Проблемы накопления парниковых газов в атмосфере

Исследование проблемы "парникового эффекта", возникшего в результате выбросов парниковых газов (диоксида углерода, метана и других углеводородов), которое ведет к потеплению климата планеты, таяние полярных льдов и неизбежное затопление части суши.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 18.03.2011
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВЕДЕНИЕ

Проблеме глобального потепления с каждым годом уделяется все больше внимания. Специалисты утверждают, что выбросы парниковых газов, прежде всего, диоксида углерода, метана и других углеводородов, ведут к постепенному потеплению климата планеты, которое в свою очередь повлечет за собой таяние полярных льдов и неизбежное затопление части суши. Тем не менее, в средствах массовой информации, наряду с "классическим" сценарием изменения климата нашей планеты, все чаще слышны голоса ученых, имеющих свой взгляд на эту проблему. В том, что климат меняется, сомнений не осталось ни у кого.

Климатологи из Британского метеорологического бюро и Оксфордского университета, воспользовавшись компьютерными моделями, выяснили, что риск аномальной жары на три четверти связан с деятельностью человека. Полагают, что деятельность человека усугубляет глобальное потепление, в частности речь идет о парниковых газах, например, углекислом газе - продукте сгорания ископаемого топлива. Используя данные метеорологических наблюдений, которые регулярно ведутся с 1851 года, ученые составили две компьютерные модели, одна из которых показывала естественное изменение климата, а вторая - этот процесс с учетом человеческого фактора. Удалось выяснить, что повышение температуры на планете под воздействием выбросов парниковых газов стало происходить в последние 50 лет. парниковый потепление климат

Согласно исследованию, опубликованному в журнале Nature, к 2040 году в более чем половине случаев погода в летний период будет жарче, чем в прошлом году, а лето 2003 года будет рассматриваться как аномально холодное. Пока же известно, что лето 2003 года, скорее всего, стало самым жарким за последние 500 лет. Только в Португалии ущерб от лесных пожаров превысил полтора миллиарда евро. Кроме того, от перегрева и связанных с ним последствий, в Европе погибли более 27 тысяч человек. А к 2080 году о холодных, снежных зимах в Европе, по утверждению Европейского экологического агентства, можно будет забыть. Специалисты из Агентства убеждены, что европейцам следует ожидать повышения уровня моря, исчезновения альпийских ледников и установления длительных периодов жары со смертоносными последствиями.

Но с их мнением согласны далеко не все. Так, в конце 2004 года было опубликовано мнение, что из-за "парникового эффекта" в Европе случится не потепление, а похолодание. И что-то похожее уже происходило на планете 14 миллионов лет назад. Тогда Антарктида еще не была покрыта многокилометровой толщей льда. Существует много теорий, объясняющих внезапное оледенение целого континента, и недавно в ним добавилась новая - изменение океанических течений, отрезавшее Антарктиду от тропического тепла. Вода быстро остыла, и Антарктида стала такой, какой мы ее привыкли видеть сегодня.

Но наибольшую тревогу ученых вызвал тот факт, что изменению течений предшествовало повышение концентрации углекислоты в атмосфере. Поэтому ученые обеспокоены, что рост концентрации углекислоты может в очередной раз вызвать нарушения в системе функционирования океанических течений, в частности, теплого Гольфстрима, омывающего Европу. И в этом случае Европу может ожидать судьба Антарктиды. Журнал Sciense опубликовал информацию о том, что в результате изменений климата площадь ледяных полей в Северном Ледовитом океане продолжает сокращаться. Анализ данных спутникового мониторинга, проведенный в университете Колорадо в городе Боулдер, показал, что в 2004 году ледяное покрытие было почти на 14% меньше среднего значения. И если экстраполировать такую тенденцию, то к 2070 году полярные льды будут полностью исчезать в летнее время.

Изучение фотографии Земли, сделанных из космоса научными спутниками НАСА, и использование метода компьютерного моделирования дало возможность американским ученым сделать вывод и об угрозах сильных землетрясений, вызванных таянием ледников на юге штата Аляска. Как отмечают геофизик из Центра космических полетов имени Годдарда Джин Собер и сотрудник Геологической службы США Брюс Молниа, за последние сто лет ледники на Аляске уменьшились по крайней мере на 10%. Это ослабило давление на тектонические плиты и позволило им свободнее смещаться в различных направлениях, что и приводит к колебанию земной поверхности. А подводные землетрясения в районе Аляски, как известно, могут вызвать цунами, способные докатиться до Гавайских островов. Если следовать выводам о вреде парниковых газов и их влиянии на изменение климата планеты, совершенно логично было бы ограничивать эти выбросы. При этом используются самые разные методы: от поощрения внедрения новых технологий с меньшими парниковыми выбросами до решительного запрета на использование технологий устаревших.

Группа же исследователей под руководством Уилфрида Поста из американской Национальной лаборатории Окриджа опубликовала доклад, в котором предложила еще один метод снижения концентрации парниковых газов в атмосфере - сельскохозяйственный. По мнению исследователей, связывание углекислого газа растениями может оказаться не менее выгодным и действенным способом борьбы с глобальным потеплением, чем сокращение выбросов и захоронение углекислого газа в подземных пустотах. Уилфрид Пост и его коллеги рассмотрели различные способы ведения сельского хозяйства, которые увеличивают поглощение углекислого газа почвой при помощи перевода его в органические соединения. И пришли ко вполне логичному выводу, что новые пашни и лесонасаждения могут оказаться важным дополнением к другим мерам, предпринимаемым человечеством для снижения техногенной нагрузки на природу.

А если атмосферные загрязнения не усугубляют ситуацию с климатом, а смягчают ее последствия? Такой вопрос задал себе профессор Майнрат Андреа из Института Макса Планка в Майне. И пришел к выводу, что если усилия мирового сообщества по снижению загрязнения принесут свои плоды, то Земля может нагреваться еще быстрее. По словам профессора, аэрозоли (крошечные частицы, обычно серы или углерода, содержащиеся в воздухе) помогают планете охлаждаться. Эти аэрозоли появляются как из естественных источников (вулканов), так и из искусственных. Поглощая или рассеивая излучение, они могут нагревать или охлаждать тропосферу. Кроме того они способны изменять облака и влиять на уровень осадков. Профессор Андреа утверждает, что охлаждающий эффект "перевешивает" потепление, создаваемое парниковыми газами.

