Сооружения для биологической очистки сточных вод
Сооружения и аппараты биологической очистки, принцип их действия, преимущества. Функционирование и применение аэрационных установок, работающих по методу полного окисления (аэротенки подлинной аэрации) и с аэробной стабилизацией избыточного активного ила.
Рубрика | Экология и охрана природы |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 29.12.2011 |
Размер файла | 177,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Реферат
Тема: Сооружения для биологической очистки сточных вод
1. Биологическая очистка сточных вод
Биологическая очистка сточных вод представляет собой результат функционирования системы активный ил - сточная вода, характеризуемой наличием сложной многоуровневой структуры. Биологическое окисление составляющее основу этого процесса, является следствием протекания большого комплекса взаимосвязанных процессов различной сложности: от элементных актов обмена электронов до сложных взаимодействий биоценоза с внешней средой.
Результаты исследований показывают, что характерной особенностью сложных многовидовых популяций, к которым относятся и активный ил, является установление в системе динамического равновесия, которое достигается сложением множества относительно небольших отклонений активности и численности отдельных видов в ту или иную сторону от их среднего уровня.
2. Сооружения и аппараты биологической очистки
Биологическая очистка может осуществляться как в естественных, так и в искусственных условиях.
К сооружениям естественной очистки относятся:
ѕ Фильтрующие колодцы, используемые при расходе 1 куб. м в сутки и менее, и фильтрующие кассеты - при расходе 0,5-6 куб. м в сутки.
ѕ Поля подземной фильтрации - при расходе до 15 куб. м в сутки и более.
ѕ Поля фильтрации - при расходе 1400 куб. м в сутки и менее.
В этих сооружениях, фильтрующей загрузкой являются естественные грунты, используемые непосредственно на месте (пески, супеси, легкие суглинки).
Фильтрующие траншеи, песчано-гравийные фильтры, применяемые при расходе 15 куб. м в сутки и более. Оросительная и дренажная сеть этих сооружений положена в слое искусственной фильтрующей загрузки из привозного грунта. Их устраивают при наличии водонепроницаемых или слабофильтрующих грунтов.
Фильтрующие кассеты с пропускной способностью 0,5-6 куб. м в сутки, применяемые в слабофильтрующих грунтах (суглинках) при коэффициенте фильтрации не менее 0,1 куб. м в сутки.
Циркуляционные окислительные каналы (ЦОК) - при расходе 100-1400 куб. м в сутки.
Биологические пруды с естественной или искусственной аэрацией - при расходе 1400 куб. м в сутки.
При круглогодичной работе очистной станции Сооружения естественной очистки рекомендуется использовать, если удовлетворяются следующие условия:
ѕ среднегодовая температура воздуха в районе расположения очистной станции не менее 10 град. С;
ѕ глубина грунтовых вод не менее 1 м от поверхности земли;
ѕ наличие свободных площадей в близи малых объектов.
При сезонной работе станции (только в летний период) первое условие, касающееся среднегодовой температуры, исключается.
Однако почвенные методы не всегда приемлемы из-за неблагоприятных санитарных, почвенно-грунтовых, климатических, гидрогеологических условий. В связи с этим возникает необходимость в применении сооружений искусственной биологической очистки.
К сооружениям, в которых биологическая очистка протекает в искусственно созданных условиях, относятся:
ѕ Биофильтры с загрузкой из пеностекла или пластмассы.
ѕ Биодисковые фильтры.
ѕ Биофильтраторы.
ѕ Биореакторы с биобарабанами.
ѕ Блок биореакторов с затопленной ершовой загрузкой.
ѕ Аэрационные установки, работающие по методу полного окисления (продленной аэрации).
ѕ Аэрационные установки с аэробной стабилизацией избыточного активного ила.
Биофильтры с загрузкой из пеностекла или пластмассы
Сооружения биологической фильтрации, особенно с прикрепленным биоценозом, хорошо себя зарекомендовали в работе с малыми расходами и пиковыми нагрузками по органике. Они просты, удобны, в них за короткое время (до 30 минут) происходит скоростное изъятие загрязнений. На традиционных биофильтрах в качестве фильтрующей массы применяют объемный материал: щебень, гравий, керамзит. Блочные загрузки из блоков пеностекла имеют преимущества в технологическом, конструктивном и эксплуатационном отношениях по сравнению с другими материалами. Пеностекло-это теплоизоляционный строительный материал. Он отличается механической прочностью, влаго-, паро- и газонепроницаемостью, огнестойкостью, морозостойкостью, долговечностью, устойчивостью к воздействию кислот и продуктов разложения. Площадь адсорбционной поверхности пеностекла в зависимости от величины перфорации с учетом малых и больших по200 кв. м/куб. м.
