених випромінюванням змін в окремих клітинах і тканинах, а й від порушень взаємозв'язку між ними і відхилень у перебігу реакцій, властивих організму як живій системі. Існує взаємозв'язок між рівнем розвитку організму й чутливістю до іонізуючого випромінювання. Так, багатоклітинні організми чутливіші, ніж одноклітинні; найбільшу чутливість мають ссавці, особливо людина.

Механізми біологічної дії іонізуючої радіації на живі організми досить складні і вивчені недостатньо. Але відомо, що в різних видів іонізуючого випромінювання вони схожі - від первинних процесів поглинання і передачі енергії випромінювання до морфологічних і фізіологічних порушень в опромінених організмах [5].

Ґрунт є одним із компонентів наземних екосистем і природною основою їх функціонування, а рослинність - важливим фактором ґрунтоутворення, проте ґрунт визначає досить часто тип рослинності. Всі рослини залежно від наявності в ґрунтах поживних речовин ділять на три групи: еутрофи, мезотрофи і оліготрофи.

Рельєф не здійснює прямого впливу на життя рослин, проте впливає на ґрунтотворення, а характер рельєфу, місцеположення в ньому рослин або рослинного угруповання значно впливає на життя рослин, регулює їх співвідношення і дію прямих екологічних факторів. Із зміною рельєфу змінюються кліматичні і ґрунтові умови. Таким чином, за рахунок рельєфу збільшується різноманітність умов зростання і відповідно урізноманітнюється флористичний склад. Залежно від величини форм рельєфу виділяють три категорії: макрорельєф (гори, низовини, міжгірські западини), мезорельєф (пагорби, яри, гряди, степові блюдця тощо), і мікрорельєф (мілкі западини, нерівності, пристовбурові підвищення та ін.). Цей поділ умовний. Макрорельєф створює на обмеженій площі широку амплітуду висот, що, в свою чергу, викликає зміну кліматичних комплексів і відповідно до висоти змінюється і характер рослинного покриву. Характер висотної поясності залежить насамперед від положення гір у системі широтних зон, висоти гір і експозиції схилів. Мезорельєф також впливає на розподіл рослинності. Прикладом може бути заплава. Велике значення для життя рослин має експозиція схилів та їх крутизна. Відомо, що на схилах південної експозиції освітлення більш інтенсивне і температура вища, режим зволоження інший, ніж на північних. У зв'язку з неоднаковими умовами на схилах різної експозиції помітно розрізняються склад рослинності, зовнішній вигляд і стан рослин. На південних схилах вище розміщується пояс деревної рослинності. Вплив експозиції виявляється не лише в горах, а й на невеликих горбах, підвищеннях і навіть на рівнинах.

2.2 Вплив факторiв середовища на популяцiї мiкроорганiзмiв

Умови довкілля мають велике значення для життєдіяльності мікроорганізмів. Чим сприятливіші вони, тим інтенсивніше розвиваються мікроби, і навпаки. Надлишок або брак вологи, низька або висока температура, освітлення, радіоактивне випромінювання, наявність поживних речовин тощо зумовлюють відповідний темп розвитку мікробної клітини. Розвиваючись у певних умовах довкілля прокаріоти пристосовуються до них. Цим і пояснюється той факт, що в південних широтах бактерії можуть добре розвиватися при підвищеній температурі, у північних - при пониженій, галофільні мікроорганізми - у водоймищах з високим вмістом солей.

Усі чинники зовнішнього середовища, які впливають на розвиток прокаріотів, можна розподілити на три основні групи: фізичні, хімічні і біологічні. До фізичних факторів належать: волога, температура, концентрація розчинених речовин, світло та інші форми променевої енергії, радіохвилі, ультразвук. Серед хімічних чинників розрізняють рН середовища, отруйні речовини, кисень тощо. До біологічних належать різного типу взаємозв'язки і взаємовідношення між бактеріями, а також між ними та іншими організмами довкілля (симбіоз, метабіоз, коменсалізм, синергізм, антагонізм, паразитизм тощо) [1].

Фізичні фактори

Волога. Активна життєдіяльність бактерій можлива лише в умовах достатнього зволоження. Надходження поживних речовин у клітину та виділення продуктів обміну в зовнішнє середовище можливі тільки при достатньому вмісті води. Найменша кількість води, при якій ще можливий розвиток прокаріотів, становить 20-30 % загальної маси організму. Менш вимогливі до умов зволоження цвілеві гриби. Вони можуть розвиватися навіть тоді, коли вміст вологи в субстраті дорівнює 10-15 %.

Більшість мікробів витримують висушування непогано. Наприклад, туберкульозні палички після висушування зберігають свою життєздатність протягом кількох місяців, а спори сибірки - упродовж 10 років. Молочнокислі бактерії і дріжджові гриби зберігають життєздатність після висушування протягом кількох років. Ця властивість мікробів широко використовується, наприклад, для отримання сухих заквасок, які застосовуються при виготовленні різних молочнокислих продуктів тощо, а також для зберігання музейних мікробів. При цьому культури піддаються заморожуванню в умовах вакууму (ліофілізація).