Еще более смелую теорию высказала группа британских и американских ученых, которые опровергли современную теорию климата. Группа специалистов из института Джорджа Маршалла заявляет, что влияние деятельности человека на содержание в атмосфере углекислого газа не может быть достоверно установлено, а причиной потепления скорее всего стали естественные природные процессы. Что касается концепция глобального потепления, то она названа вымыслом политиков, которые делали заявления о губительном воздействии человека на климат ради собственной выгоды. А швейцарские и германские ученые из института Макса Планка по изучению Солнечной системы в Геттингене обвинили в потеплении не только человечество, но и Солнце. По их мнению, Земля разогревается из-за того, что Солнце светит ярче, чем когда-либо за последние 1000 лет. И, наконец, еще одна группа ученых уверяет - если люди не будут вмешиваться, ближайшие 15 тысяч лет земной климат существенно не изменится. Такие выводы были сделаны после исследований самого старого образца льда. Эта проба антарктического льда относится к последнему межледниковому периоду и по характеристикам очень близка современному льду. Мнение ученых сходится в одном - если сегодня не позаботиться о нашем общем доме, то жить в нем с каждым годом будет сложнее и сложнее (www.kommentator.ru).

Таким образом, целью работы является изучение проблем накопления парниковых газов в атмосфере.

ГЛАВА 1. ПАРНИКОВЫЙ ЭФФЕКТ

Идея о механизме парникового эффекта была впервые изложена в 1827 году Жозефом Фурье в статье «Записка о температурах земного шара и других планет», в которой он рассматривал различные механизмы формирования климата Земли, при этом он рассматривал как факторы, влияющие на общий тепловой баланс Земли (нагрев солнечным излучением, охлаждение за счёт лучеиспускания, внутреннее тепло Земли), так и факторы, влияющие на теплоперенос и температуры климатических поясов (теплопроводность, атмосферная и океаническая циркуляция).

При рассмотрении влияния атмосферы на радиационный баланс Фурье проанализировал опыт М. де Соссюра с зачернённым изнутри сосудом, накрытым стеклом. Де Соссюр измерял разность температур внутри и снаружи такого сосуда, выставленного на прямой солнечный свет. Фурье объяснил повышение температуры внутри такого «мини-парника» по сравнению с внешней температурой действием двух факторов: блокированием конвективного теплопереноса (стекло предотвращает отток нагретого воздуха изнутри и приток прохладного снаружи) и различной прозрачностью стекла в видимом и инфракрасном диапазоне.

Именно последний фактор и получил в позднейшей литературе название парникового эффекта - поглощая видимый свет, поверхность нагревается и испускает тепловые (инфракрасные) лучи; поскольку стекло прозрачно для видимого света и почти непрозрачно для теплового излучения, то накопление тепла ведёт к такому росту температуры, при котором количество проходящих через стекло тепловых лучей достаточно для установления теплового равновесия.

Фурье постулировал, что оптические свойства атмосферы Земли аналогичны оптическим свойствам стекла, то есть её прозрачность в инфракрасном диапазоне ниже, чем прозрачность в диапазоне оптическом.

Суть парникового эффекта состоит в следующем: Земля получает энергию от Солнца, в основном, в видимой части спектра, а сама излучает в космическое пространство, главным образом, инфракрасные лучи.

Однако многие содержащиеся в ее атмосфере газы - водяной пар, СО2, метан, закись азота и т. д. - прозрачны для видимых лучей, но активно поглощают инфракрасные, удерживая тем самым в атмосфере часть тепла.

В последние десятилетия содержание парниковых газов в атмосфере очень сильно выросло. Появились и новые, ранее не существовавшие вещества с "парниковым" спектром поглощения - прежде всего фторуглеводороды (Лукнин, 2001).

Газы, вызывающие парниковый эффект, - это не только диоксид углерода (CO2). К ним также относятся метан (CH4), закись азота (N2O), гидрофторуглероды (ГФУ), перфторуглероды (ПФУ), гексафторид серы (SF6). Однако именно сжигание углеводородного топлива, сопровождающееся выделением CO2, считается основной причиной загрязнения (Карнаухов, 2002).

Причина быстрого роста количества парниковых газов очевидна, - человечество сейчас сжигает за день столько ископаемого топлива, сколько его образовывалось за тысячи лет в период образования месторождений нефти, угля и газа. От этого «толчка» климатическая система вышла из «равновесия» и мы видим большее число вторичных негативных явлений: особо жарких дней, засух, наводнений, резких скачков погоды, причем именно это и наносит наибольший урон.

Согласно прогнозам исследователей, если ничего не предпринимать, мировые выбросы CO2 в течение ближайших 125 лет вырастут вчетверо. Но нельзя забывать и о том, что значительная часть будущих источников загрязнения еще не построена. За последние сто лет температура в северном полушарии увеличилась на 0,60 С. Прогнозируемый рост температуры в следующем столетии составит от 1,5 до 5,80 С. Наиболее вероятный вариант - 2,5-30 С (Алексеев и др., 1999).

Однако изменения климата - это не только повышение температуры. Изменения касаются и других климатических явлений. Не только сильная жара, но и сильные внезапные заморозки, наводнения, сели, смерчи, ураганы объясняют эффектами глобального потепления. Климатическая система слишком сложна, чтобы ожидать от нее равномерного и одинакового изменения во всех точках планеты. И главную опасность ученые видят сегодня именно в росте отклонения от средних значений - значительных и частых колебаний температуры.

Палеонтологические данные свидетельствуют о том, что климат Земли не был постоянным. Тёплые периоды, сменялись холодными ледниковыми. В тёплые периоды среднегодовая температура Арктических широт поднималась до 7 - 13°С, а температура самого холодного месяца января составляла 4-6 градусов, т.е. климатические условия в нашей Арктике мало отличались от климата современного Крыма. На смену тёплым периодам рано или поздно приходили похолодания, во время которых льды достигали современных тропических широт.

