Обезвреживание хлорорганических отходов
Переработка токсичных хлорорганических отходов в плазменных устройствах. Применение метода гидрогенолиза и высокотемпературного окислительного обезвреживания полихлорированных дибензодиоксинов и дибензофуранов. Создание схемы плазмохимического реактора.
Рубрика | Экология и охрана природы |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 01.10.2011 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ГЛАВА 1. ПЕРЕРАБОТКА И УНИЧТОЖЕНИЕ ТОКСИЧНЫХ ХЛОРОРГАНИЧЕСКИХ ОТХОДОВ В ПЛАЗМЕННЫХ УСТРОЙСТВАХ
Наиболее широко используемым способом переработки жидких токсичных отходов является их сжигание при условии умеренной и высокой теплотворной способности отходов и минимального содержания галогенов в них.
Традиционные способы сжигания таких отходов имеют существенный недостаток. Если температура недостаточно высока, то помимо оксидов азота и углерода возможно образование фосгена, дибензофуранов, диоксинов, бензопирена и других очень токсичных продуктов в количествах, значительно превышающих предельно допустимые концентрации (ПДК).
Альтернативой существующим технологиям является сжигание в термической плазме. Использование электродуговой и других видов плазмы со среднемассовыми температурами около 5000°К позволяет осуществлять деструкцию органических и неорганических соединений с очень большими скоростями и высокой степенью превращения. Кроме того, разрушение сложных соединений в плазме весьма эффективно и без наличия кислорода. Возможно также и обеспечение такого важного фактора термической переработки отходов, как организация хорошего смешения реагирующих компонентов при использовании многоструйного плазменного реактора.
Для тестирования и отработки технологии обезвреживания хлорсодержащих отходов использовали различные варианты плазменной технологической установки. Основной узел установки -- плазменный реактор на основе одно- или трехструйной камеры смешения с тремя электродуговыми плазмотронами. Установка включает в себя систему подачи сырья в плазменный реактор, состоящую из емкости для раствора, газо- и растворопроводов и форсунки (или дозатора). Система энергообеспечения установки включает такие системы: электроснабжения установки, поджига плазмотронов, газо- и водоснабжения, а также дистанционного контроля и управления рабочими параметрами установки. Технологический блок установки, предназначенный для охлаждения и очистки отходящих газов, включает в себя теплообменник, сухой фильтр и скруббер (или ионно-обменный фильтр типа "Фибан").
В качестве жидких токсичных отходов были использованы модельные смеси, состоящие из циклогексана и трихлорэтилена, реальные отходы электротехнических производств: хлористый метилен, трихлорметан (в том числе промышленные кубовые остатки, содержащие эти соединения) и другие органические отходы с токсичными добавками (отходы спиртобензосмеси, загрязненные канифолью), а также отработанные автомобильные, трансформаторные и другие масла.
Анализ газовой фазы конечных продуктов переработки токсичных жидких отходов проводили аналитическими и масс-спектрометрическими методами. Полученные результаты показывают, что все органические компоненты отходов сгорают, а содержание токсичных соединений H2S (34 м/е), HCl (36 м/е) незначительно и они могут улавливаться скруббером. В чистом виде хлор в образцах не обнаружен.
По результатам выполненных работ изготовлены и переданы заказчикам в Германию, Корею, Бразилию и Израиль плазменные установки для переработки и уничтожения галогеносодержащих отходов.
ГЛАВА 2. АПАРАТУРНОЕ ОФОРМЛЕНИЕ: УСТАНОВКА ПО ОГНЕВОМУ ОБЕЗВРЕЖИВАНИЮ ХЛОРОРГАНИЧЕСКИХ ОТХОДОВ
Одной из самых острых проблем эксплуатации производств хлорорганических продуктов является утилизация их отходов. Хлороганические отходы (ХОО) представляют собой смесь токсичных соединений, несущих серьезную угрозу биосфере. Особенно опасны полихлорированные дибензодиоксины и дибензофураны (ПХДД и ПХДФ), ПДК которых в атмосферном воздухе населенных мест составляет 0,5 пг/м3. Последние могут присутствовать в самих отходах, или синтезироваться в процессе утилизации. Метод высокотемпературного окислительного обезвреживания ХОО наиболее универсален, надежен и эффективен по сравнению с другими термическими методами. При построении технологии на его основе могут быть сформулированы следующие требования:
- Температура в реакторе и время пребывания отходов в нем должны быть достаточны для снижения его концентрации на выходе ниже уровня ПДК. Для ПХДД такая температура должна быть не ниже 1200 °С, избыток кислорода и водяного пара также подавляют образование диоксинов, свободного хлора и фосгена.
- Организация процесса в реакторе должна исключать проскок обезвреживаемого вещества через зону высоких температур. Этого можно добиться за счет турбулентности газового потока.