Температура. Мікроорганізми не регулюють температуру свого тіла, а тому існування їх визначається температурою оточуючого середовища. Розрізняють три основні температурні зони, які мають вирішальне значення для розвитку бактерій: мінімум, оптимум і максимум. Найменша температура, при якій можуть розвиватися дані мікроби, називається мінімальною. Найвища температура, при якій ці самі організми ще можуть жити, називається максимальною. Між двома крайніми точками є температура, при якій прокаріоти розвиваються найкраще. Така температура дістала назву оптимальної. Кардинальні температурні точки для деяких мікроорганізмів наведено в табл.3. Ці точки, хоча і є характерними для кожного виду мікроба, але вони можуть змінюватися під впливом інших чинників зовнішнього середовища.

Щодо температурних умов, усі мікроорганізми прийнято поділяти на три групи: психрофіли, мезофіли, термофіли. Психрофіли - холодолюбні мікроби. Мінімальні температури для них - у межах від - 10 до О°С, оптимальні - від 10 до 15°С і максимальні - близько ЗО°С. Психрофіли живуть у грунтах полярних країн, холодних морях і океанах, льодах, на заморожених продуктах тощо.

Мезофіли - мікроорганізми, мінімальні температури для яких перебувають у межах від 0 до 10°С, оптимальні - близько 25-35°С, максимальні - 40-50°С. До них належать більшість сапрофітних і патогенних мікроорганізмів, наприклад, кишкова паличка, протей, стафілокок та інші.

Термофіли - група теплолюбних мікробів, які можуть розвиватися при відносно високих температурах.

Природа термофілії досі ще не розкрита. Висловлюються припущення, що ліпіди відіграють певну роль у молекулярних механізмах термофілії, сприяючи термостабільності мембран, і що нижня температурна межа росту термофілів визначається температурою плавлення мембранних ліпідів. За іншою гіпотезою, визначальна роль у термофіла належить ферментним білкам, а саме: основні температурні точки термофілів залежать від конформації одного або декількох основних ферментів. Деякі вчені поділяють твердження, згідно з яким термофілія зумовлюється термостабільністю структурних компонентів клітин термофілів.

Зниження температури нижче оптимальної не так згубно впливає на прокаріотів, як її підвищення понад максимальну. На явищі впливу високих температур грунтуються поширені способи знезараження продовольчих продуктів, поживних середовищ, посуду та інструментів. Вони дістали назву пастеризації і стерилізації.

Низькі температури мікроби витримують порівняно легко. Наприклад, деякі види бактерій не втрачають життєздатності навіть при температурі рідкого водню (-253°С). При дії низьких температур прокаріоти можуть впадати в анабіотичний стан, зберігаючи тривалий час свою життєдіяльність. Низькі температури широко використовуються для зберігання різних продуктів, які швидко псуються. Використовують два способи зберігання продуктів на холоді: в охолодженому стані при температурі від 10°С до - 2°С і в замороженому стані при температурі від - 12 до - ЗО°С.

Випромінювання. Пряме сонячне світло шкідливо впливає на більшість видів бактерій. Тільки фототрофні мікроорганізми витримують вплив сонячної радіації порівняно легко. Вплив різних видів випромінювання на прокаріотів залежить від довжини хвилі, а також інтенсивності і тривалості випромінювання. Променева енергія поширюється в просторі у вигляді електромагнітних хвиль. Це можуть бути радіохвилі, видимі, інфрачервоні й ультрафіолетові світлові промені, іонізуючі промені - рентгенівські і космічні промені, а також випромінювання, які виникають при ядерних реакціях.

Найбільшою довжиною характеризуються радіохвилі. Вони не викликають біологічного ефекту. Дещо меншу довжину хвилі мають інфрачервоні промені. При поглинанні живим організмом вони перетворюються на тепло. Видиме світло, з довжиною хвилі від 300 до 800 нм, поглинається фотосинтезуючими прокаріотами і перетворюється на хімічну енергію. Цей вид випромінювання індукує такі процеси у прокаріотів, як фотосинтез, фототаксис, фотореактивацію ДНК тощо.

Найбільш згубними для бактерій є короткохвильові промені, наприклад, ультрафіолетові (УФ) з довжиною хвилі 250-260 нм. Вони поглинаються ДНК, РНК і білками та зумовлюють зміни їхніх молекул, що призводить до пошкодження клітини. УФ-промені викликають також мутагенний ефект, спричиняючи спадкові зміни прокаріотів, а тому їх часто використовують для одержання мутантів різних мікроорганізмів. Штучні джерела УФ-променів - бактерицидні лампи - широко використовують для дезинфекції повітря, холодильних камер, лікувальних і виробничих приміщень тощо [7].

Іонізуюче випромінювання на мікроорганізми може діяти згубно (бактерицидна дія) або викликати мутагенний ефект. Ефективність дії іонізуючої радіації залежить від виду, дози і об'єкту опромінення. Наприклад, прокаріоти набагато витриваліші до дії ядерних випромінювань, ніж вищі організми. Тіонові бактерії, які живуть у покладах уранових руд, мають високу стійкість до радіації. Бактерії знаходили у воді атомних реакторів, де концентрація іонізуючої радіації перевищувала 20-30 тис. Гр (2-3 млн рад).