Пеностекло имеет чрезмерно развитую поверхность, удерживает в единице объема большое количество биопленки, чем какой-либо другой вид загрузочного материала, что способствует интенсивному изъятию загрязнений из сточных вод.
Распределение сточной воды по поверхности биофильтра осуществляется с помощью реактивного оросителя (Рис. 1).
Пластмассовые загрузки используются в виде жесткой (кольца, обрезки труб и т.д.), жестко-блочной (из плоских и гофрированных листов), а также мягкой (из пластмассовых пленок) засыпки. Таким образом, загрузка обладает высокой пустотностью, большой сорбционной поверхностью и относительно малым коэффициентом сцепления биопленки с поверхностью загрузки, что создает условия для образования тонкого слоя биопленки.
Пластмассовая загрузка исключает заиливание биофильтров, значительно увеличивает объем поступающего воздуха, что способствует повышению окислительной мощности. Кроме достоинств, биофильтры обладают и рядом недостатков. Так, высокая не равномерность поступления сточных вод от малых объектов крайне отрицательно влияет на работу биофильтров и аэротенков. В биофильтрах происходит подсыхание биопленки и наблюдается не равномерность температурного режима ее работы, создаются условия, способствующие заиливанию загрузки. Во избежание этих явлений в часы минимального притока сточных вод осуществляют рециркуляцию очищенных сточных вод, что приводит к дополнительным энергозатратам на перекачку стоков.
Биодисковые фильтры
Эти сооружения предназначены для расхода сточных вод до 1000 куб. м в сутки. В качестве загрузки для биодисковых фильтров рекомендуются перфорированные диски, изготовленные из объемных синтетических материалов пониженной плотности (пенопласта, пеностекла).
Современные биодисковые фильтры представляют собой многосекционную емкость, наполненную вращающейся загрузкой (Рис. 2). Диски набирают на горизонтально расположенном валу с расстоянием между ними 15-20 мм. Диски обычно погружены в очищаемую жидкость на 0,45Д (30-45%), иногда до 0,75Д. Диаметр дисков находится в пределах от 0,4 до 3,0 метров в зависимости от производительности установки.
Принцип действия данного сооружения следующий: диски - основной компонент сооружения - находится в постоянном вращательном движении, причем их поверхность перфорации покрывается биопленкой, которая находится в прикрепленном состоянии. Биомодули, создавая обширную поверхность, обеспечивают гидродинамические условия, при которых отторгнутая биопленка продолжает работать, находясь во взвешенном состоянии. Здесь совмещается режим работы прикрепленного биоценоза и взвешенного (активного) ила. За пределами зоны очищаемой воды микроорганизмы, находясь в биопленке, получают кислород непосредственно из атмосферы.
При одинаковых категориях обрабатываемых городских сточных вод и заданном эффекте очистки время аэрации в БДФ составляет 60-90 минут, а в классических аэротенках - около 6 часов.
Биодисковые фильтры компактны, конструктивно просты, устойчивы к различного рода перегрузкам, имеют низкие удельные энергозатраты. Кроме того, при использовании этих фильтров практически отпадает необходимость насосной станции, так как гидравлические потери сооружений не значительны.
Биодисковые фильтры - многосекционные сооружения (3-6 секций). Основная масса удаленных биоразлагаемых загрязнений приходится на первую и вторую секции БДФ. Процесс снижения аммонийного азота и нитрификации успешно протекает в третьей и последующих секциях. Удаление азота достигает 40%, что выше, чем в классических биофильтрах и аэротенках. Однако в очищенных водах присутствуют азотистые соли (биогенные соединения), поэтому в некоторых случаях требуется доочистка.
Из биодисковых фильтров биологическая пленка потока обработанной жидкости выносится во вторичный отстойник. Разделение биопленки осуществляется гравитационным способом. Вторичные отстойники рекомендуется оборудовать тонкослойными модулями.