- Организация процесса должна исключать возможность образования высокотоксичных продуктов на выходе из зоны высокой температуры. Это требование достигается за счет быстрой закалки дымовых газов до 600 -- 800 °С. В качестве основного аппарата -- реактора терморазложения -- был применен горизонтальная циклонная печь, соединенная с закалочной камерой. Такой аппарат позволяет сократить размеры установки, и обеспечить турбулентность газового потока, что является критически важным для полноты сгорания отходов. Наши исследования процесса огневого обезвреживания ХОО показали, что при температуре 1350--1500 °С, избытке кислорода 20--25%, и времени пребывания в печи 0,25--0,3 с позволяет добиться полного сжигания уничтожаемых отходов, при этом содержание ПХДД в отходящих газах не превышает 0,1 нг/м3 (ПДК диоксинов в дымовых газах, принятая в ФРГ).
ПЛАЗМОХИМИЧЕСКИЙ РЕАКТОР ДЛЯ УНИЧТОЖЕНИЯ ТОКСИЧНЫХ ОТХОДОВ
При современном уровне развития промышленности проблема переработки отходов приобретает первостепенное значение. С каждым годом в сфере обращения с отходами вводятся новые законы, ужесточаются экологические нормы.
Крупные промышленные компании и муниципальные структуры в этой ситуации вынуждены вкладывать значительные средства в уничтожение отходов. Особо острая ситуация с отходами, являющимися источниками вредных и токсичных веществ. Эти отходы, как правило, не могут быть захоронены и требуют специальных технологий утилизации. Как результат создание экологически безопасных технологий переработки отходов с каждым годом приобретает все большую инвестиционную привлекательность. Традиционный метод уничтожения отходов - сжигание в мусоросжигательных печах.
Однако, при обычном сжигании углеводородов, содержащих галогены (это полихлорвиниловые пластики, хлорсодержащие масла, пестициды и т.д.), образуются высокотоксичные диоксины. Поэтому наиболее токсичные виды отходов помещаются в спецхранилища ввиду их крайней опасности и в связи с отсутствием технологий их утилизации. Наиболее перспективной технологией утилизации токсичных веществ является плазмохимическая технология, основанная на высокотемпературном плазмохимическом воздействии и полном разложении утилизируемых продуктов с помощью дуговой плазмы с получением полезного продукта, синтез-газа, который представляет собой смесь водорода и оксида углерода и является ценным энергетическим сырьем. Основным преимуществом плазмохимической технологии является универсальность по отношению к типу вещества и малые габариты, позволяющие создать передвижные технологические модули.
Однако, широкое практическое распространение плазменных технологий сдерживается отсутствием надежных дуговых плазмотронов с достаточным ресурсом непрерывной работы. Существующие плазмотроны, как правило, требуют для работы использования в качестве плазмообразующего дорогостоящего инертного газа, в то время как оптимальным, с точки зрения плазмохимических реакций, плазмообразующим газом является водяной пар. Электрическая дуга в мощных плазмотронах приводит к интенсивной эрозии электродов. Плазменные установки приходится часто останавливать для замены электродов. Решение этих проблем, в части создания новых источников плазмы позволит поднять плазменные технологии на новый уровень. В представленной работе описан плазмохимический реактор с новым источником дуговой плазмы лишенный этих недостатков. Продемонстрирована утилизация широкого спектра отходов, включая полихрорированные бифенилы, при этом синтез газ получаемый в реакторе соответствует по содержанию диоксинов экологическим стандартам.
Плазменный реактор с расплавляемыми электродами
Базовая схема плазмохимического реактора показана на рисунке 1. Фотография реактора с плазмотроном мощностью 500 кВт показана на рисунке 2. Реактор состоит из двух реакционных камер со специальными ваннами. Перед первым стартом плазмохимического реактора в ванны загружается металлический лом. Электрическая дуга зажигается между этими ваннами через специальный водоохлаждаемый канал. Отходы подаются на поверхность расплавленного металла. Плазмохимическая реакция газификации протекает в камерах реактора при температуре 1300-1500оС. Продукты газификации выводятся из камер плазмохимического реактора и поступают в систему газоочистки.
Во время работы на поверхности металла образуется слой расплавленного шлака. Шлак должен удаляться по мере накопления или непрерывно для установок большой производительности с помощью специального устройства шлакоудаления.
По сравнению с плазмохимическими реакторами, использующими традиционные плазмотроны, новый реактор обладает стратегическими преимуществами:
1) Полное отсутствие эрозии электродов.
Поверхность расплавленного металла, который служит электродами, не подвержена эрозии, поэтому новый плазмохимический реактор не имеет ограничений на ресурс работы электродов.
