Концепции экосистем

Определение термина, концепций, классификации, типов экосистем – места функционирования четко определенных биотических структур и круговорота веществ между живой и неживой частями. Перенос энергии и вещества в экосистемах. Первичные и вторичные сукцессии.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 07.10.2011
Размер файла 349,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Контрольная работа

по дисциплине: «экология»

по теме: Концепции экосистем

Работу выполнила

Студентка группы08ДЗАЭ

Михайлова Екатерина Ивановна

Калининград 2010г.

Оглавление

1. Концепция экосистемы

2. Определение термина «экосистема»

3. Классификация и типы экосистемы

4. Состав и структура экосистем

5. Перенос энергии и вещества в экосистемах

6. Биохимические циклы

7. Круговорот веществ

8. Динамика экосистемы

9. Искусственные экосистемы

Список используемой литературы

1. Концепция экосистемы

«Любая единица (биосистема), включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот веществ между живой и неживой частями, представляют собой экологическую систему, или экосистему» (Ю, Одум, 1986).

Главным предметом исследования при экосистемном подходе в экологии становятся процессы трансформации вещества и энергии между биотой и физической средой, т. е. возникающий биогеохимический круговорот веществ в экосистеме в целом (рис. 5.1). Это позволяет дать обобщенную интегрированную оценку результатов жизнедеятельности сразу многих отдельных организмов многих видов, так как по биогеохимическим функциям, т. е. по характеру осуществляемых в природе процессов превращения вещества и энергии, организмы более однообразны, чем по своим морфологическим признакам и строению. Например, все высшие растения потребляют одни и те же вещества, все они используют свет и благодаря фотосинтезу образуют близкие по составу органические вещества и выделяют кислород.

В настоящее время концепция экосистемы -- одно из наиболее важных обобщений биологии играет весьма важную роль в экологии. Во многом этому способствовали два обстоятельства, на которые указывает Г. А. Новиков (1979): во-первых, экология как научная дисциплина созрела для такого рода обобщений и они стали жизненно необходимы, а во-вторых, сейчас как никогда остро встали вопросы охраны биосферы и теоретического обоснования природоохранных мероприятий, которые опираются прежде всего на концепцию биотических сообществ экосистем. Кроме того, как считает Г. А. Новиков, распространению идеи экосистемы способствовала гибкость самого понятия, так как к экосистемам можно относить биотические сообщества любого масштаба с их средой обитания от пруда до Мирового океана, и от пня в лесу до обширного лесного массива, например тайги. В связи с этим выделяют: микроэкосистемы (подушка лишайника и т. п.); мезоэкосистемы (пруд, озеро, степь и др.); макроэкосистемы (континент, океан) и, наконец, глобальную экосистему (биосфера Земли), или экосферу -- интеграцию всех экосистем мира.

2. Определение термина «экосистема»

Биоценоз и его биотоп составляют два неразрывных элемента, действующих друг на друга и образующих более или менее устойчивую систему, называемую экосистемой (Тэнсли, 1935). Иными словами, экосистема состоит из двух компонентов. Один из них - органический, это населяющий ее биоценоз, другой неорганический, т.е. биотоп, дающий пристанище этому биоценозу.

С точки зрения рельефа местности, а также с климатической, ботанической и зоологической, почвенной, гидрологической и геохимической, экосистема в известной степени однородна. Интенсивность обмена вещества и энергии между компонентами экосистемы составляет один из ее отличительных признаков. В термодинамическом отношении экосистема относится к открытым системам, относительно стабильным во времени. Элементами, поступающими в экосистему, являются солнечная энергия, минеральные вещества почвы и газы атмосферы, вода; выходящими элементами, покидающими экосистему, являются тепло, кислород, углекислый газ и другие газы, перегной и биогенные вещества, переносимые водой, и т.д.

Большинство экосистем сложилось в ходе длительной эволюции и является результатом приспособления видов к окружающей среде. Экосистемы обладают саморегуляцией и способны противостоять, по крайней мере в известных пределах, изменениям окружающих условий и резким колебаниям плотности популяций.