Биофильтраторы
Компактная установка биофильтратор предназначена для малых расходов сточных вод (от 2 до 600 куб. м в сутки) и обеспечивает полную биологическую очистку от разнообразных загрязнений в широком диапазоне концентраций. Установка имеет низкие капитальные вложения и энергетические затраты. Она проста и экономична в эксплуатации, не требует специального постоянного ухода. Биофильтратор (Рис. 3) состоит из аэрационной (сорбционной) зоны и зоны осветления.
В сорбционной зоне установлены вращающиеся перфорированные диски из пенопласта или подобных материалов. Диски вращаются мотор-редуктором с частотой вращения 10-15 об/мин. За счет градиента давления жидкость и отторгнутая биопленка переливаются через отверстие, устроенное в разделительной перегородке. Укрупненные хлопья активного ила из зоны осветления опускаются вниз и через отверстия подсасываются в аэрационную зону за счет кинематики течения. Таким образом, происходит постоянный обмен биомассы между зонами сорбции и осветления. Очищаемая жидкость поднимается к лотку и отводится за пределы сооружения.
Для интенсификации биотехнологии в биофильтре используется струйная аэрация (Рис. 4), что позволяет исключить механическую систему привода мотор-редуктор. Такой метод очистки применяется дла расходов сточных вод от 0,5 до 1,5 куб. м в сутки и более, с загрузкой от низких до высоких значений концентрации биоразделяемых соединений (БПК).
Струйный биофильтр работает следующим образом. Сточные воды, прошедшие механическую очистку, попадают в аэрационную зону, куда также поступает смесь осветленной жидкости и циркуляционного активного ила. Эта смесь из нижней части осветляется, забирается по трубопроводу насосом и через струйный аэратор шахтного типа сбрасывается в аэрационную зону биофильтра. Струя потока вводится в межсекционное пространство (Рис. 4) ниже свободной поверхности на 15-30 см и отражается от специально спланированной поверхности дна. В результате возникают интенсивные воздушные восходящие потоки, которые приводят к движению биоротора.
После контакта очищаемой жидкости в аэрационной зоне смесь или и сточной воды поступает на осветление. Зона осветления разделена на три отсека. В дегазационно-отстойной зоне при нисходящем потоке отделяются выносимые из аэрационной зоне пузырьки газа малых размеров. Здесь укрупненные частицы ила осаждаются на дно отстойника и возвращаются в аэрационную систему. Далее смесь поступает во вторую зону отстаивания, где происходит основной процесс разделения твердой и жидкой фаз с образованием взвешенного слоя, углубляющего процесс биофильтрации. Из этой зоны укрупненные хлопья активного ила также поступают в камеру аэрации. В последующем отделении обеспечивается окончательная очистка сточных вод. Вторая зона отстаивания работает в режиме отстойника. Осаждающиеся хлопья активного ила по стенке емкости сползают в зону их забора насосным агрегатом. Осветленные сточные воды через сбросный лоток отводятся на обеззараживание.
биологический очистка сточный аэрационный
3. Аэробная биологическая очистка сточных вод. Аэротенки
Для полной биологической очистке сточных вод малых населенных пунктов применяются:
ѕ аэрационные установки, работающие по методу полного окисления (аэротенки подлинной аэрации);
ѕ аэрационные установки с аэробной стабилизацией избыточного активного ила.
Установки обоих типов обеспечивают стабильную высокую эффективность очистки сточных вод, могут применяться в любых климатических, грунтовых и гидрогеологических условиях и не требуют отвода больших площадей земли.
Установки, работающие по методу полного окисления
Они предназначены для полной биологической очистки бытовых и близких к ним по составу производственных сточных вод. Полное окисление органических загрязнений протекает в три фазы.
В первой фазе наличия большого количества органических веществ в сточной жидкости обеспечивает быстрое размножение микроорганизмов с непрерывным прогрессированием общего их количества.
Во второй фазе нагрузка по органическим загрязнениям на активный значительно ниже и из-за недостаточного количества этих загрязнений размножение микроорганизмов несколько сдерживается. Устанавливается определенное соотношение между количеством поступивших органических веществ и приростом ила.