2) Возможность использования водяного пара в качестве плазмообразующего газа.
В известных аналогах в качестве плазмообразующего газа используются аргон, азот или воздух. Затем, соответственно, воздушная или азотная плазма смешивается с реагентами - паром и отходами. Для повышения эффективности работы реактора необходимо в качестве плазмообразующего газа использовать пар. Однако использование пара приводит к интенсивной эрозии электродов. В нашем случае использование в качестве электродов жидкого металла позволяет использовать пар в качестве плазмообразующего газа.
3) Возможность практически неограниченного увеличения мощности.
Известно, что для увеличения мощности плазмотронов приходится увеличивать разрядный ток. Увеличение разрядного тока также приводит к интенсификации процесса эрозии электродов. Использование жидких электродов, не подверженных эрозии открывает новые возможности для наращивания мощности плазмотронов.
токсичный хлорорганический отходы гидрогенолиз
Рис. 1. Схема плазмохимического реактора для утилизации токсичных отходов.
Рис. 2. Плазмохимический реактор для утилизации токсичных отходов мощностью 500 кВт.
Технические характеристики реактора обеспечивают возможности для широкого применения в технологии переработки ряда отходов.
Уничтожение токсичных органических отходов, содержащих стойкие органические загрязнители, включая хлорированные и фторированные масла, пестициды, отходы химического производства, пластики и т. п. Для демонстрации возможностей технологии были выполнены испытания по переработке хлорорганических отходов. Испытания реактора проводились по следующей схеме. Жидкие хлорсодержащие отходы подавались в реакционную камеру на поверхность расплава. Содержание хлора с отходах 15% по весу. В результате реакции газификации, взаимодействия пара с отходами, образуются синтез газ (смесь водорода, CO и HCl). Полученный синтез газ подвергается быстрому охлаждению закалке, одновременно проходя очистку от HCl в центробежно-барботажном аппарате. Проведенные эксперименты по уничтожению трансформаторного масла марки ТХД (трихлордифенил) показали, что концентрация диоксинов в синтез газе не превышает 0,05 нг/м3 (норма, установленная американским агентством по защите окружающей среды EPA - 0.1 нг/м3).
Важной сферой применения плазмохимического реактора является утилизация отходов, возникающих при обогащении минерального сырья, например, угольных и нефтяных шламов. Проведенные испытания показали, что настоящий реактор может использоваться для получения высококачественного портланд-цемента из угольного шлама и отходов дробления известняка.
Одним из важнейших направлений промышленного применения является создание на базе представленной разработки мобильных установок по плазменной утилизации отходов. На базе представленного плазмохимического реактора разрабатывается мобильный вариант установки, размещенный на трейлере (рисунок 3). Мобильная установка предназначена для утилизации токсичных отходов на местах хранения, а также для ликвидации последствий аварий связанных с разливом токсичных веществ.
Рис. 3. Схема мобильной установки для утилизации токсичных отходов.
ГЛАВА 3. СПОСОБ ПЕРЕРАБОТКИ ХЛОРОРГАНИЧЕСКИХ ОТХОДОВ МЕТОДОМ ГИДРОГЕНОЛИЗА
Одной из наиболее острых проблем создания и организации малоотходных, экологически безопасных производств галогеноорганических продуктов является переработка и обезвреживание отходов таких производств.
Неприятная особенность хлорорганических отходов заключается в том, что все они являются ксенобиотиками и у природы нет естественных средств борьбы с ними. В то же время не всякий способ превращения галогенорганических соединений может быть использован для их утилизации, что было рассмотрено выше.
Наиболее универсальным и перспективным методом переработки хлорорганических отходов считается гидрогенолиз, так как этот метод наиболее полно удовлетворяет требованиям, предъявляемым к способам переработки отходов, таким как:
- возобновляемость углеродсодержащего сырья или коммерческая ценность образующихся продуктов;
- экономичность переработки;
- высокая степень превращения; универсальность способа;
- отсутствие среди продуктов, образующихся в результате переработки отходов, высокотоксичных веществ.
При осуществлении изобретения может быть получен технический результат, который выражается в возможности:
- организации переработки хлорорганических отходов в промышленном масштабе;
- переработки широкого спектра хлорорганических продуктов;
- получения целевых продуктов, которые могут быть возвращены в технологический цикл.
Указанный выше технический результат достигается особенностью способа переработки хлорорганических отходов, заключающейся в том, что гидрогенолиз осуществляют в среде инертного высококипящего углеводородного растворителя при 10-20-кратном его избытке по отношению к массе хлорорганических отходов и при мольном соотношении водорода и хлорорганических отходов, равном 20-40: 1, с дальнейшим отделением газообразных продуктов реакции известными методами и рециклом непрореагировавших отходов в растворителе. В качестве инертного высококипящего углеводородного растворителя используют жидкие смеси алефатических, ароматических и циклических углеводородов с температурой кипения 250-350oC (трансформаторное масло АМТ-300, вазелиновое масло).