Щодо механізму дії радіації на живі організми, то вважають, що вона виявляє пряму і непряму дію. Пряма дія полягає в радіаційно-хімічних перетвореннях молекул у місці поглинання радіоактивних променів. Вплив останніх спричинює набуття молекулою збудженого стану, в результаті цього утворюються вільні радикали і переоксиди, які реагують з ДНК, РНК і білками. При непрямій дії радіації відбувається пошкодження молекул мембран, органел, клітин цими ж продуктами радіолізу води.

Ультразвук. Ультразвукові хвилі мають частоту коливання понад 16 000 Гц. Вони виявляють згубну дію на різні мікроорганізми: зумовлюють розпад високомолекулярних сполук, коагуляцію білка, інактивують ферменти, токсини, спричинюють розрив клітинної стінки тощо. Досі ще не розкрито механізм дії ультразвукових хвиль. Його зв'язують з кавітацією, тобто утворенням у рідині порожнин, при закриванні яких виникають гідравлічні удари, що руйнують клітини мікроорганізмів.

До дії ультразвуку чутливі (різною мірою) всі прокаріоти. Наприклад, до дуже чутливих належать протей, сальмонели, сирна паличка та інші, до дуже стійких - туберкульозна паличка та багато інших прокаріотів. Інтенсивні дослідження дії електрогідравлічного ефекту на живі об'єкти за допомогою спеціальних установок проводились І.О. Ситником (1982) та іншими дослідниками. Це відкрило широкі можливості для практичного використання електрогідравлічного ефекту при стерилізації молока, соків та інших харчових продуктів, виробництві вбитих вакцин, одержанні внутрішньоцитоплазматичного білка різних видів мікробів, а також для стерилізації питної і стічних вод.

Осмотичний тиск. Важливе значення для життя прокаріотів має осмотичний тиск, величина якого визначається концентрацією розчинених речовин у середовищі. Цитоплазматична мембрана бактеріальної клітини регулює проникнення в клітину і вихід із неї води і розчинених речовин, зберігаючи при цьому осмотичну рівновагу. Надходження води з довкілля у клітину можливе лише в тому випадку, коли осмотичний тиск в клітині буде більшим, ніж тиск зовнішнього розчину. При високому осмотичному тиску в середовищі клітина втрачає здатність поглинати з нього воду, що згубно діє на неї. Нормальний осмотичний тиск у клітині визначається в межах від 3 до 7 атм.

Мікроорганізми, які добре розвиваються при нормальному тиску, дістали назву осмотолерантних. Мікроби, що краще розвиваються при підвищеному осмотичному тискові, називаються осмофільними. Є також група бактерій (наприклад НаІоЬасІегіит), які потребують для свого росту і розвитку високої концентрації солей (КаСІ). Вони краще ростуть при концентрації солі в середовищі в межах 20-30 %. Ці прокаріоти дістали назву галофілів. Своєю чергою серед них розрізняють помірних і екстремальних галофілів. Галофіли потребують іонів Ка+ для стабільності клітинних мембран і активності ферментів.

Гідростатичний тиск. Прокаріоти по-різному реагують на дію гідростатичного тиску. Наприклад морські бактерії, що мешкають на глибині 1000-10 000 м, можуть витримувати тиск до 900 атм. Деякі бактерії, дріжджі, цвільові гриби витримують тиск до 3000 атм, а фітопатогенні віруси - до 5000 атм. Бактерії, які ростуть при звичайному та підвищеному тиску, називають баротолерантними.

Мікроорганізми, що краще розвиваються при високому тиску, належать до барофільних організмів. Під дією гідростатичного тиску змінюються активність ферментів і біохімічні властивості бактерій.

Хімічні фактори

Хімічний склад середовища істотно впливає наріст і розвиток прокаріотів. Від нього залежить надходження поживних речовин, і він визначає реакцію середовища, її окислювально-відновний потенціал.

Реакція середовища (рН). Ступінь кислотності або лужності середовища справляє великий вплив на життя мікроорганізмів. Фізіологічне діючою основою в кислих і лужних субстратах є концентрація гідроксильних і водневих іонів (ОН~ і Н+). До найбільш кислих природних середовищ належать гарячі кислі джерела і їхні грунти, рН у них іноді може сягати 1. З цих місць виділено бактерії, які водночас є ацидофілами і термофілами. У природі також трапляються такі лужні джерела і озера, рН яких може сягати 8-11. З них виділено бактерії, які можуть добре рости при рН = 8.10 (ціанобактерії та інші).

Від реакції середовища залежить активність ферментів, яка є основою біохімічної активності мікробів. Наприклад, відомо, що ті самі дріжджі у кислому середовищі утворюють при зброджуванні цукру багато етилового спирту і незначну кількість гліцерину. В лужному субстраті, натомість, вони утворюють із цукру велику кількість гліцерину і дуже мало етанолу.