Идеальным примером экосистемы может служить озеро. Это четко ограниченное сообщество, различные компоненты которого нераздельно связаны друг с другом и являются объектами многочисленных взаимодействий.

3. Классификация и типы экосистем

Термин «экосистема» применим к взаимодействию биоценозов и биотопов различного размера. При этом различают:

микроэкосистемы, подобные стволу погибшего дерева;

мезоэкосистемы, например лес или пруд;

макроэкосистемы, такие, как океан;

мегаэкосистемы, биосфера, объединяющая все существующие экосистемы.

Экосистемы классифицируются и по другим признакам. Например, выделяют естественные и искусственные экосистемы. Широко используется классификация по биомам. Этот термин обозначает крупную региональную экосистему, характеризующуюся каким-либо основным типом растительности или другой характерной особенностью ландшафта. Различают наземные биомы (тундра, бореальные хвойные леса, листопадный лес умеренной зоны, степь, саванна, пустыня, вечнозеленый тропический дождевой лес), пресноводные экосистемы (стоячие, текучие, заболоченные), морские экосистемы (пелагические, прибрежные).

Переход от одной экосистемы к другой может быть более или менее резким. Однако во всех случаях существует переходная зона, которая может захватывать территорию от нескольких метров (береговая зона озера) до десятков километров (переходная зона между лесами и степями). Переходную зону называют экотоном. К нему относятся, например, болотистые пространства, располагающиеся между прудом и окружающими его наземными формациями; заросли кустарника, отделяющие лес от поля. Фауна экотонов и в видовом отношении, и численно богаче соседних биоценозов, так как здесь происходит смешение видов. В этом состоит проявление так называемого краевого эффекта.

4. Состав и структура экосистем

Сточки зрения трофической структуры (от греч. trophe - питание) экосистему можно разделить на два яруса: 1) верхний автотрофный (самостоятельно питающийся) ярус, или «зеленый пояс», включающий растения, содержащие хлорофилл, где преобладают фиксация энергии света, использование простых неорганических соединений и накопление сложных органических соединений и 2) нижний гетеротрофный (питаемый другими) ярус, или «коричневый пояс» почв и осадков, разлагающихся веществ, корней и т.д., в котором преобладают использование, трансформация и разложение сложных соединений. С биологической точки зрения в составе экосистемы удобно выделять следующие компоненты: 1) неорганические вещества (C, N, CO2, H2O и др.), включающиеся в круговороты; 2) органические соединения (белки, углеводы, липиды, гумусовые вещества и т.д.), связывающие биотическую и абиотическую части; 3) воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы; 4) продуцентов, автотрофных организмов, в основном зеленые растения, которые могут производить пищу из простых неорганических веществ; 5) консументов, в основном животных, питающихся растениями и другими животными; 6) деструкторов, в основном бактерий и грибов, получающих энергию путем разложения мертвых тканей. В результате деятельности деструкторов высвобождаются неорганические элементы питания, пригодные для продуцентов.

5. Перенос энергии и вещества в экосистемах

Энергию определяют, как способность производить работу. Свойства энергии описываются следующими законами. Первый закон термодинамики, или закон сохранения энергии, гласит, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново. Второй закон термодинамики, или закон энтропии, формулируется следующим образом: процессы, связанные с превращением энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную. К примеру, тепло горячего предмета самопроизвольно стремится рассеяться в более холодной среде. Энтропия - мера количества связанной энергии, которая становится недоступной для использования. Этот термин также используется как мера изменения упорядоченности.

Важнейшая термодинамическая характеристика организмов, экосистем и биосферы в целом - способность создавать и поддерживать высокую степень внутренней упорядоченности, т.е. состояние с низкой энтропией. Это состояние достигается постоянным рассеиванием легко используемой энергии (свет, пища) и превращением ее в энергию, используемую с трудом (тепловую).

