Эволюция жизни на Земле. Процессы, происходящие в природной среде

Понятие природной среды - мегаэкзосферы постоянных взаимодействий и взаимопроникновения элементов и процессов четырех ее составных экзосфер (приповерхностных оболочек): атмосферы, литосферы, гидросферы и биосферы. Проблема происхождения жизни на Земле.

Рубрика Экология и охрана природы
Вид курс лекций
Язык русский
Дата добавления 07.10.2011
Размер файла 83,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Во время изучения экосистем характеризуют: 1) их видовой или популяционный состав и количественное соотношение видовых популяций; 2) пространственное распределение отдельных элементов; 3) совокупность всех связей, в первую очередь - цепей питания.

Экосистемы -- открытые термодинамические функционально целостные системы, которые существуют за счет поступления из окружающей среды энергии и частично вещества и которые саморазвиваются и саморегулируются.

Одним из важных экологических понятий есть гомеостаз. Гомеостаз -- состояние внутреннего динамического равновесия естественной системы (экосистемы), которое поддерживается регулярным восстановлением ее основных элементов и вещественно-энергетического состава, а также постоянным функциональным саморегулированием компонентов. Гомеостаз есть характерным и необходимым для всех естественных систем -- от атома и организма к космическим образованиям.

Все популяции имеют свойства, благодаря которым они поддерживают свою численность на оптимальном уровне в условиях среды, которые постоянно изменяются. Эти свойства и являются гомеостазом.

Вид (биологический) -- совокупность организмов с родственными морфологическими признаками, которые могут скрещиваться друг с другом и имеют общий генофонд. Это основная структурная единица в системе живых организмов. Вид подчинен роду, но имеет подвиды и популяции. Виды имеют морфологические, физиолого-биохимические, эколого-географические (биогеографические) и генетические характеристики.

Популяция -- совокупность особей одного вида с одинаковым генофондом, которая живет на общей территории на протяжении многих поколений.

Естественная среда -- это все живое и безжизненное, что окружает организмы и с чем они взаимодействуют. Различают воздушную, водную и грунтовую среду, последним может быть и тело другого организма (для паразитирующих организмов).

Основные экологические понятия и термины

Экологические факторы -- все составные (элементы) естественной среды, которые влияют на существование и развитие организмов и на какие живые существа реагируют реакциями приспособления (за пределами способности приспособления настает смерть). Раньше выделяли три группы экологических факторов - абиотические (неорганические условия: химические и физические, такие, как состав воздуха, воды, грунта, температура, свет, влажность, радиация, давление и т.п.), биотические (формы взаимодействия между организм-хозяин-паразит) и антропогенные (формы деятельности человека). Сегодня различают десять групп экологических факторов (общее количество -- около шестидесяти), объединенных в специальную классификацию: за временем -- факторы времени (эволюционные, исторические, действующие), периодичности (периодический и непериодический), первичные и вторичные;

за происхождением (космические, абиотические, биотические, природно-антропогенные, техногенные, антропогенные); за средой возникновения (атмосферные, водные, геоморфологические, физиологические (генетические, экосистемные)); за характером (информационные, физические, химические, энергетические, биогенные, комплексные, климатические); за объектом влияния (индивидуальные, групповые, видовые, социальные); за степенью влияния (летальные, экстремальные, ограничивающие, возмущающие, мутагенные, тератогенные); по условиям действия (зависимые или независимые от плотности); за спектром влияния (выборочного или общего действия).

Одни и те же экологические факторы неодинаково влияют на организмы разных видов, которые живут вместе. Для одних они могут быть благоприятными, для других -- нет. Важным элементом есть реакция организмов на силу влияния экологического фактора, отрицательное действие которого может возникать в случае излишка или недостатка дозы. Поэтому есть понятие благоприятная доза или зона оптимума фактора, и зона пессимума (доза фактора, за которой организмы чувствуют себя угнетенно).