В третьей фазе размножение микроорганизмов активного ила замедляется из-за недостатка органических загрязнений. Ил как бы находится в «голодном» состоянии. Это заставляет микроорганизмы активного ила использовать не только органические вещества поступившие со сточными водами, но и большую часть органических веществ отмерших микроорганизмов, т.е. минерализовать органическую часть самого активного ила. В результате полного окисления органических загрязнений прирост активного ила настолько мал, что его можно удалять из сооружений через 1-4 месяца.
Компактные установки (КУ) производительностью 12 и 25 куб. м в сутки изготавливаются в заводских условиях в виде единого металлического блока. Все установки конструктивно выполнены в виде аэротенко-отстойников с принудительным возвратом активного ила.
Установки производительностью 12 куб. м в сутки оборудованы механической системой аэрации, остальные - эжекторной или пневматической.
Принцип работы установки (Рис. 6): сточные воды пропускают через решетку и без первичного отстаивания направляют в зону аэрации.
Компактные установки КУ-12 - КУ-200 прошли длительные испытания на многих очистных станциях, качество очищенного стока БПК и взвешенным веществам составляет 12-15 мг/л, концентрация аммонийного азота снижается на 40%. Эффективность очистки сточных вод на этих сооружениях повышается, если во вторичных отстойниках использовать тонкослойные модули.
ГПИ «Эстонпроект» была разработана установка БИО заводского изготовления. Она представляет собой аэротенк-отстойник, работающий в режиме продленной аэрации. Принцип работы БИО-25 аналогичен установкам КУ.
Институтом Уралагропромпроект в 1988 году был разработан проект очистных сооружений канализации. Биологическая очистка осуществляется в аэротенке-отстойнике, совмещенном с сооружением доочистки сточных вод (Рис. 9). Одна секция рассчитана на расход 50 куб. м в сутки. Максимальная пропускная способность очистной станции 500 куб. м в сутки. В зоне аэрации принят режим полного окисления органических загрязнений. Аэрация - пневматическая, среденепузырчатая продолжительность ее в среднем 18-20 ч. Сточная вода поступает в зону аэрации по трубопроводу диаметром 100 мм, туда же попадает воздух от воздуходувки и циркуляционный активный ил с помощью эрлифта. По истечении периода биологической очистки активный ил со сточной водой поступает во вторичный отстойник, где происходит осветление стоков. Активный ил, находящийся главным образом в нижней части отстойника, эрлифтом подсасывается и перекачивается в зону аэрации. Избыточный активный ил периодически удаляется из зоны аэрации через илопровод диаметром 100 мм на иловые площадки. Осветленная вода поступает по трубопроводу из отстойной зоны в сооружения доочистки стоков. В качестве сооружения доочистки могут быт использованы биореакторы с затопленной загрузкой, либо эту часть сооружений можно использовать как нитрификатор - денитрификатор. Выбор сооружения доочистки зависит от местных условий и требований качества очищенного стока. В каждом конкретном случае необходима частичная реконструкция сооружения доочистки.
Установки, работающие по методу аэробной стабилизации избыточного активного ила
Аэробная стабилизация - это процесс окисления органических веществ в присутствии микроорганизмов и кислорода атмосферного воздуха, вводимого принудительно. Этот процесс, с точки зрения кинетики распада органики, аналогичен процессу окисления органических загрязнений в аэротенке.
Аэробная стабилизация осадка приемлема до 1400 куб. м в сутки и более. Поскольку продолжительность процесса зависит от начальной концентрации органических загрязнений и объема образующегося осадка, то для малых расходов стабилизаторы получаются малыми и легко эксплуатируемыми.
В стабилизатора широко применяется как пневматическая (дырчатые трубы), так и механическая (турбинные или струйные аэраторы) аэрация. На процесс стабилизации осадков влияет наличие токсичных, агрессивных и трудно окисляемых веществ при концентрациях, превышающих допустимые.
Метод аэробной стабилизации избыточного ила по сравнению с методом анаэробной обработки осадка имеет такие существенные преимущества:
ѕ простота конструктивного исполнения сооружений;
ѕ отсутствие взрывоопасности;
ѕ хорошие санитарно-гигиенические показатели;
ѕ лучшие водоотдающие свойства;
ѕ легкость автоматизации процесса;
ѕ простота обслуживания сооружений.