Человек был тоже свидетелем ряда климатических изменений. В начале второго тысячелетия (11-13 века) исторические хроники свидетельствуют о том, что большая площадь Гренландии не была покрыта льдами (именно поэтому норвежские мореплаватели её окрестили «зелёной землёй»). Затем климат Земли стал суровей, и Гренландия практически полностью покрылась льдами. В 15-17 века суровые зимы достигли своего апогея. О суровости зим того времени свидетельствуют многие исторические летописи, а также художественные произведения. Так на известной картине голландского художника Ян Ван Гойена "Конькобежцы" (1641) изображено массовое катание на коньках по каналам Амстердама, в настоящее время каналы Голландии уже давным давно не замерзают. В средневековые зимы замерзала даже река Темза в Англии. В 18 веке было отмечено незначительное потепление, которое достигло своего максимума в 1770 году. 19 век снова ознаменовался очередным похолоданием, которое продолжалось вплоть до 1900 года, а с начала 20 века уже началось довольно таки быстрое потепление. Уже к 1940 году в Гренландском море количество льдов сократилось вдвое, в Баренцевом - почти на треть, а в Советском секторе Арктике площадь льдов в сумме сократилась почти на половину (1 млн. км2). В этот период времени даже обычные суда (не ледоколы) спокойно проплывали северным морским путём от западных до восточных окраин страны. Именно тогда было зафиксировано значительное повышение температуры арктических морей, отмечено значительное отступление ледников в Альпах и на Кавказе. Общая площадь льда Кавказа снизилась на 10%, а толщина льда местами уменьшилась на целые 100 метров. Повышение температуры в Гренландии составило 5°С, а на Шпицбергене все 9°С.

В 1940 потепление сменилось кратковременным похолоданием, в скором времени на смену которого, пришло очередное потепление, а с 1979 года начался быстрый рост температуры поверхностного слоя атмосферы Земли, который вызвал очередное ускорение таяния льдов Арктики, Антарктики и повышение зимних температур в умеренных широтах. Так, за последние 50 лет, толщина арктических льдов уменьшилась на 40%, а жители ряда сибирских городов стали для себя отмечать, что крепкие морозы уже давно остались в прошлом. Средняя зимняя температура в Сибири повысилась почти на десять градусов за последние пятьдесят лет. В некоторых областях России безморозный период увеличился на две-три недели. Ареал обитания многих живых организмов сместился к северу вслед за растущими средними зимними температурами. Особенно наглядно о глобальных изменениях климата свидетельствуют старые фотографии ледников .

В целом за последние сто лет средняя температура поверхностного слоя атмосферы повысилась на 0,3-0,8°С, площадь снежного покрова в северном полушарии снизилась на 8%, а уровень Мирового океана поднялся в среднем на 10-20 сантиметров. Эти факты вызывают определённую озабоченность. Остановится ли глобальное потепление или дальнейший рост среднегодовой температуры на Земле продолжится, ответ на этот вопрос появится только тогда, когда будут точно установлены причины происходящих климатических изменений.

Все происходящие климатические процессы на планете зависят от активности нашего светила - Солнца. Поэтому даже самые малые изменения активности Солнца непременно сказываются на погоде и климате Земли. Выделяют 11-летние, 22-летние, а также 80-90 летние (Глайсберга) циклы солнечной активности.

Вполне вероятно, что наблюдаемое глобальное потепление связано с очередным ростом солнечной активности, которая в будущем может снова пойти на убыль.

Югославский астроном Миланкович предположил, что циклические изменения климата во многом связаны с изменением орбиты вращения Земли вокруг Солнца, а также изменением угла наклона оси вращения Земли, по отношению к Солнцу. Подобные орбитальные изменения положения и движения планеты вызывают изменение радиационного баланса Земли, а значит и её климата. Миланкович, руководствуясь своей теорией, вполне точно рассчитал времена и протяжённость ледниковых периодов в прошлом нашей планеты. Климатические изменения, вызванные изменением орбиты Земли, происходят обычно в течение десятков, а то и сотен тысяч лет. Наблюдаемое же в настоящий момент времени относительно быстрое изменение климата, по-видимому, происходит в результате действия ещё каких-то факторов.

Мировой океан - огромный инерционный аккумулятор солнечной энергии. Он во многом определяет направление и скорость движения тёплых океанических, а также воздушных масс на Земле, которые в сильной степени влияют на климат планеты. В настоящий момент времени мало изучена природа циркуляции тепла в водной толщи океана. Так известно, что средняя температура вод океана составляет 3,5°С, а поверхности суши 15°С, поэтому интенсивность теплообмена между толщей океана и приземным слоем атмосферы может приводить к значительным климатическим изменениям. Кроме того, в водах океана растворено большое количество СО2 (около 140 трлн. тонн, что в 60 раз больше, чем в атмосфере) и ряда других парниковых газов, в результате определённых природных процессов эти газы могут поступать в атмосферу, существенным образом оказывая влияние на климат Земли (Басов, 1999).

Вулканическая активность является источником поступления в атмосферу Земли аэрозолей серной кислоты и большого количества углекислого газа, что также может значительным образом сказаться на климате Земли. Крупные извержения первоначально сопровождаются похолоданием вследствие поступления в атмосферу Земли аэрозолей серной кислоты и частиц сажи. Впоследствии, поступивший в ходе извержения CO2 вызывает рост среднегодовой температуры на Земле. Последующее долговременное снижение вулканической активности способствует увеличению прозрачности атмосферы, а значит и повышению температуры на планете.

В словосочетании «Солнечная система» не зря упоминается слово «система», а в любой системе, как известно, присутствуют связи между её компонентами. Поэтому не исключено, что взаимное положение планет и Солнца может влиять на распределение и силу гравитационных полей, солнечной энергии, а также других видов энергии. Все связи и взаимодействия между Солнцем, планетами и Землёй пока ещё не изучены и не исключено, что они оказывают значительное влияние на процессы, происходящие в атмосфере и гидросфере Земли.