Основным источником энергии, поступающим извне, является лучистая энергия, которая усваивается организмами-продуцентами в процессе фотосинтеза и хемосинтеза, накапливаясь в форме органических веществ. Помимо этого энергия поступает в экосистему и из почвы в виде питательных веществ, а также преобразуется продуцентами. На следующем этапе преобразования энергии ранее созданные питательные вещества используются консументами. И последний этап - это высвобождение энергии в результате функционирования деструкторов. Высвобожденная энергия содержится в неорганических веществах в почве, а также в виде тепловой и других типов энергии в окружающей среде. Таким образом, осуществляется обмен энергии в экосистеме. Так как экосистемы относятся к открытому типу систем, то неизбежны утечки энергии, а также поступление энергии из других источников.

Энергия необходима:

на поддержание жизни, т.е. основной обмен;

на перемещение в пространстве;

на обеспечение роста;

на формирование элементов, необходимых для размножения, и образование углеводных и жировых запасов.

Пищевой цепью называют ряд живых организмов, в котором одни организмы поедают предшественников по цепи и в свою очередь оказываются съеденными теми, кто следует за ними.

Существуют два типа пищевых цепей: одни начинаются живыми растениями автотрофами, которыми питаются травоядные животные; другие начинаются неживыми и более или менее разложившимися веществами растительного или животного происхождения, потребляемые детритоядными формами.

1. В случае, если цепь начинается с живых растений, можно выделить следующие категории: продуценты (растения), первичные консументы (травоядные животные), вторичные консументы, третичные консументы и деструкторы.

Среди цепей, начинающихся с животных, можно выделить цепи хищников и цепи паразитов.

Трава > кролик > лисица

Трава > травоядное млекопитающее > блохи > жгутиковые одноклеточные

2. В целом ряде случаев цепи начинаются с неживых органических веществ, когда консументами оказываются детритоядные организмы. Это могут быть мелкие животные, преимущественно многочисленные беспозвоночные (черви), которые живут в почве, питаясь опавшей листвой, или же бактерии и грибы, разлагающие органические вещества.

Организмы считаются принадлежащими к одному трофическому уровню в том случае, когда в цепи питания они отделены от растительности равным числом звеньев. Зеленые растения составляют первый трофический уровень.

Трофическую структуру экосистемы можно описать, пользуясь данными по численности особей, биомассы или энергии. Эту структуру можно изобразить также графически с помощью экологических пирамид.

Если представить пищевую цепь хищников в виде расположенных один на другом прямоугольников равной высоты, длина которых пропорциональна числу особей в каждом трофическом уровне, то получается фигура, называемая пирамидой чисел. Она тем выше, чем большее число трофических уровней включает данная цепь. Поскольку число особей от первого к последнему трофическому уровню обычно уменьшается, пирамида имеет вид треугольника, обращенного вершиной вверх.

В пирамиде биомасс для каждого трофического уровня указывают биомассу соответствующих организмов.

Пирамиды энергии являются наилучшим способом графического изображения структуры экосистемы. Каждый трофический уровень изображается прямоугольником, длина которого пропорциональна количеству энергии, накопленной в этом уровне единицей площади (или объема) в единицу времени.

Трофические сети отображают совокупность всех трофических связей, которые имеются в той или иной экосистеме.

6. Биогеохимические циклы

Важную роль при переносе материи в экосистемах играет существование постоянных циклов элементов. Последние существенно отличаются от преобразованной энергии, которая в конце концов деградирует в виде тепла и никогда не используется снова.

Для синтеза протоплазмы живым организмам необходимо примерно 40 элементов, из которых самыми важными являются углерод, азот, водород, кислород, фосфор и сера.

Круговорот углерода. Единственным источником углерода для растений служит углекислота, входящая в состав атмосферы или находящаяся в растворенном состоянии в воде. В процессе фотосинтеза углекислота превращается в органические вещества (углеводы, белковые вещества, липиды), служащие пищей животным. Дыхание, брожение и сгорание топлива возвращает углекислоту в атмосферу.