Диапазоны зон оптимума и пессимума есть критерием для определения экологической валентности -- способности живого организма приспосабливаться к изменениям условий среды. Количественно она выражается диапазоном среды, в границах которого вид нормально существует. Экологическая валентность разных видов может быть очень разной (северный олень выдерживает колебание температуры воздуха от -55 к +25-30°С, а тропические кораллы гибнут уже при изменении температуры на 5-6 °С). За экологической валентностью организмы разделяют на стенобионты - с маленькой приспособленностью к изменениям среды (орхидеи, форель, дальневосточный рябчик, глубоководные рыбы) и эврибионты -- с большой приспособленностью к изменениям окружающей среды (колорадский жук, мыши, крысы, волки, тараканы, камыш, пырей). В границах эврибионтов и стенобионтов в зависимости от конкретного фактора организмы разделяют на эвритермные и стенотермные (за реакцией на температуру), эвригалинные и стеногалинные (за реакцией на соленость водной среды), эврифоты и стенофоты (за реакцией на освещение).

Следует отметить, что в природе экологические факторы действуют комплексно. В особенности важно помнить это, оценивая влияние химических загрязнителей, если «суммарный» эффект (на отрицательное действие одной вещества накладывается отрицательное действие других, а к тому прибавляется влияние стрессовой ситуации, шумов, разных физических полей -- радиационные, тепловые, гравитационного или электромагнитного) очень изменяет условные значения ГДК, приведенные в справочниках. Это вопросы на сегодня еще мало изученные, но через актуальность и большое значение находится в состоянии активного исследования во всех развитых странах. Этот эффект называют синергичным.

Важным есть также понятие лимитирующие факторы, то есть такие, уровень (доза) которых приближается к границе выносливости организма, концентрация которого низшая или высшая оптимальной. Это понятие затронуто законами минимума Либиха (1840 г) и толерантности Шелфорда (1913 г.). Наиболее часто лимитирующими факторами есть температура, свет, биогенные вещества, течения и давление в среде, пожары и т.п.

Более всего распространенные организмы с широким диапазоном толерантности относительно всех экологических факторов. Высочайшая толерантность характерная для бактерий и сине-зеленых водорослей, которые выживают в широком диапазоне температур, радиации, солености, Рн.

Экологические исследования, связанные с определением влияния экологических факторов на существование и развитие отдельных видов организмов, взаимосвязей организма с окружающей среды, есть предметом науки аутэкологии. Раздел экологии, которая изучает условия формирования структуры и динамики популяций какого-либо вида, это -- демэкология. Раздел экологии, которая исследует ассоциации популяций разных видов растений, животных, микроорганизмов (биоценозов), пути их формирования и взаимодействия с окружающей средой, называется синэкологией. В границах синэкологии выделяют фитоценологию, или геоботанику (объект изучение - группировок растений), биоценологию (группировки животных).

Следующим важным понятием есть цепь питания (трофическая цепь) -- взаимоотношения между организмами во время переноса энергии пищи от ее источника (зеленого растения) через ряд организмов (путем поедания) на более высокие трофические уровни. На этом пути переноса энергии действуют автотрофы -- представители растительного мира и гетеротрофы разной степени.

Следует отметить, что в процессе любого очередного переноса энергии пищи с одного трофического уровня на другого (высший) большая часть (80-90 %) потенциальной энергии теряется, переходя в теплоту. Цепи питания разделяют на два типа: цепи пастбищ (от зеленого растения к травоядному животному и дальше -- к хищникам, которые поедают травоядных животных) и детритные (цепи разложения от детрита через микроорганизмы к детритофагам и их потребителям -- хищникам). Количество звеньев в трофической цепи обычно не превышает четырех-пяти. В последнее время считают, что лучшее употреблять термин «трофическая сетка», а не «цепь», так как в состав пищи каждого типа входит несколько видов, каждый из которых, в свою очередь, может быть Пищей для нескольких видов. Эффективность трофических цепей оценивается величиной биомассы экосистемы и ее биологической производительностью.