Більшість бактерій краще розвиваються в нейтральному або слаболужному середовищі. Добре витримують кислотність оцтовокислі, молочнокислі та деякі інші види бактерій. Дуже чутливі до високої кислотності гнильні бактерії. Мікроорганізми, які добре розвиваються в лужному середовищі, дістали назву алкаліфільних. Наприклад холерний вібріон добре розмножується при рН = 9. Прокаріоти, які краще ростуть у кислому середовищі, називаються ацидофільними. На вивченні ставлення різних мікробів до рН середовища грунтується низка важливих практичних заходів щодо зберігання деяких харчових продуктів у квашеному й маринованому вигляді [2].

Хімічні речовини. Залежно від хімічного складу, концентрації, температури, тривалості дії, виду прокаріотів хімічні речовини можуть чинити на мікроорганізми стимулюючу, бактеріостатичну (пригнічуючу) і бактерицидну дію. Речовини, які діють на мікроби токсично, називають антисептиками, їх дуже широко використовують проти різних шкідливих мікроорганізмів.

За характером дії хімічні речовини поділяють на кілька груп:

а) поверхнево-активні речовини - жирні кислоти, мила, інші ПАР; ці речовини найчастіше пошкоджують клітинну стінку;

б) етанол, крезол, фенол та їхні похідні не тільки пошкоджують оболонку, а й діють руйнівно на білки цитоплазми;

в) барвники - актифлавін, реванол та інші - діють на ДНК і РНК, порушують цитокинез;

г) формалін спричинює денатурацію білків, згубно діє на вегетативні клітини і спори;

д) солі важких металів (мідь, срібло, свинець, цинк, ртуть та інші).

Бактерицидна дія важких металів може бути проілюстрована на прикладі срібла. Концентрація солей срібла в розведенні 1: 100000 згубно діє на різні види мікробів. У садівництві, наприклад, розчини солей міді, цинку й заліза застосовують для сприскування плодових дерев при зараженні їх бактеріальними і грибковими хворобами.

Окислювачі (хлор, пероксид водню, йод, перманганат калію та інші) широко використовують для дезинфекції питної води, в медицині, сільському господарстві тощо.

Кисень. Трапляється в природі як у вільному, так і в зв'язаному стані; є обов'язковим компонентом будь-якої клітини. Переважна більшість живих організмів використовують обидві форми кисню. За відношенням до молекулярного кисню серед мікроорганізмів розрізняють: облігатні аероби, облігатні анаероби, факультативні анаероби і мікроаерофіли. Різне відношення бактерій до кисню залежить від їхніх фізіологічних особливостей (М.В. Гусєв, 1992).

Ступінь аеробності або анаеробності середовища можна кількісно охарактеризувати за допомогою окисно-відновного потенціалу, який виражається символом гН2. Цей індекс аналогічний рН. Тільки рН виражає ступінь кислотності і лужності середовища, а гН2 - ступінь аеробності і анаеробності. У водному розчині, повністю насиченому киснем, гН2 = 41, а при повному насиченні середовища воднем гН2 = 0. Отже, шкала від 0 до 41 характеризує будь-який ступінь аеробності.

Біологічні фактори

Взаємовідносини різних організмів, які живуть в екосистемі, бувають найрізноманітнішими. Мікроорганізми в різних угрупованнях пов'язані між собою енергетичними ланцюгами і відчувають взаємний вплив. Взаємовідносини між організмами в цих угрупованнях складні й динамічні через постійні зміни екологічних умов і мінливість самих мікроорганізмів. Вивчення цих взаємовідношень має надзвичайно важливе значення для розуміння кругообігу речовин у природі, утворення грунтів, еволюції видів прокаріотів.

Упродовж еволюції в живій природі виникли різноманітні взаємовідносини як між мікроорганізмами, так і між мікро- та макроорганізмами.

Симбіоз - взаємно корисне співіснування організмів різних видів. Прикладом є співжиття молочнокислих бактерій і дріжджів. Бактерії утворюють молочну кислоту, яка підкислює середовище, створюючи сприятливі умови для росту дріжджів. Останні синтезують ростові речовини, необхідні для розвитку бактерій. Інші приклади симбіозу - лишайник (симбіоз водорості й гриба), бульбочкові бактерії та бобові рослини.

Мутуалізм - різновидність симбіозу, при якому також існує взаємосприятливий вплив обох партнерів, наприклад взаємовідносини між мікрофлорою рубця жуйних і організмом тварини. Бактерії розкладають клітковину в рубці до сполук, які засвоюються організмом хазяїна, а останній забезпечує бактерії поживними речовинами і захищає їх від несприятливих умов.

Коменсалізм - форма симбіозу, при якій має вигоду тільки один партнер, не завдаючи ані шкоди, ані користі іншому. Прикладом цього може бути симбіоз організму людини з нормальною мікрофлорою її тіла (сапрофітна мікрофлора шкіри, травного каналу тощо).

Метабіоз - взаємовідносини між мікробами, при яких продукти метаболізму одного виду прокаріотів використовуються як пожива або енергетичний матеріал іншим видом мікробів. Наприклад, амоніфікатори розкладають білки з утворення КН3, який використовується нітрифікуючими бактеріями.