Круговорот азота. Источником азота служит азот атмосферы и азот, содержащийся в трупах. Свободный азот могут использовать лишь немногие организмы - фиксаторы азота - бактерии, живущие в клубеньках бобовых, и некоторые сине-зеленые водоросли. Белковые вещества трупов благодаря деятельности бактерий превращаются в аммонийные соединения, а также нитриты и нитраты. Эти вещества служат источником азота для зеленых растений.

Горные породы, которые постепенно отдают свои фосфаты наземным экосистемам. Фосфаты потребляются растениями и используются ими для синтеза органических соединений. При разложении трупов животных бактериями фосфаты возвращаются в почву и затем снова используются растениями.

Круговорот воды. В средних широтах растения способны задерживать до 25% воды, выпадающей в виде осадков. Остальная вода впитывается в почву или стекает по ее поверхности. Благодаря испарению часть ее возвращается в атмосферу.

7. Круговорот веществ

Типичным примером экосистемы может быть подушка лишайника на стволе дерева. Выше мы уже приводили пример классического мутуализма, к которому пришли грибы и водоросли через паразитизм последних. Здесь продуценты -- симбиотические водоросли, консументы -- различные мелкие членистоногие и др.

Рис. 5.1.Схема переноса вещества (сплошная линия) и энергии (пунктирная линия) в природных экосистемах

Гифы грибов и большинство микроскопических животных выступают так же и в роли редуцентов, живущих за счет тканей отмерших водорослей.

Замкнутость круговорота в такой системе невелика: часть продуктов распада выносится за пределы лишайника дождевыми водами, часть животных мигрирует в другие местообитания.

Границы этой экосистемы очерчены границами лишайника, но ее существование будет достаточно стабильным, если вынос будет компенсироваться поступлением вещества. Но есть экосистемы, в которых внутренний круговорот вещества вообще малоэффективен (реки, склоны гор и др.). Здесь стабильность поддерживается только перетоком вещества извне. Многие системы достаточно автономны (пруды, озера, океаны, леса и др.). Но даже биосфера Земли часть веществ отдает в Космос и получает вещества из Космоса. Таким образом, природные экосистемы -- это открытые системы: они должны получать и отдавать вещества и энергию.

Запасы веществ, усвояемые организмами, и прежде всего продуцентами, в природе небезграничны. Если бы эти вещества не использовались многократно, а точнее, не были бы вовлечены в этот вечный круговорот, то жизнь на Земле была бы вообще невозможна. Такой «бесконечный» круговорот (рис. 5.1) биогенных компонентов возможен лишь при наличии функционально различных групп организмов, способных осуществлять и поддерживать поток веществ, извлекаемых ими из окружающей среды.

Для поддержания круговорота веществ в экосистеме необходимы неорганические молекулы в усвояемой для продуцентов форме, консументы, питающиеся продуцентами и другими консументами, а также редуценты, восстанавливающие органические вещества снова до неорганических молекул для питания продуцентов (рис. 5.2).

С точки зрения пищевых взаимодействий организмов, трофическая структура экосистемы делится на два яруса: 1) верхний -- автотрофный ярус, или «зеленый пояс», включающий неорганических простых соединений,

Рис. 5.2. Пищевая цепь в озере в сильно упрощенном виде: сплошные линии со стрелками направлены от пищи к консументам; пунктирные линии со стрелками отражают деятельность деструкторов (по П. Арессу)

2) нижний -- гетеротрофный ярус, или «коричневый пояс» почв и осадков, в котором преобладает разложение отмерших органических веществ снова до простых минеральных,фотосинтезирующие организмы, создающие сложные органические молекулы из образований. Однако, чтобы разобраться в сложных биологических взаимодействиях в экосистеме, следует выделить ряд компонентов, об экологической роли которых мы уже говорили выше: 1) неорганические вещества (С, N, С02, Н20, Р, О и др.), участвующие в круговоротах; 2) органические соединения (белки, углеводы, липиды, гумусовые вещества и др.), связывающие биотическую и абиотическую части; 3) воздушную, водную и субстратную среду, включающую абиотические факторы; 4) продуцентов авотрофные организмы, в основном зеленые растения, способные производить пищу из простых неорганических веществ; 5) консументов, или фаготрофов (пожирателей), -- гетеротрофы, в основном животные, питающиеся другими организмами или частицами органического вещества; 6) редуцентов, или сапротрофов (питающихся гнилью), -- гетеротрофные организмы, в основном бактерии и грибы, получающие энергию путем разложения отмершей или поглощения растворенной органики. Сапротрофы высвобождают неорганические элементы питания для продуцентов и, кроме того, являются пищей для консументов.