Планета Земля настолько большая и сложная система с огромным количеством структурных элементов, что её глобальные климатические характеристики могут ощутимо изменяться без всяких изменений солнечной активности и химического состава атмосферы. Различные математические модели показывают, что на протяжении века, колебания температуры приземного слоя воздуха (флуктуации) могут достигать 0,4°С. В качестве сравнения можно привести температуру тела здорового человека, которая варьирует течение дня и даже часа.

Высокая скорость климатических изменений, происходящих в последние десятилетия, действительно может быть объяснима всё возрастающей интенсификацией антропогенной деятельности, которая оказывает заметное влияние на химический состав атмосферы нашей планеты в сторону увеличения содержания в ней парниковых газов (Карнаухов, 2002).

ГЛАВА 2. ПАРНИКОВЫЕ ГАЗЫ

Парниковый эффект в атмосфере нашей планеты вызван тем, что поток энергии в инфракрасном диапазоне спектра, поднимающийся от поверхности Земли, поглощается молекулами газов атмосферы, и излучается обратно в разные стороны, в результате половина поглощенной молекулами парниковых газов энергии возвращается обратно к поверхности Земли, вызывая её разогрев. Следует отметить, что парниковый эффект - это естественное атмосферное явление (рис.5). Если бы на Земле вообще не было парникового эффекта, то средняя температура на нашей планеты была бы около -21°С, а так, благодаря парниковым газам, она составляет +14°С. Поэтому, чисто теоретически, деятельность человека, сопряжённая с выбросом парниковых газов в атмосферу Земли, должна приводить к дальнейшему разогреву планеты. Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар (36-70%), углекислый газ (9-26%), метан (4-9%), галоуглероды, оксид азота.

Рис. - Схема парникового эффекта

Угольные электростанции, заводские трубы, автомобильные выхлопы и другие созданные человечеством источники загрязнения вместе выбрасывают в атмосферу около 22 миллиардов тонн углекислого газа и других парниковых газов в год. Животноводство, применение удобрений, сжигание угля и другие источники дают около 250 миллионов тонн метана в год. Около половины всех парниковых газов, выброшенных человечеством, осталось в атмосфере. Около трёх четвертей всех антропогенных выбросов парниковых газов за последние 20 лет вызваны использованием нефти, природного газа и угля (рис.6). Большая часть остального вызвана изменениями ландшафта, в первую очередь вырубкой лесов.

Рис. - Соотношение выбросов парниковых газов странами, наиболее активно сжигающими нефть в 2000 году.

Водяной пар - самый главный на сегодня парниковый газ. Однако водяной пар участвует и во множестве других процессов, что делает его роль далеко неоднозначной в разных условиях.

Прежде всего, при испарении с поверхности Земли и дальнейшей конденсации в атмосфере, в нижние слои атмосферы (тропосферу) благодаря конвекции переносится до 40% от всего тепла, поступающего в атмосферу. Таким образом, водяной пар при испарении несколько понижает температуру поверхности. Но выделившееся в результате конденсации в атмосфере тепло идет на ее разогрев, и в дальнейшем, на разогрев и самой поверхности Земли.

Но после конденсации водяного пара образуются водяные капельки либо кристаллики льда, которые интенсивно участвуют в процессах рассеяния солнечного света, отражая часть солнечной энергии назад в космос. Облака, как раз представляющие из себя скопления этих капелек и кристалликов, увеличивают долю солнечной энергии (альбедо), отражаемой самой атмосферой обратно в космос (а дальше осадки из облаков могут выпасть в виде снега, увеличивая альбедо поверхности).

Однако у водяного пара, даже сконденсированного в капельки и кристаллики, все равно остаются мощные полосы поглощения в инфракрасной области спектра, а значит роль тех же облаков далеко не однозначна. Двойственность эта особенно заметна в следующих крайних случаях - при покрытии облаками неба в солнечную летнюю погоду температура на поверхности снижается, а если то же самое происходит зимней ночью, то наоборот, повышается. На окончательный результат влияет и положение облаков - на низких высотах мощная облачность отражает много солнечной энергии, и баланс может быть в данном случае в пользу антипарникового эффекта, а вот на больших высотах, разреженные перистые облака пропускают довольно много солнечной энергии вниз, но даже разреженные облака являются почти непреодолимы препятствием для инфракрасного излучения и, и тут можно говорить о преобладании парникового эффекта.

Еще одна особенность водяного пара - влажная атмосфера в некоторой степени способствует связыванию другого парникового газа - углекислого, и переносу его дождевыми осадками к поверхности Земли, где он в результате дальнейших процессов может быть израсходован в процессах образования карбонатов и горючих полезных ископаемых.

Человеческая деятельность очень слабо непосредственно влияет на содержание водяного пара в атмосфере - только лишь за счет роста площади орошаемых земель, изменения площади болот и работы энергетики, что на фоне испарения со всей водной поверхности Земли и вулканической деятельности ничтожно мало. Из-за этого довольно часто на нем мало акцентируется внимание при рассмотрении проблемы парникового эффекта.

Однако косвенное влияние на содержание водяного пара может быть очень велико, за счет обратных связей между содержанием водяного пара в атмосфере и потеплением, вызванном другими парниковыми газами, что мы сейчас и рассмотрим.

Известно, что при увеличении температуры увеличивается и испарение водяного пара, и на каждые 10 °С возможное содержание водяного пара в воздухе почти удваивается. Например, при 0 °С давление насыщенного пара составляет около 6 мб, при +10 °С - 12 мб, а при +20 °С - 23 мб.

Видно, что содержание водяного пара сильно зависит от температуры, и при понижении ее по каким-либо причинам, во-первых, понижается сам парниковый эффект водяного пара (благодаря уменьшившемуся содержанию), а во-вторых, происходит конденсация водяного пара, которая конечно, сильно тормозит понижение температуры за счет выделения конденсационного тепла, но зато уже после конденсации увеличивается отражение солнечной энергии, как самой атмосферы (рассеяние на капельках и кристаллах льда), так и поверхности (выпадение снега), что дополнительно понижает температуру.