Биомасса -- это общая масса особей одного вида, групп видов или сообщества в целом (растения, животные, микроорганизмы), которое приходится на единицу поверхности (объема), места. проживания (в сыром или сухом виде). Выражают биомассу в килограммах на гектар, граммах на квадратный или кубический метр или в джоулях (единицах энергии). Наибольшую биомассу на суше среди гетеротрофов имеют беспозвоночные и грунтовые микроорганизмы (биомасса дождевых червей может достигать 1000--1200 кг/га), около 90% биомассы биосферы приходится на биомассу наземных растений, которые с помощью. фотосинтеза -- биосферного процесса -- усваивают свободную энергию и обеспечивают существование всего живого. Началом биологического кругооборота веществ есть именно фотосинтез. Но механизм фотосинтеза остается тайной для ученых и поныне. Есть несколько гипотез, которые объясняют механизм этого явления. Одна из последних - фотовольтаичная Г. Комисарова.

Наибольшей есть биомасса тропических лесов (до 1700 т/га), а наименьшей -- тропических и субтропических пустынь (около-2,5 т/га). Биомасса луговых степей составляет 250 ц/га (наземная), лесной полосы (Полесье) -до 3500--4000 (наземная) и 960 ц/га (подземная).

Наземные растения за массой почти в 100 раз превышают наземных животных, а масса травоядных в столько же раз большая за массу хищников.

Скорость продуцирования биомассы на данной площади за единицу времени называют биопродуктивностью. Она может быть первичной (производительность, продуцентов) и вторичной (биомасса, которую продуцируют консументы и организмы которые разлагаются).

Первичная производительность материков составляет около 53 млрд т органического вещества, Мирового океана -- до 30 млрд т. На суше основным источником первичной биомассы являются тропические леса, леса Полесья и Сибири, в океане -- зоны подъема обогащенных фосфором и азотом глубинных вод возле материков в тропиках, а также материковые мели холодных морей.

Подсчитано, что ныне ежегодной биомассы планеты, которую собирает человечество, уже недостаточно для питания населения Земли, а вся биосфера способная прокормить не большее 7-10 млрд человек. Поэтому в ближайшее время следует прекратить обеднение биосферы и повысить ее производительность минимум вдвое.

На протяжении последних десятилетий все более часто употребляется термин «агроценоз». Агроценозы -- молодые биоценозы, которые формируются в наше время, характеризуются видовой бедностью и однообразием и поддерживаются человеком благодаря разработанной ею системе агротехнических и агрохимических мероприятий. Это вторичные, видоизмененные человеком биогеоценозы (поля, огороды, сады, подводные плантации мидий и т.п.).

В агроценозах регуляторные связи очень ослаблены, что приводит к резкому увеличению численности вредителей и возбудителей разных болезней. Но агроценозы дают человечеству до 90 % продуктов питания.

Агроценозы - результат экстенсивного разорения земель, суперирригаций и неграмотных мелиораций, активного выпаса скота, вырубки лесов, суперхимизации земель, а также продолжительного выращивания одних и тех же культур на одних и тех же полях. Они существуют сравнительно с естественными очень непродолжительное время (зерновые агроценозы -- год, садовые -- 30-40 лет).

Агроценозы -- следствие антропогенного обмена веществ, которое есть экологически очень несовершенным, незамкнутым, так как на входе этого обмена являются естественные ресурсы, а на выходе -- агрохимические, промышленные и бытовые отходы, которые не возвращаются на производство, не депонируются и не разлагаются, как это обычно происходит в биосфере миллионы лет.

Важными есть также понятие биологический маленький и геологический большой кругооборот веществ, а также круговороты воды, азота, углекислого газа как главнейших, с экологической точки зрения, компонентов атмосферы, а также кругообороты серы, фосфора, углерода как важнейших жизненных веществ биосферы.