Переработка хлорорганических отходов гидрогенолизом в среде инертного высококипящего углеводородного растворителя обеспечивает возможность организации этого процесса в промышленном масштабе, т.к. растворитель регенерирует катализатор за счет смывания с поверхности носителя катализатора смолообразных и коксообразных побочных продуктов.
Способ гидрогенолиза реальных хлорорганических отходов производства эпихлоргидрина, перхлоруглеводородов и винилхлорида в жидкой фазе осуществляется в реакторе проточного типа со стационарным слоем катализатора, проактивированного по известной методике. В качестве катализатора используют окись алюминия и активированный уголь, пропитанный солями палладия и с содержанием палладия 0,4-1,8 мас.% соответственно.
Водород и раствор или раствор и тонкодисперсная суспензия хлорорганического отхода в 10-20-кратном избытке высококипящего растворителя по отношению к массе хлорорганического отхода при мольном соотношении водород: хлорорганический отход 20-40:1 параллельными потоками подают в верхнюю часть реактора. Температура проведения процесса 250-350oC.
Продукты реакции, представляющие собой смесь хлоруглеводородов в растворителе, непрореагировавший водород и выделевшийся хлористый водород выводят из нижней части реактора и подвергают разделению известными методами.
Высококипящий углеводородный растворитель с непрореагировавшими отходами возвращают в процесс.
Ввиду получения удовлетворительных результатов и большой доступности для опытной проверки была использована каталитическая система на основе палладия и окиси алюминия или активированного угля.
Способ подтверждается примерами.
Пример 1. В реактор проточного типа со стационарным слоем катализатора, содержащего 0,4% палладия на оксиде алюминия подают хлорорганический отход в количестве 2,5 г/ч (0,0187 мол/ч) в инертном высококипящем растворителе в соотношении хлорорганический отход:растворитель, равном 1:10.
В качестве хлорорганического отхода используют отходы производства винилхлорида следующего состава: 1,2-дихлорэтан - 12,2%; высококипящие - 72,9%, в том числе 1,1,2-трихлорэтан - 42,4%, перхлорэтилен - 14,4%, 1,1,2,2- и 1,1,1,2-трихлорэтан-14,9% (Состав А).
В качестве инертного высококипящего растворителя используют трансформаторное масло АМТ-300.
Водород подают в реактор прямотоком в мольном соотношении к хлорорганическому отходу, равном 1: 40. Гидрогенолиз осуществляют при температуре 295-300oС.
Конверсия исходных хлоруглеводородов составляет 88,7%.
Состав полученных продуктов: этан и этилен - 0,35 г/ч (0,012 мол/ч); хлористый этил и хлористый винил - 0,28 г/ч (0,0045 мол/ч); хлористый водород - 1,67 г/ч (0,045 мол/ч); непрореагировавшие отходы - 0,20 (0,0015 мол/ч).
СПОСОБ ПЕРЕРАБОТКИ ХЛОРОРГАНИЧЕСКИХ ОТХОДОВ В ХЛОРИСТЫЙ МЕТИЛ
(Известно достаточно большое количество способов переработки и утилизации ЧХУ, из которых самыми эффективными и экологически безопасными являются методы переработки ЧХУ в ценные органические вещества. Одним из таких методов является метод переработки ЧХУ в хлористый метил. Известен двухстадийный способ переработки ЧХУ в хлористый метил, в котором на первой стадии ЧХУ взаимодействует с водой с образованием СО2 и НСl, а на второй образующийся хлористый водород взаимодействует с метанолом с образованием хлористого метила. Обе стадии осуществляют в газовой фазе при 200-220°С в присутствии гетерогенного катализатора - хлорида цинка на активированном угле. Удельная производительность процесса по хлористому метилу не превышает значения 1,52 моль/(л реактора·час) (US 5196618).Основными недостатками данного способа является многостадийность процесса и низкая удельная производительность. Известен способ переработки ЧХУ в хлористый метил, в котором процесс осуществляют путем взаимодействия ЧХУ с метанолом при 300-400°С в присутствии хлористого водорода в одном реакторе, заполненном гетерогенным контактом (оксиды алюминия или кремния), имеющим удельную поверхность, равную 180-200 м2/г (DE 4131213). Максимально возможная производительность по хлористому метилу достигается в примере 5 данного способа и составляет 3,3 моль/(л реактора·час). Однако при этом значительное количество хлористого метила образуется не за счет превращения ЧХУ, а по реакции прямого взаимодействия избытка метанола с хлористым водородом. Основными недостатками данного способа являются жесткие условия процесса и его низкая удельная производительность. Известны способы переработки ЧХУ в хлористый метил, в котором процесс осуществляют путем взаимодействия ЧХУ с метанолом при 150-250°С и давлении до 10 ат в трубчатом реакторе, заполненном гетерогенным контактом (хлориды или оксиды элементов групп IB, IIА, IIB, VIB, VIIB и VIII периодической системы, нанесенные на поверхность активированного угля), при этом гетерогенные контакты и, следовательно, хлориды или оксиды металлов равномерно распределены по всему объему (длине) реактора (ЕР 435210, US 5227550).