При повышении температуры содержание водяного пара в атмосфере растет, его парниковый эффект увеличивается, что усиливает первоначальное повышение температуры. В принципе, растет и облачность (больше водяного пара попадает в относительно холодные области), однако крайне слабо - по данным И. Мохова порядка 0,4% на градус потепления, что не может сильно повлиять на рост отражения солнечной энергии.

Углекислый газ - второй по вкладу в парниковый эффект на сегодня, не вымораживается при понижении температуры, и продолжает создавать парниковый эффект даже при самых низких температурах, возможных в земных условиях. Вероятно, именно благодаря постепенному накоплению углекислого газа в атмосфере вследствии вулканической деятельности, Земля смогла выйти из состояния мощнейших оледенений (когда даже на экватор был покрыт мощнейшим слоем льда), в которые она попадала в начале и конце протерозоя.

Углекислый газ вовлечен в мощный круговорот углерода в системе литосфера-гидросфера-атмосфера, и изменение земного климата связывают прежде всего с изменением баланса его поступления в атмосферу и выведения из нее.

Благодаря относительно высокой растворимости углекислого газа в воде, содержание углекислого газа в гидросфере (прежде всего океаны) сейчас составляет 4х104 Гт (гигатонн) углерода (отсюда и далее приводятся данные по СО2 в пересчете на углерод), включая глубинные слои (Путвинский, 1998). В атмосфере в настоящее время содержится около 7,5х102 Гт углерода (Алексеев и др., 1999). Небольшим содержание СО2 в атмосфере было далеко не всегда - так в архее (около 3,5 млрд. лет назад) атмосфера состояла почти на 85-90% из углекислого газа, при существенно большем давлении и температуре (Сорохтин, Ушаков, 1997). Однако поступление значительных масс воды на поверхность Земли в результате дегазации недр, а также возникновение жизни обеспечило связывание почти всего атмосферного и значительной части растворенного в воде углекислого газа в виде карбонатов (в литосфере хранится около 5,5х107 Гт углерода (доклад МГЭИК, 2000)). Также углекислый газ стал преобразовываться живыми организмами в различные формы горючих полезных ископаемых. Кроме того, связывание части углекислого газа произошло и за счет накопления биомассы, общие запасы углерода в которой сравнимы с запасами в атмосфере, а учитывая еще и почвы - превышает в несколько раз.

Однако, нас прежде всего интересуют потоки, обеспечивающие поступление углекислого газа в атмосферу, и выводящие его из нее. Литосфера сейчас обеспечивает весьма небольшой поток углекислого газа, поступающего в атмосферу прежде всего благодаря вулканической деятельности - около 0.1 Гт углерода в год (Путвинский, 1998). Значительно большие потоки наблюдаются в системах океан (вместе с обитающими там организмами) - атмосфера, и наземная биота - атмосфера. В океан ежегодно поступает из атмосферы около 92 Гт углерода и 90 Гт возвращается обратно в атмосферу (Путвинский, 1998). Таким образом, океаном ежегодно дополнительно изымается из атмосферы около 2 Гт углерода. В то же время в процессах дыхания и разложения наземных умерших живых существ в атмосферу поступает около 100 Гт углерода в год. В процессах фотосинтеза наземной растительностью изымается из атмосферы тоже около 100 Гт углерода (Путвинский, 1998). Как мы видим, механизм поступления и изъятия углерода из атмосферы достаточно сбалансирован, обеспечивая приблизительно равные потоки. Современная жизнедеятельность человека включает в этот механизм все увеличивающийся дополнительный поток углерода в атмосферу за счет сжигания горючих ископаемых (нефть, газ, уголь и пр.) - по данным, например, за период 1989-99 гг., в среднем около 6,3 Гт в год. Также поток углерода в атмосферу увеличивается и за счет вырубки и частичного сжигания лесов - до 1,7 Гт в год (доклад МГЭИК, 2000), при этом прирост биомассы, способствующий поглощению СО2 составляет всего около 0,2 Гт в год вместо почти 2 Гт в год. Даже учитывая возможность поглощения около 2 Гт дополнительного углерода океаном, все равно остается довольно значимый дополнительный поток (к настоящему времени около 6 Гт в год), увеличивающий содержание углекислого газа в атмосфере. Кроме того, поглощение углекислого газа оканом уже в ближайшем будущем может уменьшится, и даже возможен обратный процесс - выделение углекислого газа из Мирового океана. Это связано с понижением растворимости углекислого газа при повышении температуры воды - так, например, при повышении температуры воды всего с 5 до 10 °С, коэффициент растворимости углекислого газа в ней уменьшается приблизительно с 1,4 до 1,2.

Итак, поток углекислого газа в атмосферу, вызываемый хозяйственной деятельностью не велик по сравнению с некоторыми естественными потоками, однако его нескоменсированность приводит к постепенному накоплению СО2 в атмосфере, что разрушает баланс поступления и изъятия СО2, складывавшийся за миллиарды лет эволюции Земли и жизни на ней.