Кругооборот веществ -- это их многоразовое участие в естественных процессах, которые извечно происходят в геосферах. Большую роль в кругооборотах веществ, а точнее химических элементов, играют живые организмы, на что впервые обратил внимание французский ученый Ж. Ламарк. В. Вернадский исследовал этот вопрос и сформулировал основные законы биогеохимического кругооборота.

Маленький, или биологический (биотический), кругооборот имеет место в границах маленьких экосистем, большой (геологический) в границах планеты, между океанами и континентами. Во время кругооборота происходит кругообразная циркуляция веществ между воздухом, грунтом, водой, растениями, животными и микроорганизмами, минеральные вещества, нужные для жизни, поглощаются, трансформируются, поступают из окружающей среды в состав растительных организмов, а от них через цепи питания в виде органических веществ -- к животным, дальше через звено редуцентов - снова в окружающую среду (в грунты, воды, воздух) в виде неорганических веществ.

Благодаря наличию в атмосфере и гидросфере большого резервного фонда углерода, азота, кислорода, серы, фосфора круговороты могут относительно быстро саморегулироваться.

Во время биологического кругооборота происходят очень характерные изменения энергии в процессе перехода с одного трофического уровня на другого. В трофический кругооборот экосистемы в среднем поступает около 1 % солнечной энергии, на следующие высшие трофические равные из низших переходит лишь 10 % усвоенной организмами энергии, а 80-90 % рассеиваются в экосистеме в виде тепла. Растения используют солнечную энергию с эффективностью от 0,1 до 1 %. Растениеядные животные потребляют около 10 % энергии, аккумулированной растениями, хищники -- до 10 % накопленной травоядными животными (их биомассы), то есть всего около 0,001 % солнечной энергии, которая поступает на Землю. Этот факт разрешил построить экологические пирамиды биомасс, энергии, экосистем.

Гомеостаз -- состояние внутреннего динамического равновесия естественной системы, которая поддерживается путем регулярного восстановления основных ее структур, вещественно-энергетического состава т.е. постоянной функциональной саморегуляции ее компонентов. Это состояние характерный для всех природных систем -- от атома и организма к Галактике.

Иерархия экосистем - функциональное подчинение (принадлежность мелких и простых систем к больших и более сложных) экосистем разного уровня организации. Иерархический ряд имеет такой вид: биогеоценоз -- биогеоценотический комплекс - ландшафт (ландшафтная провинция) - естественный пояс - биогеографическая область (подсфера биосферы, или экосистема суши, океана, атмосферы, глубин Земли) - биосфера. Экосистемы каждого уровня имеют свой кругооборот веществ.

Катаценоз -- заключительная стадия вымирания биотической общности, деградация биотической среды.

Климакс -- завершающая фаза биогеоценотической сукцессии; завершающий этап развития биогеоценозов в данных условиях существования; завершающая довольно стойкая фаза (не изменяется на протяжении десятилетий) естественной биогеноценотической сукцессии, которая наибольшее отвечает экологическим условиям данной местности в определенный период геологического времени.

Негентропия -- величина, обратная энтропии; мера отдаленности от состояния энергетического равновесия, стремление к неравномерности. Негентропия увеличивается с возрастанием организованности системы. Организмы и экосистемы имеют значительную негентропию.

Принцип Реди -- живое происходит от живого, а между живым и безжизненным веществом существует непереходная граница.

Сукцессия - последовательное изменение биоценозов, которое возникает на одной и той же территории (биотопе) под влиянием естественных или антропогенных факторов.

Основные экологические законы

Рассмотрим главнейшие, экологические законы, они приведены в алфавитном порядке.