Предпочтительно процесс осуществляют при использовании гетерогенного контакта, содержащего 30 мас.% активного ингредиента - хлорида цинка, равномерно распределенного по всему объему реактора. В этом случае концентрация хлорида цинка во всем объеме реактора постоянна и находится на уровне 1 моль на литр реакционного объема. Предпочтительно процесс осуществляют в присутствии хлористого водорода и воды. Удельная производительность данного реактора по хлористому метилу не превышает величины 5,7 моль на литр реакционного объема в час или 0,288 кг/(л·час). Срок службы катализатора при использовании в качестве носителя активированного угля составляет не менее 100 часов, а при использовании других носителей, имеющих более низкую удельную поверхность (например, глинозема, S=150 м2/г), не превышает 60 часов. Основными недостатками данных способов является низкая удельная производительность и небольшой срок службы катализатора. Другим недостатком всех перечисленных ранее способов является то, что все они используют в качестве исходного вещества лишь индивидуальное вещество - ЧХУ.В то же время основной проблемой в настоящее время является не просто переработка индивидуального ЧХУ, а переработка хлорорганических отходов (ХОО) достаточно сложного состава, содержащих ЧХУ. Наиболее близким аналогом данного способа является способ переработки ХОО, содержащих четыреххлористый углерод, в хлористый метил взаимодействием ХОО с метанолом в газовой фазе при повышенной температуре в реакторе со стационарным слоем гетерогенного контакта, содержащем в качестве активного ингредиента хлорид цинка, нанесенный на твердый носитель, в котором процесс осуществляют в реакторе, имеющем как минимум два слоя гетерогенного контакта с различной (неодинаковой) концентрацией активного ингредиента (RU 2298542, примеры 5-7). Предпочтительно процесс осуществляют в присутствии добавок хлористого водорода и/или воды. Недостатком способа является низкий срок службы катализатора, который при переработке отходов, содержащих помимо ЧХУ в своем составе 1,2-дихлорэтан, 1,2,2-трихлорэтан или хлороформ, не превышает 100-140 часов. Технической задачей данного способа является увеличение срока службы катализатора. Данная задача решается способом переработки хлорорганических отходов, содержащих четыреххлористый углерод, в хлористый метил взаимодействием хлорорганических отходов с метанолом при повышенной температуре в газовой фазе в реакторах, имеющих как минимум два стационарных слоя гетерогенного контакта с различной (неодинаковой) концентрацией активного ингредиента - хлорида цинка, нанесенного на твердый носитель, в котором процесс осуществляют в каскаде, состоящем, по крайней мере, из двух последовательно соединенных реакторов, путем периодического во времени перераспределения потока исходной смеси по реакторам каскада. Гетерогенные контакты с различным содержанием хлорида цинка (от 1 до 30 мас.%) готовили по патенту RU 2298542 путем пропитки твердый инертных носителей водным раствором хлорида цинка с последующей сушкой влажного гетерогенного контакта при 300°С до постоянной массы.В качестве твердых носителей при приготовлении гетерогенных контактов использовали уголь марки "Сибунит" ТУ 3841540-95 (насыпная плотность 450-520 кг/м3) и -оксид алюминия ТУ 3810216-80 (насыпная плотность 640-680 кг/м3).Создание в реакторах каскада слоев с различной (неодинаковой) концентрацией активного ингредиента - хлорида цинка технически осуществляли путем послойной загрузки в реактор определенных объемов гетерогенных контактов с различным содержанием хлорида цинка на твердом носителе (патент RU 2298542, табл.1) или путем послойной загрузки определенных объемов гетерогенных контактов с одинаковым содержанием хлорида цинка на твердом носителе, предварительно смешанных с определенным количеством твердого инертного вещества (патент RU 2298542, табл.2).Перераспределение потока с максимальной концентрацией ХОО по реакторам каскада во времени осуществляли путем переключения подачи потока с максимальной концентрацией ХОО с входа одного реактора на вход другого реактора с помощью технологических линий и системы вентилей, установленных на этих линиях, согласно схемам, приведенным на Фиг.1 и 2.Для иллюстрации способа в качестве исходного сырья были использованы хлорорганические отходы производства хлорирования метана следующего состава, мас.