Многочисленные факты геологического и исторического прошлого свидетельствуют о связи между изменениями климата и колебаниями содержания парниковых газов. В период от 4 до 3,5 млрд. лет назад яркость Солнца была примерно на 30% меньше, чем сейчас. Однако и под лучами молодого, «бледного» Солнца на Земле развивалась жизнь и образовывались осадочные породы: по крайней мере на части земной поверхности температура была выше точки замерзания воды. Некоторые ученые высказывают предположение, что в ту пору в земной атмосфере содержал ось в 1000 раз больше диоксида углерода, чем сейчас, и это компенсировало нехватку солнечной энергии, поскольку больше тепла, излучаемого Землей, оставалось в атмосфере. Усиливавшийся парниковый эффект мог стать одной из причин исключительно теплого климата позднее - в мезозойскую эру (эпоху динозавров). По данным анализа ископаемых остатков на Земле в ту пору было на 10-15 ос теплее, чем сейчас. Следует заметить, что тогда, 100 млн. лет назад и раньше, континенты занимали иное положение, чем в наше время, и океаническая циркуляция также была иной, поэтому перенос тепла от тропиков в полярные районы мог быть больше. Однако расчеты, выполненные Эриком Дж. Барроном, работающим сейчас в Пенсильванском университете, и другими исследователями, показывают, что с палеоконтинентальной географией могло быть связано не более половины мезозойского потепления. Остающуюся часть потепления легко объяснить ростом содержания диоксида углерода. Это предположение было впервые выдвинуто советскими учеными А. Б. Роновым из Государственного гидрологического института и М. И. Будыко из Главной геофизической обсерватории. Расчеты, подтверждающие это предложение, были проведены Эриком Барроном, Старли Л. Томпсоном из Национального центра атмосферных исследований (NCAR). Из геохимической модели, разработанной Робертом А. Бернером и Антонио К. Ласагой из Йельского университета и ныне покойным Робертом. Поля в штате Техас превратились в пустыню, после того как здесь в 1983 г. некоторое время продержалась засуха Такую картину, как показывают расчеты по компьютерным моделям, можно будет наблюдать во многих местах, если в результате глобального потепления уменьшится влажность почвы в центральных районах континентов, где сосредоточено производство зерна.

М. Гаррелсом из Университета Южной Флориды, следует, что диоксид углерода мог выделяться при исключительно сильной вулканической активности на срединно-океанических хребтах, где поднимающаяся магма формирует новое океаническое дно. Прямые свидетельства, указывающие на связь во время оледенений между содержанием в атмосфере парниковых газов и климатом, можно «извлечь» из пузырьков воздуха, включенных в антарктический лед, который образовался в древние эпохи в результате спрессовывания падающего снега. Группа исследователей, возглавляемая Клодом Лорью из Лаборатории гляциологии и геофизики в Гренобле, изучила колонку льда длиной 2000 м (соответствующую периоду продолжительностью 160 тыс. лет), полученную советскими исследователями на станции «Восток» в Антарктиде. Лабораторный анализ газов, заключенных в этой колонке льда, показал, что в древней атмосфере концентрации диоксида углерода и метана менялись согласованно и, что более важно, «в такт» с изменениями средней локальной температуры (она была определена по отношению концентраций изотопов водорода в молекулах воды). Во время последнего межледникового периода, продолжающегося уже 10 тыс. лет, и в предшествующее ему межледниковье (130 тыс. лет назад) продолжительностью также 10 тыс. лет, средняя температура в этом районе была на 10 ос выше, чем во время оледенений. (В целом на Земле в указанные периоды было на 5 ос теплее.) В эти же периоды в атмосфере содержал ось на 25% больше диоксида углерода и на 100070 больше метана, чем во время оледенений. Неясно, было ли причиной изменение содержания парниковых газов, а следствием климатические изменения или наоборот. Скорее всего, причиной оледенений были изменения орбиты Земли и особая динамика продвижения и отступания ледников; однако эти климатические колебания могли усиливаться благодаря изменениям биоты и колебаниям океанической циркуляции, влияющим на содержание парниковых газов в атмосфере. Еще более подробные данные о флуктуациях содержания парниковых газов и изменениях климата имеются для последних 100 лет, за которые произошло дальнейшее увеличение на 25% концентрации диоксида углерода и на 100% метана. «Записи» средней температуры на земном шаре для последних 100 лет были изучены двумя группами исследователей, возглавляемыми Джеймсом Э. Хансеном из Годдардовского института космических исследований Национального управления по аэронавтике и исследованию космического пространства, и Т. М. Л. Уигли из Отдела климата Университета Восточной Англии.

Задержка тепла атмосферой - основной компонент энергетического баланса Земли (рис.8). Примерно 30% энергии, поступающей от Солнца, отражается (слева) либо от облаков, либо от частиц, либо от поверхности Земли; остальные 70% поглощаются. Поглощенная энергия переизлучается в инфракрасном диапазоне поверхностью планеты.

Рис. - Задержка тепла атмосферой

Эти ученые воспользовались данными измерений на метеостанциях, разбросанных по всем континентам (группа из Отдела климата включила также в анализ данные измерений на море). Вместе с тем в двух группах были приняты разные методики анализа наблюдений и учета «искажений», связанных, например, с тем, что некоторые метеостанции за сто лет «переехали» на другое место, а некоторые, расположенные в городах, давали данные, «загрязненные» влиянием тепла, выделяемого промышленными предприятиями или накапливаемого за день зданиями и мостовой. Последний эффект, приводящий к появлению «островов тепла», очень заметен в развитых странах, например в США. Вместе с тем, даже если рассчитанную для США поправку (она была получена Томасом Р. Карлом из Национального центра климатических данных в Эшвилле, шт. Северная Каролина, и П. Д. Джоунсом из Университета Восточной Англии) распространить на все данные по земному шару, в обеих записях останется «<реальное» потепление величиной 0,5 ОС, относящееся к последним 100 годам. В согласии с общей тенденцией 1980-е годы остаются самым теплым десятилетием, а 1988, 1987 и 1981 гг. - наиболее теплыми годами (в порядке перечисления). Можно ли считать это «сигналом» парникового потепления? Казалось бы, можно, однако в действительности факты не столь однозначны. Возьмем для примера такое обстоятельство: вместо неуклонного потепления, какое можно ожидать от парникового эффекта, быстрое повышение температуры, происходившее до конца второй мировой войны, сменилось небольшим похолоданием, продлившимся до середины 1970-х годов, за которым последовал второй период быстрого потепления, продолжающийся по сей день. Какой характер примет изменение температуры в ближайшее время? Чтобы дать такой прогноз, необходимо ответить на три вопроса. Какое количество диоксида углерода и других парниковых газов будет выброшено в атмосферу? Насколько при этом возрастет концентрация этих газов в атмосфере? Какой климатический эффект вызовет это повышение концентрации, если будут действовать естественные и антропогенные факторы, которые могут ослаблять или усиливать климатические изменения? Прогноз выбросов - нелегкая задача для исследователей, занимающихся анализом человеческой деятельности. Какое количество диоксида углерода попадет в атмосферу, зависит главным образом от того, сколько ископаемого топлива будет сожжено и сколько лесов вырублено (последний фактор ответствен за половину прироста парниковых газов с 1800 г. и за 20070прироста в наше время). И тот и другой фактор зависят в свою очередь от множества причин. Так, на потреблении ископаемого топлива сказываются рост населения, переход к альтернативным источникам энергии и меры по экономии энергии, а также состояние мировой экономики. Прогнозы в основном сводятся к тому, что потребление ископаемого топлива на земном шаре в целом будет увеличиваться примерно с той же скоростью, что и сегодня намного медленнее, чем до энергетического кризиса 1970-х годов. В результате эмиссия (поступление в атмосферу) диоксида углерода в ближайшие несколько десятилетий, будет увеличиваться на 0,5-2070 в год. Другие парниковые газы, такие как ХФУ, оксиды азота и тропосферный озон, могут вносить в потепление климата почти столь же большой вклад, что и диоксид углерода, хотя в атмосферу их попадает значительно меньше: объясняется это тем, что они более эффективно поглощают солнечную радиацию. Предсказать, какова будет эмиссия этих газов - задача еще более трудная. Так, например, не вполне ясно происхождение некоторых газов, в частности метана; величина выбросов других газов, таких как ХФУ или озон, будет зависеть от того, какие изменения в технологии и политике произойдут в ближайшем будущем.