Синергізм. При цій формі взаємовідносин у симбіонтів взаємно посилюються фізіологічні функції і виникають нові властивості. Це явище можна спостерігати при співжитті оцтовокислих бактерій і дріжджів. Бактерії перетворюють цукри на кислоти, які використовуються дріжджами, а останні забезпечують бактерії вітамінами.

Антибіотики

Ці речовини належать до вторинних метаболітів, їх біосинтез не зв'язаний з ростом мікроорганізмів і вони не є життєво необхідними. Вони утворюються тільки при певних умовах для забезпечення їх продуцентів в умовах конкуренції. Деякі з них можуть виконувати низку фізіологічних функцій в організмі.

Фітонциди

Про лікувальні властивості вищих рослин було відомо ще в глибоку давнину, проте бактерицидну властивість рослинних виділень вперше було засвідчено Б.П. Токіним у 1928 р. Ці рослинні виділення було названо фітонцидами. Фітонциди - біологічно активні речовини, які виділяються рослинами і характеризуються бактерицидними, фунгіцидними і протистоцидними властивостями. Б.П. Токін вперше звернув увагу на те, що фітонциди володіють антибіотичними властивостями. Разом з В.Г. Дроботько, Б.Ю. Айземан та іншими дослідниками він науково обгрунтував доцільність використання фітонцидів у медицині та інших галузях народного господарства.

Практично майже кожній рослині притаманні фітонцидні властивості, але не однаковою мірою. Найактивнішою бактерицидною дією характеризуються цибуля, часник, гірчиця, хрін, алое, кропива, полин, черемха, горіх, евкаліпт, цитрусові тощо. До складу фітонцидів входять альдегіди, алкалоїди, глікозиди, синильна кислота, хінони і ефірні олії тощо. Серед названих сполук надзвичайно високою антимікробною активністю володіють алкалоїди (анабазин, нікотин, хінін та ін.).

Чимало антибіотичних препаратів рослинного походження широко використовуються в медицині, сільському господарстві та інших галузях: аліцин, добутий із часнику; аренарін, виділений із цмину піскового; берберин, який одержують з багатьох видів рослин з родини жовтецевих. Ці препарати виявляють бактерицидну дію на стрептококи, стафілококи, дифтерійну паличку, гонококи і сальмонели. Фітонциди іманін і новоіманін, виділені зі звіробою звичайного, виявилися високо активними проти бактерій і вірусів рослин. Виділений з бавовника антибіотичний препарат госіпол застосовується для лікування оперізуючого лишаю, псоріазу та інших вірусних захворювань.

Серед інших рослинних антибіотиків, які виявляють антимікробну дію, слід назвати: лютенарин, виділений з кореневищ глечиків жовтих; ксантин - із коноплі посівної; рафін - із редьки чорної; сальвій - із шавлії лікарської; хінін - з кори хінного дерева і хлорофіліпт - з листків евкаліпту. Вважають, що фітонциди є одним із факторів імунітету рослин, також вони відіграють важливу роль у взаємовідносинах організмів у біоценозах [4].

2.3 Адаптація до абіотичних факторів середовища

Для свого нормального розвитку і функціонування будь-який живий організм повинен мати - гомеостаз.

Зміна цієї сталості (гомеостаза) - дезадаптація може привести до загибелі організму. Найбільш жорстка константа - кислотна-лужна рівновага (зрушення рН на 0,4 призводить до загибелі). Тому будь-який організм повинен пристосовуватися (адаптуватися) в умовах зміни екологічних факторів. Під адаптацією розуміють сукупність морфологічних, фізіологічних, генетичних і поведінкових пристосувань до певних умов середовища.

Адаптація здійснюється за допомогою нервової й ендокринної систем.

У живих організмів є три види регуляції:

1. Гуморальна (рідинна) - регуляція через рідинне середовище організму (кров, лімфу, тканинну рідину). Це найдавніший вид регуляції. Він був характерний для давніх організмів.

Основні недоліки цього виду регуляції:

" уповільнена реакція - регуляція діється протягом певного часу (наприклад, при прийманні таблеток, уколах);

" відсутність конкретного адресата (впливає на багато органів і систем організму з появою побічних ефектів. Наприклад, при прийманні аспірину спостерігається внутрішньошлунковий крововилив - 1 таблетка - 0,5 мл крові).

2. Нервова регуляція. З'явилася у ході еволюції живих організмів. При цьому типі регуляції вплив фактора сприймають рецептори (нервові закінчення), що передають сигнал аналізаторам (групи рецепторів - органи чуттів), і далі в центральну нервову систему (головний і спинний мозок), яка приймає рішення і віддає виконавчу команду (відповідна реакція).

Переваги цього виду регуляції полягають в швидкості реакції (до 110 м/с), а також у впливі на конкретний орган.

3. Гормональна регуляція є різновидом гуморальної регуляції. Здійснюється за рахунок гормонів, тобто речовин, що виробляються в залозах внутрішньої секреції. Це цілеспрямований тип регуляції, проте вона відбувається поволі.