Закон биогенной миграции атомов (или закон Вернадского): миграция химических элементов на земной поверхности и в биосфере в целом осуществляется под превосходящим влиянием живого вещества, организмов. Так происходило и в геологическом прошлом, миллионы лет назад, так происходит и в современных условиях. Живое вещество или принимает участие в биохимических процессах непосредственно, или создает соответствующую, обогащенную кислородом, углекислым газом, водородом, азотом, фосфором и другими веществами, среду. Этот закон имеет важное практическое и теоретическое значение. Понимание всех химических процессов, которые происходят в геосферах, невозможно без учета действия биогенных факторов, в частности -- эволюционных. В наше время люди влияют на состояние биосферы, изменяя ее физический и химический состав, условия сбалансированной веками биогенной миграции атомов. В будущем это послужит причиной очень отрицательных изменений, которые приобретают способность саморозвиваться и становятся глобальными, неуправляемыми (опустынивание, деградация грунта, вымирание тысяч видов организмов). С помощью этого закона можно сознательно и активно предотвращать развитие таких отрицательных явлений, руководить биогеохимическими процессами, используя «мягкие» экологические методы.

Закон внутреннего динамического равновесия: вещество, энергия, информация и динамические качества отдельных естественных систем и их иерархии очень тесно связанные между собою, так что любое изменение одного из показателей неминуемое приводит к функционально-структурным изменениям других, но при этом сохраняются общие качества системы -- энергетические, информационные и динамические. Следствия действия этого закона обнаруживаются в том, что после любых изменений элементов естественной среды (вещественного состава, энергии, информации, скорости естественных процессов и т.п.) обязательно развиваются цепные реакции, которые стараются нейтрализовать эти изменения. Следует отметить, что незначительное изменение одного показателя может послужить причиной сильных отклонений в других и во всей экосистеме.

Изменения в больших экосистемах могут иметь необратимый характер, а любые локальные преобразования природы вызовут в биосфере планеты (то есть в глобальном масштабе) и в ее наибольших подразделах реакции ответа, которые предопределяют относительную неизменность эколого-экономического потенциала. Искусственное возрастание эколого-экономического потенциала ограниченное термодинамической стойкостью естественных систем.

Закон внутреннего динамического равновесия -- один из главнейших в природопользовании. Он помогает понять, что в случае незначительных вмешательств в естественную среду ее экосистемы способны саморегулироваться и восстанавливаться, но если эти вмешательства превышают определенные границы (которые человеку следует хорошо знать) и уже не могут «угаснуть» в цепи иерархии экосистем (охватывают целые речные системы, ландшафты), они приводят к значительным нарушениям энерго- и биобаланса на значительных территориях и в всей биосфере.

Закон генетического разнообразия: все живое генетическое разное и имеет тенденцию к увеличению биологической разнородности.

Закон имеет важное значение в природопользовании, в особенности в сфере биотехнологии (генная инженерия, биопрепараты), если не всегда можно предусмотреть результат нововведений во время выращивания новых микрокультур через возникающие мутации или распространение действия новых биопрепаратов не на те виды организмов, на которые они рассчитывались.

Закон исторической необратимости: развитие биосферы и человечества как целого не может происходить от более поздний фаз к начальным, общий процесс развития однонаправленный. Повторяются лишь отдельные элементы социальных отношений (рабство) или типы хозяйничанья.

Закон константности (сформулированный В. Вернадским): количество живого вещества биосферы (за определенное геологическое время) есть величина постоянная. Этот закон тесно связан с законом внутреннего динамического равновесия. По закону константности любое изменение количества живого вещества в одном из регионов биосферы неминуемое приводит к такой же по объему изменения вещества в другом регионе, только с обратным знаком.

Следствием этого закона есть правило обязательного заполнения экологических ниш.

Закон корреляции (сформулированный Ж. Кювье): в организме как целостной системе все его части отвечают одна другой как за строением, так и за функциями. Изменение одной части неминуемо вызовет изменения в других.

Закон максимизации энергии (сформулированный Г. и Ю. Одумами и дополненный М. Рэймерсом): в конкуренции с другими системами сохраняется та из них, которая наибольшее оказывает содействие поступлению энергии и информации и использует максимальную их количество наиболее эффективно. Для этого такая система, большей частью, образовывает накопители (хранилища) высококачественной энергии, часть которой тратит на обеспечение поступления новой энергии, обеспечивает нормальный кругооборот веществ и создает механизмы регулирования, поддержки, стойкости системы, ее способности приспосабливаться к изменениям, налаживает обмен с другими системами. Максимизация -- это повышение шансов на выживание.