8. Динамика экосистем

Одно из основных свойств экосистем - это их динамизм. Наблюдения за заброшенным полем показывают, что его последовательно завоевывают сначала многолетние травы, затем кустарники и, наконец, древесная растительность. Понятие сукцессии известно давно, но более детальное изучение этого явления и большая часть терминов, используемых при описании биоценозов, связаны с именем Клементса.

Основными факторами, влияющими на развитие экосистем, являются: климатические (изменения, произошедшие в четвертичный период во время межледниковых и ледниковых периодов), геологические (эрозия, горообразование, вулканизм), эдафические (развитие почв), биологические (межвидовая конкуренция), деятельность человека (пожары, вырубки, интродукция новых видов животных и растений).

Сукцессии бывают первичными и вторичными.

Первичными сукцессиями называют освоение живыми организмами тех станций, которые никогда прежде не были заселены, т.е., иными словами, пустых мест. Впервые поселяющиеся в них организмы именуют пионерами. Конечным этапом эволюции экосистемы является стабильный биоценоз, находящийся в равновесии со средой. Этот этап называется климаксовым.

Вторичные сукцессии появляются в станциях, которые уже были заселены, но лишились своих обитателей в результате климатических (оледенения, пожары) или геологических (эрозия) явлений, а также из-за вторжения человека (распашка полей).

Говоря об устойчивости экосистем, или их стабильности, мы должны отметить, что существуют два типа стабильности: резистентная устойчивость (способность оставаться в устойчивом состоянии под нагрузкой) и упругая устойчивость (способность быстро восстанавливаться). Для экосистем эти два типа устойчивости не могут одновременно полноценно развиваться. Так, калифорнийский лес из секвойи довольно устойчив к пожарам (для этих деревьев характерна толстая кора и другие адаптации), но если он все же сгорит, то восстанавливается очень медленно или не восстанавливается вовсе. Напротив, калифорнийские заросли чапараля очень легко выгорают (низкая резистентная устойчивость), но быстро восстанавливаются (отличная упругая устойчивость).

Устойчивость экосистем обусловлена эффективностью действия внутренних механизмов экосистемы. Выполнение функций жизнеобеспечения экосистеме не одним, а несколькими видами или компонентами повышает стабильность экосистемы.

8. Искусственные экосистемы

экосистема биотический сукцессия

Примерами таких экосистем могут быть космический корабль, город как гетеротрофная экосистема, т.е. питающаяся другими, агроэкосистемы (сельскохозяйственные экосистемы).

Космический корабль. Для путешествий в несколько дней или недель не требуется полностью автономная экосистема, так как необходимый запас кислорода и пищи берется с собой, а углекислота и другие отходы могут быть на короткое время изолированы или обезврежены. Для более длительных путешествий потребуется закрытый или обладающий более полными системами регенерации космический корабль, на котором должны иметься все жизненно важные абиотические вещества и средства для их многократного использования. В нем должны осуществляться сбалансированные процессы продуцирования, потребления и разложения организмами или их искусственными заместителями. По сути дела космический корабль представляет собой микросистему, включающую человека.

Для настоящих регенеративных экосистем, которые могли бы долгое время находиться в космосе, не получая ничего с Земли, потребовались бы крупные организмы, и в частности такие, которые могли бы идти в пищу человеку, значительное видовое разнообразие, и прежде всего - большие емкости, заполненные воздухом и водой. Основная задача - решение проблемы накопителей отходов, регуляторов и регенераторов. Очевидно, что эти функции должны взять на себя механические устройства.Пока мы не имеет представления о том, как сконструировать мезокосмос с включением в него человека.