Розглянемо вплив абіотичних фізичних (кліматичних) факторів середовища на живі організми й їх пристосування (на прикладі адаптації до температури).

У відношенні до сонячного випромінювання організми стоять перед дилемою: з одного боку, пряме впливання світла на протоплазму смертельно для організму, з іншого боку - світло служить первинним джерелом енергії (про це окрема лекція про харчові ланцюги), без якого не можливе життя.

Ультрафіолетове випромінювання. Вищі і нижчі організми по-різному реагують на випромінювання цього діапазону. Вся ділянка ультрафіолетових променів згубна для бактерій. Знищувальна дія підсилюється за наявності у середовищі кисню. Ультрафіолетове випромінювання гальмує також розвиток грибів й вбиває їхні спори. Вищі рослини в принципі не вимагають ультрафіолетового випромінювання для нормального розвитку.

Тварини, що мають великі розміри тіла, передусім, птахи і ссавці (в тому числі і людина), потребують деякої кількості ультрафіолетового випромінювання у зв'язку із синтезом вітаміну Д (відповідає за міцність кісток скелету). Проте передозування випромінювання кварцовою лампою у людини призводить до опіків, а у дрібних тварин ультрафіолетове випромінювання може викликати загибель.

Видиме випромінювання. Є для організмів основним джерелом енергії і також летальним фактором середовища. Його дія залежить від адаптації організму до світла. Загальне ділення організмів з точки зору їх вимог до напруженості видимого випромінювання подібно у рослин і тварин. Світлолюбні чи світлостійкі рослини мають назву геліофіти, тварини - геліофіли, Затінковитривалі рослини мають назву скіофіти; тварини, що уникають світла - геліофоби.

Інфрачервоне випромінювання. Зелені рослини пропускають чи відбивають велику частину променів інфрачервоного діапазону.

Тварини використовують інфрачервоне випромінювання як джерело теплової енергії. Це випромінювання має велике екологічне значення, головним чином з причини щодо викликає мого їм теплового ефекту.

Адаптація до температури. Життя може існувати в температурному інтервалі від - 200° С до +100° С. В льодах Антарктиди температура повітря може знижуватися до позначки - 88° С, в африканських пустелях підійматися до +55° С На Землі є регіони з чималими річними коливаннями температури (наприклад, на північному сході України до 60° С), є країни з незначними (на Галапагоських островах цілий рік температура повітря приблизно +27° С). І в усіх регіонах земної кулі існує життя. Більшість видів і велика частина активності організмів приурочені до певних, достатньо вузьких діапазонів температур [9].

Розрізняють два типи живих організмів:

1. Пойкілотермні - організми, які не мають постійної температури тіла, тобто температура їх тіла змінюється залежно від температури навколишнього середовища (холоднокровні тварини - безхребетні, риби, земноводні і плазуни).

2. Гомойотермні - організми, які незалежно від температури навколишнього середовища, підтримують температуру тіла на одному рівні (теплокровні тварини - птахи і більшість ссавців). Це стає можливим завдяки процесам терморегуляції, що відбуваються в організмах.

Терморегуляція здійснюється шляхом зміни інтенсивності теплотворення (при окислювальних процесах в організмах) - хімічна терморегуляція і шляхом зміни тепловіддачі через шкіру (випарування поту та інш.) - фізична терморегуляція.

Температура тіла в цілому залежить від співвідношення між кількістю тепла, що виробляється, і тим, що віддається у навколишнє середовище.

Єдиним джерелом енергії в організмі є їжа, яка підлягає ряду обмінних процесів, відкладається про запас, а після цього, по мірі необхідності, йде розпад із виділенням енергії. Найбільш інтенсивно теплоутворення відбувається в м'язах, печінці, нирках. Значно менш - в з'єднувальних тканинах, кістках, хрящах.

Найбільш інтенсивні процеси тепловиділення відбуваються при скороченні м'язів (приблизно 80% енергії перетворюється на тепло, тремтіння збільшує теплотворення до 200%).

В організмах тварин на зміну температури навколишнього середовища реагують терморецептори, що знаходяться в шкірі, на роговій оболонці очей і в слизових оболонках.

Терморецептори поділяються на:

" ті, що сприймають холод (холодові);

" ті, що сприймають тепло (теплові).

Холодові рецептори залягають поверхнево (на глибині 0,17 мм), теплові - глибше (0,3 мм).

Кількість точок на поверхні тіла, де зосереджуванні холодові рецептори приблизно дорівнюється 250 тисячам, теплові - приблизно 30 тисячам.

В природних умовах зимою переважає хімічна, а літом - фізична терморегуляція.

Реакція організму вищих тварин на низькі температури відбувається за наступною спрощеною схемою:

"початково низька температура виступає збудливо, як стресорний фактор;

"при подальшому впливі температури навколишнього середовища відбувається зниження температури тіла і спрацювання механізмів опору (починаються процеси теплотворення - виділення енергії);

"при продовженні впливу фактора на організм і вичерпання резервів останнього наступає загибель (у людини цьому відповідає пониження температури тіла до +24° С, при який скипаються ферменти).