Закон максимума биогенной энергии (закон Вернадского--Бауэра): любая биологическая и «бионесовершенная» система с биотой, которая находится в состоянии «стойкого неравновесия» (динамично подвижного равновесия с окружающей средой), увеличивает, развиваясь, свое влияние на среду.

В процессе эволюции видов, твердит Вернадский, выживают те, которые увеличивают биогенную геохимическую энергию. По мнению Бауера, живые системы никогда не находятся в состоянии равновесия и выполняют за счет своей свободной энергии полезную работу против равновесия, которого требуют законы физики и химии за существующих внешних условий.

Вместе с другими фундаментальными положениями закон максимума биогенной энергии служит основой разработки стратегии природопользования.

Закон минимума (сформулированный Ю. Либихом): стойкость организма определяется самым слабым звеном в цепи ее экологических потребностей. Если количество и качество экологических факторов близкие к необходимому организму минимума, он выживает, если меньшие за этот минимум, организм гибнет, экосистема разрушается.

Поэтому во время прогнозирования экологических условий или выполнение экспертиз очень важно определить слабое звено в жизни организмов.

Основные экологические законы

Закон ограниченности естественных ресурсов: все естественные ресурсы в условиях Земли исчерпаемые. Планета есть естественно ограниченным телом, и на ней не могут существовать бесконечные составные части.

Закон однонаправленности потока энергии: энергия, которую получает экосистема и которая усваивается продуцентами, рассеивается или вместе с их биомассой необратимо передается консументам первого, второго, третьего и других порядков, а потом редуцентам, что сопровождается потерей определенного количества энергии на каждом трофическом уровне в результате процессов, которые сопровождают дыхание. Поскольку в обратный поток (от редуцентов к продуцентам) попадает очень мало начальной энергии (не большее 0,25%), термин «кругооборот энергии» есть довольно условным

Закон оптимальности: никакая система не может суживаться или расширяться к бесконечности. Никакой целостный организм не может превысить определенные критические размеры, которые обеспечивают поддержку его энергетики. Эти размеры зависят от условий питания и факторов существования.

В природопользовании закон оптимальности помогает найти оптимальные с точки зрения производительности размеры для участков полей, выращиваемых животных, растений. Игнорирование закона -- создание огромных площадей монокультур, выравнивание ландшафта массовыми застройками и т.п. -- привело к неприродной однообразности на больших территориях и вызвало нарушение в функционировании экосистем, экологические кризы.

Закон пирамиды энергий (сформулированный Р. Линдеманом): с одного трофического уровня экологической пирамиды на другого переходит в среднем не более 10 % энергии.

По этому закону можно выполнять расчеты земельных площадей, лесных угодий с целью обеспечения население продовольствием и другими ресурсами.

Закон равнозначности условий жизни: все естественные условия среды, необходимые для жизни, играют равнозначные роли. Из него вытекает другой закон - совокупного действия экологических факторов. Этот закон часто игнорируется, хотя имеет большое значение.

Закон развития окружающей среды: любая естественная система развивается лишь за счет использования материально-энергетических и информационных возможностей окружающей среды. Абсолютно изолированное саморазвитие невозможно -- это вывод из законов термодинамики.

Очень важными являются следствия закона.

1. Абсолютно безотходное производство невозможное.

2. Любая более высокоорганизованная биотическая система в своем развитии есть потенциальной угрозой для менее организованных систем. Поэтому в биосфере Земли невозможно повторное зарождение жизни -- оно будет уничтожено уже существующими организмами

3. Биосфера Земли, как система, развивается за счет внутренних и космических ресурсов.