%: четыреххлористый углерод - 87,35; хлороформ - 1,15; 1,2-дихлорэтан - 1,06; 1,1,2-трихлорэтан - 1,85; метилхлороформ - 0,89; трихлорэтилен - 2,43; 1,1,2,2-тетрахлорэтан -0,79; перхлорэтилен - 2,17; пентахлорэтан - 0,47; гексахлорэтан - 1,66; 1,3-дихлорпропан - 0,18. Однако на практике для переработки могут быть использованы отходы любого состава, содержащие до 85 мас.% ЧХУ. Предпочтительно процесс взаимодействия хлорорганических отходов, содержащих ЧХУ, с метанолом осуществляют в присутствии НСl и/или воды. Следующие примеры иллюстрируют способ. Одна часть экспериментов (примеры 1 и 3) была выполнена в каскаде, состоящем из двух последовательно соединенных вертикальных трубчатых реакторов диаметром 0,025 м и объемом по 0,1 л (фиг.1).Другая часть экспериментов (примеры 2 и 4) была выполнена в каскаде, состоящем из трех последовательно соединенных вертикальных трубчатых реакторов диаметром 0,025 м и объемом по 0,07 л (фиг.2).Все реакторы были снабжены электрообогревом и термопарой для измерения температуры. Перед началом эксперимента в оба реактора последовательно загружали гетерогенные контакты с заданной концентрацией активного ингредиента (ZnCl2) на -оксиде алюминия или на активированном угле марки "Сибунит".В аппарате с мешалкой предварительно готовили жидкие смеси, содержащие метанол, ХОО и воду. Жидкую смесь исходных реагентов из аппарата с мешалкой непрерывно дозировочным насосом с заданной скоростью подавали в испаритель-подогреватель, в котором все компоненты переводили в газообразное состояние, нагревали до заданной температуры и после этого поток исходной смеси подавали в реакторный узел. Пример 1Процесс осуществляют в каскаде, состоящем из двух вертикальных реакторов объемом по 0,1 л (фиг.1), в каждый из которых было последовательно загружено 35 мл катализатора - 25 мас.% ZnCl2 на Сибуните (слой 4), 35 мл катализатора - 20 мас.% ZnCl2 на Сибуните (слой 3), 25 мл катализатора - 5,5 мас.% ZnCl2 на Сибуните (слой 2), 5 мл катализатора - 0,5 мас.% ZnCl2 на Сибуните (слой 1). Соответственно концентрация активного ингредиента в слоях составляет, (г/л): слой 1 - 2,5; слой 2 - 28,5; слой 3 - 122,5; слой 4 - 163,3.На первом этапе газообразный поток исходных веществ, состава, мас.%: хлорорганические отходы - 53,0; метанол - 42,0; вода - 5,0; со скоростью 70 г/ч подавали на вход первого реактора каскада Р1. Выходящий из нижней части реактора Р1 газообразный поток, содержащий непрореагировавшие исходные вещества и продукты реакции, направляли в верхнюю часть второго реактора Р2.Газообразные продукты реакции отбирали из нижней части реактора Р2 и направляли в систему охлаждения и конденсации, а полученные при этом жидкие органические продукты на анализ. Схема соединений реакторов и материальных потоков приведена на фиг.1а. Температуру в реакторах при этом поддерживали на уровне: реактор 1 - 200ч240°С; реактор 2 - 200ч230°С.В начальный момент времени конверсия ЧХУ составила 100%. Через 110 часов непрерывной работы конверсия ЧХУ упала до величины 98%.После этого поток исходных веществ переключали на вход второго реактора каскада Р2, а выходящий из нижней части реактора Р2 газообразный поток направляли на вход первого реактора Р1.При этом газообразные продукты реакции уже отбирали из нижней части реактора Р1, которые направляли в систему охлаждения и конденсации, а полученные при этом жидкие органические продукты на анализ. Схема соединений реакторов и материальных потоков после переключения приведена на фиг.1в. Температуру в реакторах при этом поддерживали на уровне: реактор 1 - 200ч230°С; реактор 2 - 200ч240°С.В начальный момент времени, после такого переключения, конверсия ЧХУ составила 100%. Через 100 часов непрерывной работы конверсия ЧХУ упала до величины 98%. После этого процесс останавливали и рассчитывали показатели процесса. Общий срок службы катализатора составил 210 часов. Условия и результаты эксперимента приведены в таблице. Пример 2Процесс осуществляют в каскаде, состоящем из трех вертикальных реакторов (фиг.2), объемом по 0,07 л, в каждый из которых было последовательно загружено 60 мл катализатора - 25 мас.% ZnCl2 на Аl2О3 (слой 2) и 10 мл катализатора - 6 мас.% ZnCl2 на Аl2O3 (слой 1). Соответственно концентрация активного ингредиента в слоях составляет, (г/л): слой 1 - 42.1; слой 2 - 163.3.На первом этапе газообразный поток исходных веществ, состава, мас.