При впливі високої температури відбувається вихід крові з кров'яних депо в шкіру, розширення судин і збільшення інтенсивності тепловипромінювання.

Важливу роль у віддачі тепла з організму відіграє процес випарування вологи з поверхні шкіри (через потові залози) і легень. Протягом доби потові залози виділяють 500 мл вологи, з поверхні легень втрачається 350 мл (всього 850 мл). Враховуючи, що на випарування 1 мл води потребується 0,58 ккал, можна побачити, що таким шляхом організм може віддати в навколишнє середовище до 500 ккал на добу.

У тварин, які не мають потових залоз, процеси випарування зі шкіри відсутні і тепловіддача йде з інших поверхонь (наприклад, у собаки - з поверхні язика, у зайця - з поверхні вух).

Важливим є відношення поверхні тіла організму до його об'єму: чим воно менше, тим менше тепловіддача у тварини. Тому у теплокровних тварин, що схильні до географічної мінливості, розміри тіла особин статистично (в середньому) більше у популяцій, що проживають в більш холодних частинах ареалу виду - правило бергмана.

Важливим є також кількість вологи в тілі організму: чим її менше, тим легше переноситься холод.

Вологість середовища є важливим фактором, що визначає можливість виживання наземних тварин. За ставленням до вологості організми прийнято ділити на 4 екологічні групи:

1. Гідрофіти - організми, що проживають у воді.

2. Гелофіти - організми, що проживають на межі води і суходолу.

3. Гігрофіли - організми, що вимагають високої вологості середовища.

4. Ксерофіли - організми, що проявляють високу стійкість до усихання.

Атмосферний тиск робить чималий вплив на хід життєвих процесів тваринних організмів. Для рослин цей вплив поки що не встановлений.

Іспанські конкістадори змушені були перенести столицю Перу в розташовану на березі океану Ліму, тому що на висоті 3500 метрів коні і свині не розмножувалися. Осіле проживання людей на висоті понад 4000 метрів над рівнем моря призводить до вимирання поселень.

Гідростатичний тиск зупиняє процеси бродіння при 600 атм., а гнильні процеси при 700 атм. Риби поверхневих вод гинуть при 300 атм., але відома всім морська зірка витримує тиск до 600 атм.

Пристосування до нових кліматичних умов має назву акліматизація [4].

Розрізняють істинну акліматизацію, що супроводжується зміною генетичної структури (відбувається поволі і рідко) і натуральну, при якій відбуваються зміни у фізіології організму, але у межах норми.

Перелік лімітуючих факторів не обмежується тільки фізичними абіотичними факторами. Біологічні взаємовідносини, біотичні фактори не менш важливі як регулятори розподілу і чисельності організмів у природі.

2.4 Стiйкiсть систем органiзмiв

Стійкістю називається властивість системи зберігати притаманні їй риси і особливості за умов впливу факторів, що виводять систему з рівноваги.

Ступінь досягнутої стабільності досить різноманітна і залежить як від жорсткості навколишнього середовища, так і від ефективності внутрішніх мехінізмів управління.

Розрізняють два типи стійкості - пружню і резистенту.

1. Пружня стійкість - система у відповідь на збурюючий вплив виходить зі стану рівноваги, але повертається до вихідного стану з припиненням дії цього чинника.

абіотичний фактор живий організм

Чудовою ілюстрацією пружньої стійкості можуть бути пірогенні угруповання. Час від часу вони практично знищуються внаслідок пожеж, Але досить швидко відновлюються. Каліфорніські зарості чапараллю після пожежі поновлюються повністю за кілька років.

Одним з різновидів пружньої стійкості є екосистеми імпульсної стабільності. Саме їхнє існування базується на значних коливаннях. Це, зокрема, екосистеми тимчасових водойм.

2. Резистентна стійкість - система тримається до певної межі (певних значень) збурюючого фактору, але коли його значення перевищать певну межу - виходить зі стану рівноваги, до якого вже може не повернутися навіть після повного припинення збурюючого впливу. Так, каліфорнійські секвойні ліси досить стійкі до пожеж (товстий шар кори тощо), але при згоранні лісу він відновлюється вкрай повільно або ж не відновлюється зовсім.

Для кількісної характеристики стійкості екосистеми (чи біосистеми) необхідно оцінити силу впливу на системи якогось чинника і зміни у системі у відповідь на цей вплив. Так, при резистентній стійкості вивчаємо, за якого інтервалу температур система зберігає притаманні їй структурно-функціональні особливості. Так, гомойотермні тварини мають відносно постійну температуру в широкому діапазоні температур зовнішнього середовища. Це має вкрай важливе практичне значення в екологічному прогнозуванні. Часто доводиться прогнозувати зміни в екосистемах у відповідь на різні антропогенні навантаження. Це і є, по суті, оцінкою стійкості екосистем при різних впливах на них. На екосистемному рівні стійкість знаходить свій прояв у відносно постійному рівні вуглекислоти в атмосфері. У відповідь на зростання конценнтрації двоокису вуглецю активізуються процеси фотосинтезу (відзначимо, що сучасний рівень вуглекислого газу є лімітуючим продуктивність рослин фактором), а частина її розчиняючись у воді, зв'язується у воді, зв'язується карбонат-бікарбонатною системою. Але якщо буферна ємність вичерпана, регуляція істотно порушується.