Город отличается от естественной экосистемы: 1) гораздо более интенсивным метаболизмом на единицу площади, для чего требуется большой приток энергии извне (горючие ископаемые); 2) большими потребностями в поступлении вещества извне; 3) более мощным и ядовитым потоком отходов. Город практически не производит пищи или других органических соединений, не очищает воздух и почти не возвращает воду и неорганические вещества в круговорот.

Агросистемы отличаются тем, что: 1) получают вспомогательную энергию в виде мышечных усилий человека и животных, удобрений, пестицидов, орошающей воды, работы машин и т.д.; 2) разнообразие организмов резко снижено; 3) доминирующие виды подвергаются искусственному отбору. Агросистемы организованы так, чтобы направлять как можно больше энергии на производство продуктов питания.

Список используемой литературы

1. Стадницкий Г.В./ Г.В. Стадницкий, А.И. Родионов. Экология.-Спб Химия,1997г.

Размещено на Allbest.ru


Подобные документы

  • Понятие, структура и виды экосистем. Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах. Особенности циркуляции солнечной энергии. Биосфера как глобальная экосистема; взаимодействие живого и неживого, биогенная миграция атомов.

    курсовая работа [67,1 K], добавлен 10.07.2015

  • Экосистема ­- основная функционирующая единица в экологии. Примеры природных экосистем, основные понятия и классификация, условия существования и видовое разнообразие. Описание круговорота, осуществляемого в экосистемах, специфика динамических изменений.

    лекция [630,2 K], добавлен 02.12.2010

  • Зональный характер ведущих абиотических и биотических факторов забуференности водных экосистем. Токсичность поллютантов и характеристика токсикорезистентности пресноводных биоценозов. Экологическая роль рыбохозяйственных ПДК для загрязняющих веществ.

    автореферат [235,8 K], добавлен 05.09.2010

  • Экосистема как совокупность физико-химических и биологических компонентов. Осуществление биотического круговорота веществ, благодаря направленному потоку энергии. Разделение экосистемы на блоки, характер связей в ней. Продуктивность трофических уровней.

    реферат [736,6 K], добавлен 08.09.2009

  • Характеристика особенностей биогеографического районирования внутренних вод России, микропространственной неоднородности. Определение взаимосвязи водоемов с рельефами. Анализ причин целостности и сходства экосистем. Описание биотических связей организмов.

    реферат [39,2 K], добавлен 03.07.2010

  • Понятие "продуктивность экосистем", ее виды, классификация экосистем по продуктивности. Четыре последовательные ступени (или стадии) процесса производства органического вещества. Видовой состав и насыщенность биоценоза. Экологическая стандартизация.

    контрольная работа [16,0 K], добавлен 27.09.2009

  • Экология как наука. Описание ее основных методов. Сущность и разновидности экосистем, их классификация на основе биомов, структура и функции. Особенности формирования потока вещества и энергии в экосистемах. Термин "биосфера", основные идеи Вернадского.

    контрольная работа [278,5 K], добавлен 09.01.2015

  • Понятие биосферы, ее компоненты. Схема распределения живых организмов в биосфере. Загрязнение экосистем сточными водами. Преобладающие загрязняющие вещества водных экосистем по отраслям промышленности. Принципы государственной экологической экспертизы.

    контрольная работа [201,2 K], добавлен 06.08.2013

  • Экосистема как биоценоз, биотоп и система связей, осуществляющая обмен веществ и энергии между ними. Классификация и сравнительная характеристика типов наземных и водных природных экологических систем: схема потока энергии, общие признаки и различия.

    курсовая работа [1,6 M], добавлен 21.02.2013

  • Концепции экологической ниши, история формирования понятия. Внутривидовая и межвидовая конкуренция. Правило конкурентного исключения. Принцип "плотной упаковки". Функциональная организация экосистем, её продуктивность. Примеры типов пищевых цепей.

    презентация [533,8 K], добавлен 23.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.