%: хлорорганические отходы - 53,0; метанол - 42,0; вода - 5,0; со скоростью 75 г/ч подавали на вход первого реактора каскада Р1. Выходящий из нижней части реактора Р1 газообразный поток, содержащий непрореагировавшие исходные вещества и продукты реакции, направляли в верхнюю часть второго реактора Р2. Газообразные продукты из нижней части реактора Р2 направляли в верхнюю часть реактора Р3, а газообразные продукты реакции из нижней части реактора Р3 направляли в систему охлаждения и конденсации, а полученные при этом жидкие органические продукты на анализ. Схема соединений реакторов и материальных потоков приведена на фиг.2а. Температуру в реакторах при этом поддерживали на уровне: реактор 1 - 200ч240°С; реактор 2 - 200ч230°С; реактор 3 - 210ч240°С.В начальный момент времени конверсия ЧХУ составила 100%. Через 100 часов непрерывной работы конверсия ЧХУ упала до величины 98%.После этого (второй этап) поток исходных веществ переключали на вход второго реактора каскада Р2, а выходящий из нижней части реактора Р2 газообразный поток направляли на вход третьего реактора Р3, а газообразные продукты, выходящие из нижней части реактора Р3, направляли на вход первого реактора P1.Газообразные продукты реакции из нижней части реактора Р1 направляли в систему охлаждения и конденсации, а полученные при этом жидкие органические продукты на анализ. Схема соединений реакторов и материальных потоков на втором этапе приведена на фиг.2в. Температуру в реакторах при этом поддерживали на уровне: реактор 1 - 210ч240°С; реактор 2 - 200ч240°С; реактор 3 - 210ч240°С.В начальный момент времени после переключения на схему фиг.2в конверсия ЧХУ составила 100%. Через 90 часов непрерывной работы конверсия ЧХУ упала до величины 98%.После этого (третий этап) поток исходных веществ переключали на вход третьего реактора каскада Р3, а выходящий из нижней части реактора Р3 газообразный поток направляли на вход первого реактора Р1. Газообразные продукты, выходящие из нижней части реактора Р1, направляли на вход второго реактора Р2, газообразные продукты реакции из нижней части реактора Р2 направляли в систему охлаждения и конденсации, а полученные при этом жидкие органические продукты на анализ.Схема соединений реакторов и материальных потоков на втором этапе приведена на фиг.2с. Температуру в реакторах при этом поддерживали на уровне: реактор 1 - 210ч240°С; реактор 2 - 210ч240°С; реактор 3 - 200ч240°С.В начальный момент времени, после такого переключения (третий этап), конверсия ЧХУ составила 100%. Через 70 часов непрерывной работы конверсия ЧХУ упала до величины 98%. После этого процесс останавливали и рассчитывали показатели процесса. Общий срок службы катализатора составил 260 часов. Условия и результаты эксперимента приведены в таблице. Пример 3Процесс осуществляли аналогично примеру 1, в каскаде, состоящем из двух вертикальных реакторов (фиг.1), но при этом в каждый из реакторов было последовательно загружено 65 мл катализатора 25 мас.% ZnCl2 на сибуните (слой 3), 30 мл смеси, содержащей 10 мл Аl2О3 и 20 мл катализатора - 25 мас.% ZnCl2 на сибуните (слой 2), 5 мл смеси, содержащей 4 мл Аl2О3 и 1 мл катализатора - 25 мас.% ZnCl2 на сибуните (слой 1). Концентрация активного ингредиента в слоях составляет (г/л): 32,7 (слой 1), 108,9 (слой 2) и 163,3 (слой 3).На вход реакторного узла подавали поток исходных веществ, следующего состава мас.%: хлорорганические отходы - 54,0; метанол - 42,0; НСl - 1,0; вода - 3,0; со скоростью 70 г/ч. Общий срок службы катализатора составил 220 часов. Условия и результаты эксперимента приведены в таблице. Пример 4Процесс осуществляли аналогично примеру 2, в каскаде, состоящем из трех вертикальных реакторов (фиг.2), объемом по 0,07 л, но при этом в каждый из реакторов было последовательно загружено 51 мл катализатора - 25 маc.% ZnCl2 на Аl2О3 (слой 3), 16 мл смеси, содержащей 5,4 мл Аl2О3 и 10,6 мл катализатора - 25 маc.% ZnCl2 на Аl2О3 (слой 2), 3 мл смеси, содержащей 1,5 мл сибунита и 1,5 мл катализатора - 25 маc.% ZnCl2 на Аl2O3 (слой 1). Концентрация активного ингредиента в слоях составляет (г/л): 73,3 (слой 1), 146,7 (слой 2) и 220,0 (слой 3).На вход реакторного узла подавали поток исходных веществ, следующего состава, мас.%: хлорорганические отходы - 54,0; метанол - 42,0; НСl - 1,0; вода - 3,0; со скоростью 70 г/ч.Общий срок службы катализатора составил 270 часов. Условия и результаты эксперимента приведены в таблице. Пример 5Процесс осуществляли аналогично примеру 1, но на вход реакторного узла подают исходную смесь следующего состава, мас.%: хлорорганические отходы - 56,4; метанол - 43,6.Общий срок службы катализатора составил 190 часов. Условия и результаты эксперимента приведены в таблице. Таким образом, проведение процесса переработки хлорорганических отходов заявленным способом позволяет увеличить срок службы катализатора с 90-160 часов до 190-270 часов.