Для пружньої стійкості кількісною характеристикою слугує сила впливу, після припинення якого система здатна повернутися до вихідного стану, а також швидкість, з якою система повертається до попереднього стану [8].

Висновки

Абіотичні фактори - температура, світло, радіоактивне випромінювання, тиск, вологість повітря, сольовий склад води, вітер, течії, рельєф місцевості - це все властивості неживої природи, які прямо чи опосередковано впливають на живі організми.

Стійкістю називається властивість системи зберігати притаманні їй риси і особливості за умов впливу факторів, що виводять систему з рівноваги.

Ступінь досягнутої стабільності досить різноманітна і залежить як від жорсткості навколишнього середовища, так і від ефективності внутрішніх механізмів управління.

Лiтература

1. http://referat. repetitor.ua/? essayId=11689

2. Білявський Г.О., Фурдуй Р.С. Основи екологічних знань. - К. Либідь, 1995.

3. Білявський Г.О., Падун М.М., Фурдуй Р.С. Основи загальної екології. - К.: Либідь, 1993.

4. Злобін Ю.А. Основи екології. - К.: Лібра, 1998.

5. Новиков Ю.Ф. Экология, окружающая среда, человек. - М.: Гранд, 1998.

6. Одум Ю. Экология: в 2 т. М.: Мир, 1986.

7. Словник-довідник з екології // під редакцією Ситника К.М. і ін. - К.: Наукова думка, 1994.


Подобные документы

  • Вплив екологічних факторів на живі організми. Закони дії екологічних факторів. Стенотопні та евритопні види в біогеоценозі. Класифікація екологічних факторів. Основні групи рослин. Температурний режим, вологість. Гомотипові реакції. Антропогенні фактори.

    презентация [2,9 M], добавлен 27.12.2012

  • Поняття середовища існування. Водне, ґрунтове, повітряне середовище. Класифікація екологічних факторів, їх вплив на живі організми: енергія сонця; температура. "Закон мінімуму" Лібіха. Взаємодія екологічних факторів. "Закон толерантності" Шелфорда.

    курсовая работа [41,2 K], добавлен 16.11.2010

  • Пристосування організмів до середовища. Зміни факторів середовища. Закон оптимуму. Неоднозначність дій фактора на різні функції. Мінливість, варіабельність та різноманіття відповідних реакцій на діяльність факторів середовища у окремих особин виду.

    курсовая работа [47,1 K], добавлен 21.02.2009

  • Аутекологія - наука про екологічні фактори: їх класифікація та вплив на життєдіяльність організмів. Абіотичні, біотичні та антропогенні фактори. Поток енергії їжі у екологічній системі. Основні закони біогеохімічного кругообігу за В. Вернадським.

    лекция [1,9 M], добавлен 01.07.2009

  • Джерела забруднень хімічної природи навколишнього середовища. Діоксид вуглецю, сірки, азоту, їх властивості і добування, вплив на атмосферу. Забруднення атмосферного повітря та руйнування зонового шару Тернопільської області. Заходи щодо його зменшення.

    курсовая работа [70,2 K], добавлен 31.01.2011

  • Характеристика наземного середовища існування людини, його особливостей в порівнянні з іншими середовищами. Вплив температури на життєві процеси організму людини, механізми терморегуляції. Класифікація біотичних факторів в залежності від видів організмів.

    реферат [36,7 K], добавлен 19.06.2010

  • Поняття, предмет і завдання екології, основні екологічні фактори. Характеристика абіотичних чинників середовища: світло і вологість, а також температура, радіація, хімічне забруднення. Підтримка нормальної життєдіяльності в несприятливих умовах.

    реферат [31,1 K], добавлен 11.11.2010

  • Основні антропогенні фактори. Контроль стану середовища. Найвпливовіші хімічні та фізичні фактори. Отрутохімікати, або пестициди. Хлороорганічні сполуки (ХОС). Фосфорорганічні сполуки (ФОС). Ртутєорганічні сполуки (РОС). Карбамати. Нітрофеноли.

    реферат [19,4 K], добавлен 07.02.2007

  • Відмінність моделей геосистеми та екосистеми. Екологічні фактори та їх вплив на природні об'єкти. Основні наслідки впливу людини на природу. Вплив екологічних факторів на ліси. Екологічні наслідки тваринництва. Прояв дефляції ґрунтів у Степу України.

    презентация [78,9 M], добавлен 28.12.2012

  • Особливості репродукції людини у зв’язку з її біосоціальною суттю. Вплив структури шлюбів та демографічних показників на стан генофонду популяцій людей. Вплив на людські популяції елементарних еволюційних факторів. Характер, причини та види міграцій.

    лекция [36,1 K], добавлен 19.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.