Установки заводского изготовления разработаны для очистных станций, они представляют собой блок, объединяющий аэротенк, вторичный отстойник и стабилизатор избыточного активного ила. Система аэрации пневматическая.
На (рис. 10) показана схема компактной установки (КУ) с аэробной стабилизацией или пневматической аэрацией.
Сточная вода, пройдя решетку-дробилку, установленную вне блока, и песколовку, поступает в падающий лоток с четырьмя треугольными регулируемыми водосливами и подаются в аэротенк. Аэротенк - квадратный в плане резервуар, по дну которого положены четыре плети перфорированных труб диаметром 150 мм. Аэротенк рассчитан на продолжительность пребывания в нем сточных вод в течении 9 часов в часы максимального притока. С противоположной стороны аэротенка имеются затопленные окна для подачи сточных вод в отстойник.
Отстойник - вертикально типа. В нем устанавливается перегородка, направляющая поток жидкости в нижнюю зону. Сборные лотки осветленной воды выполняют с регулируемыми треугольными водосливами. Осветленная сточная жидкость поступает из вторичных отстойников на сооружения доочистки и обеззараживания. В отстойнике имеются шесть приемников, каждый из которых снабжен эрлифтом с трубопроводом возврата активного ила в аэрационную зону; три приемника имеют эрлифты с трубопроводами, направленными в стабилизатор. Вдоль отстойника расположен мостик для обслуживания, куда вынесены вентили управления эрлифтами. Продолжительность пребывания стоков в отстойнике 1,5 часа.
Поступление в стабилизатор свежих порций активного ила вызывает одновременное отделение такого же объема воды в отстойной зоне стабилизатора, которая отводится вместе с очищенными сточными водами из установки. Выгрузка из стабилизатора обработанного активного ила производится при достижении в нем предельной концентрации ила. Период выгрузки составляет 7-10 суток.
Очистка стоков на это установке осуществляется без первичного отстаивания, БПК очищенного стока составляет 15 мг/л.
На (рис. 11) показана схема установки с аэробной стабилизацией активного ила и механическими аэраторами. Эти сооружения выполняют в блочном варианте что позволяет набирать необходимую производительность (700-400 куб. м в сутки и более).
Установка работает следующим образом: сточная вода после решеток-дробилок и песколовки без отстаивания поступает в аэрационную часть сооружения. Аэрация смесь активного ила и сточных вод осуществляется механическим аэратором, установленным исключительно в центре аэрационной части. Обработанная жидкость в смеси с активным илом через затопленный водослив поступает в дегазационную камеру и в отстойник. Возврат активного ила в аэрационную зону осуществляется из бункерной части отстойника через циркуляционный трубопровод за счет гидростатического напора механического аэратора.
Одновременное поступление сточных вод и возвратного ила обеспечивает их хорошее смешение, а это в свою очередь приводит к эффективному изъятию загрязнений.
Осветленные сточные воды собираются в отводной лоток вторичного отстойника, устроенного на поверхности жидкости, и отводится на сооружения доочистки и обеззараживания.
Заключение
Здесь были рассмотрены сооружения и аппараты биологической очистки бытовых и промышленных близких по составу сточных вод малых объектов. Из чего можно сделать вывод, что на выбор метода очистки бытовых сточных вод малых объектов оказывают влияние следующие показатели:
ѕ средний суточный расход сточных вод;
ѕ степень неравномерности поступления стоков от малых объектов;
ѕ режим работы очистной станции (круглогодичный или сезонный);
ѕ характер системы канализования (локальная или групповая);
ѕ усреднение концентрации загрязняющих веществ и органических (по БПК) веществ, содержание фосфатов и азота аммонийных солей в поступающем на очистку стоке;
ѕ степень очистки сточных вод по вышеприведенным загрязнениям;
ѕ климатические, геологические топографические условия в районе расположения очистной станции.
При выборе типа очистных сооружений рекомендуется, в первую очередь, оценить возможность применения сооружений естественной биологической очистки как наиболее дешевых. Кроме того, очистные сооружения должны обеспечивать полное обезвреживание и обеззараживание жидкой и твердой фракций стоков для возможного их использования на приусадебных участках или сельхозугодьях.