Способ переработки хлорорганических отходов, содержащих четыреххлористый углерод в хлористый метил взаимодействием хлорорганических отходов с метанолом при повышенной температуре в газовой фазе в реакторах, имеющих, как минимум, два стационарных слоя гетерогенного контакта с различной (неодинаковой) концентрацией активного ингредиента - хлорида цинка, нанесенного на твердый носитель, отличающийся тем, что процесс осуществляют в каскаде, состоящем, по крайней мере, из двух последовательно соединенных реакторов, путем периодического во времени перераспределения потока исходной смеси по реакторам каскада.2. Способ по п.1, отличающийся тем, что процесс осуществляют в присутствии добавок хлористого водорода и/или воды.
Размещено на Allbest.ru
Подобные документы
Проблема ликвидации и переработки отходов производства - одна из важных задач современной промышленности. Одно из основных направлений утилизации хлорорганических отходов и предотвращения ущерба окружающей среде и здоровью населения - гидрогенолиз.
курсовая работа [141,0 K], добавлен 23.02.2011Характеристика и классификация отходов промышленности, методы их хранения. Использование хранилищ промышленных отходов и наземных полигоны. Термическое обезвреживание токсичных промышленных отходов: жидкофазное окисление, гетерогенный катализ, пиролиз.
реферат [29,5 K], добавлен 12.01.2015Современное состояние проблем экологической безопасности в области переработки отходов. Способы переработки радиоактивных, медицинских, промышленных и биологических отходов производства. Термическое обезвреживание токсичных промышленных отходов.
реферат [1,1 M], добавлен 26.05.2015Условия, которые предъявляются к устройству полигонов для обезвреживания и захоронения промышленных отходов. Методика выбора и обоснования участка под полигон и рациональной технологической схемы обезвреживания и захоронения промышленных отходов.
реферат [724,9 K], добавлен 16.04.2015Технологическое описание процесса плавки в плазменно-дуговых печах с керамическим тиглем. Оценка возможности расширения переработки отходов с помощью плазменных технологий. Применение технологии эффективной переработки отходов в плазменных шахтных печах.
курсовая работа [851,0 K], добавлен 14.10.2011Виды промышленных отходов по источникам образования. Общая технологическая схема переработки отходов пластмасс методами измельчения, экструзии, вальцово-каландровым и автоклавным. Основные способы утилизации и обезвреживания отработанных материалов.
курсовая работа [199,6 K], добавлен 30.07.2010Особенности утилизации отходов от машиностроительного комплекса, переработки древесины и производства строительных материалов. Анализ тенденций к обработке промышленных отходов на полигонах предприятий с заводской технологией обезвреживания и утилизации.
реферат [21,2 K], добавлен 27.05.2010Типы бытовых отходов, проблема утилизации. Биологическая переработка промышленных отходов, отходов молочной промышленности. Отходы целлюлозно-бумажной промышленности. Переработка отходов после очистки воды. Переработка ила, биодеградация отходов.
курсовая работа [78,1 K], добавлен 13.11.2010- Современные технологии очистки сточных вод на примере сорбционных материалов из отходов производства
Состояние сточных вод Байкальского региона. Влияние тяжелых металлов на окружающую среду и человека. Специфика очистки сточных вод на основе отходов. Глобальная проблема утилизации многотонажных хлорорганических и золошлаковых отходов, способы ее решения.
реферат [437,5 K], добавлен 20.03.2014 Методы определения класса опасности токсичных отходов производства и потребления. Анализ показателей опасности и концентрации компонентов отходов. Временное складирование отходов производства и потребления. Требования к размещению и содержанию объектов.
контрольная работа [106,5 K], добавлен 13.05.2014