Закон уменьшения энергоотдачи в природопользовании: в процессе получения из естественных систем полезной продукции с течением времени (в историческом аспекте) на ее изготовление в среднем расходуется все больше энергии (возрастают энергетические затраты на одного человека). Так, ныне затраты энергии на одного человека за сутки почти в 60 раз большие, чем во времена наших далеких предков (несколько тысяч лет тому) . Увеличение энергетических затрат не может происходить бесконечно, его можно и следует рассчитывать, планируя свои отношения с природой с целью их гармонизации.

Закон совокупного действия естественных факторов (закон Митчерлиха--Тинемана--Бауле): объем урожая зависит не от отдельного, пусть даже лимитирующего фактора, а от всей совокупности экологических факторов одновременно. Частицу каждого фактора в совокупном действии ныне можно подсчитать. Закон имеет силу при определенных условиях - если влияние монотонное и максимально обнаруживается каждый фактор при неизменности других в той совокупности, которая рассматривается.

Закон толерантности (закон Шелфорда): лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору. Соответственно закону любой излишек вещества или энергии в экосистеме становится его врагом, загрязнителем.

Закон грунтоистощения (уменьшение плодородия): постепенное снижение естественного плодородия почв происходит из-за продолжительного их использования и нарушения естественных процессов почвообразования, а также вследствие продолжительного выращивания монокультур (в результате накопления токсичных веществ, которые выделяются растениями, остатков пестицидов и минеральных удобрений).

Закон физико-химического единства живого вещества (сформулированный В. Вернадским): все живое вещество Земли имеет единую физико-химическую природу. Из этого явствует, что вредное для одной части живого вещества вредит и другой его части, только, конечно, разной мерой. Разность состоит лишь в стойкости видов к действию того ли другого агента. Кроме того, через наличие в любой популяции более или менее стойких к физико-химическому влиянию видов скорость отбора за выносливостью популяций к вредному агенту прямо пропорциональная скорости размножения организмов и дежурство поколений. Через это продолжительное употребление пестицидов экологически недопустимое, так как вредители, которые размножаются значительно более быстро, более быстро приспосабливаются и выживают, а объемы химических загрязнений приходится все более увеличивать.

Закон экологической корреляции: в экосистеме, как и в любой другой системе, все виды живого вещества и абиотические экологические компоненты функционально отвечают один другому. Выпадание одной части системы (вида) неминуемо приводит к выключению связанных с ею других частей экосистемы и функциональных изменений.

Научной общественности широко известны также четыре закона экологии американского ученого Б. Коммонера:

1)все связанное со всем; 

2)все должно куда-то деваться;

3)природа «знает» лучше; 

4) ничто не проходится напрасно (за все надо платить).

Как отмечает М. Реймерс, первый закон Б. Коммонера близкий по смыслу к закону внутреннего динамического равновесия, второй -- к этому же закону и закону развития естественной системы за счет окружающей среды, третий -- предостерегает нас от самоуверенности, четвертый -- снова затрагивает проблемы, которые обобщают закон внутреннего динамического равновесия, законы константности и развития естественной системы. По четвертому закону Б. Коммонера мы должны возвращать природе то, что берем у нее, иначе катастрофа с течением времени неминуемая.

Следует вспомнить также важные экологические законы, сформулированные в работах известного американского эколога Д. Чираса в 1991--1993 гг. Он подчеркивает, что Природа существует вечно (с точки зрения человека) и сопротивляется деградации благодаря действию четырех экологических законов: 1) рецикличности или повторного многоразового использования важнейших веществ; 2) постоянного восстановления ресурсов; 3) консервативного потребления (если живые существа потребляют лишь то (и в таком количестве), что им необходимо, не больше и не меньше); 4) популяционного контроля (природа не допускает «взрывного» роста популяций, регулируя количественный состав того ли другого вида путем создания соответствующих условий для его существования и размножения). Важнейшей задачей экологии Д. Чирас считает изучение структуры и функций экосистем, их уравновешенности, или неуравновешенности, то есть причин стабильности и розбалансирования экосистем.