Список литературы
1. Булатов М.А. Комплексная переработка многокомпонентных жидких систем. Теория и техника управления образованием осадков. М.: Мир, 2004. - 304 с., ил.
2. Булатов М.А., Бондарева Т.И., Кутепов А.М. Химические производства с замкнутым водооборотным циклом. Учебное пособие. М.: МИХМ - 1991. - 80 с.
3. Деменкова Т.П., Иванин В.П., Исаков В.Г., Эль А.М. Курьяновская станция аэрации. М.: ЗАО НВП ИНСОФТ, 1998.
4. Кожинов В.Ф. Очистка питьевой и технической воды. Примеры и расчеты. М.: Издательство литературы по строительству, 1971.
5. Н.Н. Павлова, В.Г. Иванов. Расчет сооружений для очистки сточных вод. Методические указания для курсового и дипломного проектирования. Ленинград, 1978.
6. В.С. Дикаревский, В.Г. Иванов, Н.Н. Павлова. Проектирование и расчет аэротенков. Методические указания для курсового и дипломного проектирования. Санкт-Петербург, 1991.
7. Материалы Интернет-сайтов предприятий, занимающихся очисткой сточных вод и строительством очистных сооружений
8. Http://www.rubricon.ru
Размещено на Allbest.ru
Подобные документы
Применение механической очистки бытовых и производственных сточных вод для удаления взвешенных веществ: решеток, песколовок и отстойников. Сооружения биологической очистки и расчет аэротенков, биофильтров, полей фильтрации и вторичных отстойников.
курсовая работа [1,5 M], добавлен 25.04.2012Эффективность процесса биохимической очистки сточных вод, концентрация активного ила. Использование технического кислорода для аэрации. Биоадсорбционный способ биологической очистки. Использование мутагенеза, штаммов и адаптированных микроорганизмов.
контрольная работа [650,6 K], добавлен 08.04.2015Основные характеристики сточных вод; сущность процесса их биологической очистки с применением методов реагентной обработки; процессы с участием активного ила; практическое применение низкоэнергетического, высокоинтенсивного и низкочастотного ультразвука.
курсовая работа [2,1 M], добавлен 23.02.2011Расчет необходимой степени очистки сточных вод по взвешенным веществам, биологического потребления кислорода и активного кислорода. Выбор технологической схемы очистки. Определение количества песка, задерживаемого в песколовке. Расчет системы аэрации.
курсовая работа [990,9 K], добавлен 24.06.2014Анализ полной биологической очистки хозяйственно–бытовых сточных вод поселка городского типа. Технологическая схема биологической очистки стоков и ее описание. Расчет аэротенка-вытеснителя с регенератором, технологической схемы очистки сточных вод.
дипломная работа [1,1 M], добавлен 19.12.2010Описание и принцип действия песколовок. Расчет первичных отстойников, предназначенных для предварительного осветления сточных вод. Азротенки-вытеснители для очистки сточных вод. Выбор типа вторичных отстойников, схема расчета глубины и диаметра.
курсовая работа [1,9 M], добавлен 04.12.2011Особенности забора воды и выбор технологической схемы водозаборных сооружений г. Мирного. Анализ совместной работы насосов и трубопроводов насосной станции первого подъёма. Анализ и оценка затрат на внедрение проекта биологической очистки сточных вод.
дипломная работа [286,0 K], добавлен 01.09.2010Биологические методы очистки и обеззараживания сточных вод. Очистные установки биологической очистки, их эффективность и концентрация очищенных вод по основным показателям. Международная стандартизация в области экологического менеджмента. Экоаудит.
контрольная работа [1,9 M], добавлен 18.09.2008Конструкция и функционирование микробных топливных элементов (МТЭ). Состав и свойства активного ила, перспективы его использования для биологической очистки сточных вод. Оценка возможности использования активного ила для генерирования электричества в МТЭ.
курсовая работа [4,8 M], добавлен 17.12.2015Техническая необходимость реконструкции сооружений биологической очистки - систем аэрации, путём замены фильтросных труб мембранными мелкопузырчатыми аэраторами. Повышение качества очищаемых стоков и снижение расхода воздуха на аэрацию активного ила.
дипломная работа [5,2 M], добавлен 19.12.2010