Обмен углеродом между атмосферой и различными «резервуарами» на Земле (рис.9). Каждое число указывает в миллиардах тонн приход или уход углерода (в форме диоксида) за год или его запас в резервуаре. В этих естественных циклах, один из которых «замыкается» на сушу,а другой на океан, из атмосферы удаляется ровно столько диоксида углерода, сколько в нее поступает, однако человеческая деятельность - сведение лесов и сжигание ископаемого топлива - приводит к тому, что содержание углерода в атмосфере ежегодно повышается на 3 млрд. тонн. Данные заимствованы из работы Берта Болина, работающего в Стокгольмском университете

Рис.9 - Обмен углеродом между атмосферой и различными «резервуарами»

Предположим, мы имеем разумный прогноз того, как будет изменяться эмиссия диоксида углерода. Какие изменения в этом случае произойдут с концентрацией этого газа в атмосфере? Атмосферный диоксид углерода «потребляется» растениями, а также океаном, где он расходуется на химические и биологические процессы. С изменением концентрации атмосферного диоксида углерода будет, вероятно, меняться и скорость «потребления» этого газа. Иными словами, процессы, обусловливающие изменение содержания атмосферного диоксида углерода, должны включать обратную связь. Диоксид углерода является «сырьем» для фотосинтеза в растениях, поэтому потребление его растениями скорее всего будет увеличиваться с накоплением его в атмосфере, что замедлит это накопление. Аналогично этому, поскольку содержание диоксида углерода в поверхностных водах океана находится в примерном равновесии с его содержанием в атмосфере, увеличение поглощения диоксида углерода океанской водой приведет к замедлению его накопления в атмосфере. Может случиться, однако, что накопление в атмосфере диоксида углерода и других парниковых газов приведет в действие механизмы положительной Обратной связи, которые будут усиливать климатический эффект. Так, быстрые изменения климата могут привести к исчезновению части лесов и других экосистем, что ослабит способность биосферы поглощать диоксид углерода. Более того, потепление может привести к быстрому высвобождению углерода, содержащегося в почве в составе мертвой органической материи. Этот углерод, количество которого вдвое выше, чем в атмосфере, постоянно превращается в диоксид углерода и метан под действием почвенных бактерий. Потепление может ускорить их «работу», в результате чего ускорится выделение диоксида углерода (из сухих почв) и метана (из районов, занятых рисовыми полями, из свалок и заболоченных земель). Довольно много' метана запасено также в осадках на континентальном шельфе и ниже слоя вечной мерзлоты в Арктике в виде клатратов - молекулярных решеток, состоящих из молекул метана и воды. Потепление шельфовых вод и таяние вечной мерзлоты могут привести к высвобождению метана. Несмотря на указанные неопределенности, многие исследователи считают, что поглощение диоксида углерода растениями и океаном замедлит накопление этого газа в атмосфере - по крайней мере в ближайшие 50-100 лет. Типичные оценки, основанные на существующей в настоящее время скорости эмиссии, показывают, что из всего количества диоксида углерода, попадающего в атмосферу, оставаться там будет примерно половина. Из этого следует, что удвоение концентрации диоксида углерода по сравнению с 1900 г. (до уровня 600 млн. произойдет примерно между 2030 и 2080 гг. Вместе с тем другие парниковые газы будут, скорее всего, накапливаться в атмосфере быстрее.

Как изменится климат, если количество атмосферного диоксида углерода удвоится?