Таким образом, круг задач современной экологии очень широкий и охватывает практически все вопросы, которые затрагивают взаимоотношения человеческого общества и естественной среды, а также проблемы гармонизации этих отношений. Из сугубо биологической науки, которой была экология всего каких-то 30 - 40 лет тому, сегодня она стала многогранной комплексной наукой, главной целью которой есть разработка научных основ спасения человечества и среды его существование -- биосферы планеты, рационального природопользования и охраны природы. Ныне экологическим воспитанием охватываются все слои населения на планете. Познание законов гармонизации, красоты и рациональности природы поможет человечеству найти верные пути выхода из экологического кризиса. Изменяя и в дальнейшем естественные условия (общество не может жить иначе), люди будут вынуждены делать это обдуманно, взвешенно, предусматривая далекую перспективу и опираясь на знание основных экологических законов.

Размещено на Allbest.ru


Подобные документы

  • Понятие "природная среда", ее содержание. Характеристика основных факторов природной среды: атмосферы, гидросферы и литосферы. Классификация природных ресурсов, их значение с точки зрения исчерпаемости и возобновимости. Понятие ресурсообеспеченности.

    реферат [40,5 K], добавлен 28.07.2010

  • Понятие и структура биосферы как живой оболочки планеты Земля. Основные характеристики атмосферы, гидросферы, литосферы, мантии и ядра Земли. Химический состав, масса и энергия живого вещества. Процессы и явления, происходящие в живой и неживой природе.

    реферат [1,9 M], добавлен 07.11.2013

  • Сущность понятия "самоорганизация биосферы". Экологические функции гидросферы в формировании климата и развитии жизни на Земле. Особенности биогеохимического круговорота воды в природе. Последствия загрязнения гидросферы. Способы самоочищения водоемов.

    реферат [17,5 K], добавлен 24.12.2013

  • Классификация видов вмешательства человека в естественные процессы биосферы. Понятие и специфика биологического, механического и химического загрязнения природной среды. Общие виды юридической ответственности за совершение экологических правонарушений.

    контрольная работа [20,1 K], добавлен 10.10.2014

  • Современное состояние природной среды. Атмосфера – внешняя оболочка биосферы, характеристика источников ее загрязнений. Основные пути охраны природной среды, атмосферы, почв и природных вод от загрязнений. Радиация и экологические проблемы в биосфере.

    контрольная работа [34,1 K], добавлен 21.01.2010

  • Нарушение окружающей природной среды в результате деятельности человека. Изменение климата, загрязнение атмосферы и гидросферы, деградация земельных ресурсов, парниковый эффект. Пути предотвращения глобальной климатической и экологической катастрофы.

    реферат [356,6 K], добавлен 08.12.2009

  • Антропогенное загрязнение атмосферы, водных ресурсов и литосферы, динамика выбросов. Проблемы, стоящие перед г. Севастополем в области охраны окружающей природной среды. 68-я позиция Украины в рейтинге по темпам экономического развития и качеству жизни.

    реферат [28,7 K], добавлен 10.05.2009

  • Биография Земли и возникновение среды жизни. Краткая история развития атмосферы, гидросферы и биосферы. Основные статьи Закона Российской Федерации об охране окружающей среды, связанные с сельхозпроизводством и строительством. Законы организации экосистем

    реферат [2,3 M], добавлен 16.05.2011

  • Современное состояние природной среды, учение Вернадского. Атмосфера как внешняя оболочка биосферы. Сущность понятия "мониторинг". Кислотность почвы, методы определения, её зависимость от рН. Методика качественного определения химических элементов.

    презентация [671,7 K], добавлен 25.10.2013

  • Развитие теорий возникновения живых организмов на Земле. Суть панспермии, самопроизвольного неоднократного зарождения, гипотезы стационарного состояния, эволюции и креационизма. Противоречия между теологическим и "научным" объяснением сотворения жизни.

    реферат [15,8 K], добавлен 13.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.