В имеющихся исторических «записях» мы не находим ответа на этот вопрос. Не помогают и лабораторные эксперименты, ибо невозможно создать в лаборатории «подобие» климата - состояния, обусловленного сложными взаимодействиями атмосферы, океана, суши, растительности и полярных льдов. Чтобы заглянуть в будущее, используют математические модели климата. Такие модели были разработаны в Лаборатории геофизической гидродинамики Принстонского университета, в Годдардовском институте космических исследований, в NCAR и в других местах. Они основаны на уравнениях для взаимодействующих компонентов системы океан - атмосфера, а также на основных физических принципах, определяющих поведение этой системы,- таких как газовые законы, законы сохранения массы, количества движения и энергии. Подавая на «вход» модели данные о потоке энергии от Солнца и составе атмосферы, можно получить на «выходе» климат - т. е. температуру, а в сложных моделях также давление, скорость ветра, влажность, содержание влаги в почве и другие величины. Чтобы вычисления можно было проводить на компьютерах, их «привязывают» к отдельным точкам карты Земли, отражающей в некотором приближении реальный земной шар. В наиболее сложных моделях - моделях глобальной циркуляции (МГЦ), разработанных для долгосрочного прогноза погоды, - атмосфера представляется в виде трехмерной «сетки» с расстоянием между «узлами» несколько сотен километров по горизонтали и несколько километров по вертикали; климатические параметры, или попросту «климат», вычисляются лишь в «узлах». Несмотря на такое упрощение, расчет изменений климата хотя бы на год занимает даже на самых мощных суперкомпьютерах много часов. Для того чтобы исследовать эффект, оказываемый накоплением парниковых газов, в модель «вводят» дополнительное количество парниковых газов и результат сравнивают с контрольным расчетом климата, соответствующего реальному составу атмосферы. Результаты расчетов по последним МГЦ примерно согласуются друг с другом: они показывают, что удвоение количества атмосферного диоксида углерода или эквивалентное увеличение содержания других парниковых газов приведет к повышению температуры на Земле на 3-5,5 ОС. Такое потепление в истории человечества не имеет аналогов; оно близко к величине потепления, происшедшего вслед за последним оледенением (18 тыс. лет назад), но займет в 10-100 раз меньше времени. Недостатки численных моделей ограничивают надежность таких прогнозов. Многие процессы, влияющие на глобальный климат, имеют слишком малые масштабы, чтобы их можно было «поймать» редкой сеткой модели. Такие важные для климата процессы, как атмосферная турбулентность, выпадение осадков или образование облаков, имеют масштабы не несколько сотен километров (расстояние между узлами сетки в МГЦ), а несколько километров и. меньше. Поскольку такие процессы не могут быть учтены в явном виде, приходится искать способы связать их с переменными, которые в модели учитываются. Делается это путем введения параметра (коэффициента пропорциональности), который связывает, например, среднюю облачность в данной ячейке сетки со средней влажностью и средней температурой (переменными, которые модель воспроизводит). Этот прием, называемый параметризацией, позволяет учесть суммарный эффект мелкомасштабных явлений и процессов, которые могут обеспечивать обратную связь, сглаживающую или усиливающую изменения климата. Облака, например, отражают солнечный свет назад в космос (что приводит к похолоданию планеты), но они также поглощают инфра красную радиацию, идущую от Земли (что приводит к потеплению). Какой из этих эффектов преобладает, зависит от яркости облаков, высоты, на которой они расположены, их распределения по небу и занимаемой ими площади. Последние исследования и измерения со спутников показали, что расчеты, выполненные два десятилетия назад, верны: в настоящее время облака охлаждают поверхность Земли. Иными словами, под безоблачным небом Земля была бы теплее. Однако изменения климата могут приводить к изменениям в характере облачного покрытия, что затрагивает природу и силу обратной связи. Современные модели, грубо воспроизводящие лишь среднюю облачность, немногое способны поведать о механизме обратной связи, обусловленной облачностью, равно как и о других механизмах такого рода, зависящих от параметризуемых процессов. Другим существенным недостатком современных моделей является то, что они недостаточно точно учитывают влияние океанов. Океаны влияют и будут, без сомнения, влиять на климат в будущем. Огромные массы воды в океанах действуют подобно «тепловой губке»: они замедляют повышение температуры, забирая лишнее тепло. Эффективность этого процесса зависит в свою очередь от особенностей циркуляции, которая может перестраиваться в меняющемся климате. В принципе в моделях климата несложно учесть взаимодействие атмосферы с океаном, описав последний достаточно детально. Однако объем вычислений при этом настолько возрастает, что в большинстве современных МГЦ, используемых для расчетов парникового потепления, динамика океанов рассматривается в упрощенном виде и рассчитывается с очень грубым пространственным разрешением либо вообще исключается из анализа. Помимо того что упрощенное представление океанов в моделях ставит предел надежности глобальных прогнозов, оно также мешает нам получить ответ на вопрос, как будет изменяться климат в разных регионах

Метан, этот парниковый газ обладает способностью значительно сильнее поглощать инфракрасное излучение земной поверхности чем углекислый газ (той же массы), его содержание быстро растет, и этот рост может еще значительно ускорится. Так что на метан стоит обратить самое пристальное внимание.

Содержание метана в атмосфере с начала индустриальной эры выросло на 150%. В настоящее время его содержание в атмосфере составляет около 5 Гт, причем это содержание является рекордным как минимум за последние 140 тысяч лет (Бажин, 2000). По некоторым сценариям, разработанным экпертами МГЭИК, к 2100 году антропогенные выбросы увеличат содержание метана в атмосфере вдвое (IPCC, 2001), однако в этих прогнозах не учитывается действия обратных связей в климатической системе, способных увеличить содержание метана в атмосфере несравненно выше.

Время жизни метана, поступающего в атмосферу, порядка 8-12 лет, и выводится он из атмосферы в основном путем реакции с радикалом ОН (Бажин, 2000), образующимся в атмосфере в результате фотохимических реакций озона. Причем в результате цепочки реакций на выходе получается и углекислый газ. Кроме указанного способа, еще небольшой (несколько процентов) вклад в вывод метана из атмосферы дает и поглощение его почвенными бактериями (Бажин, 2000).

Оценка потоков метана из антропогенных и некоторых естественных источников составляет в общем около 0,48 Гт/год (Бажин, 2000). К этим источникам относят болота (0,05-0,07 Гт/год), насекомых, прежде всего термитов (0,02 Гт/год), рисовые поля (0,12 Гт/год), домашних животных, прежде всего жвачных (0,08 Гт/год), а также свалки (0,05 Гт/год). Включают также выделение метана при добыче угля (0,035 Гт/год) и потери при добыче газа (0,034 Гт/год), а также некоторые другие источники.

Ранее считалось, что поток метана из недр Земли невелик, и его практически не учитывали, однако некоторые современные оценки поступления метана от дегазации недр, основанные на анализе содержания различных изотопов углерода, входящего в состав метана, дают уже весьма значимые цифры около 0,2 Гт в год, и даже более (Валяев, 1997).

Поток метана в атмосферу может значительно увеличится при разрушении под действием происходящего потепления климата так называемых метангидратов, обнаруженых в последние десятилетия в вечной мерзлоте и в глубинах Мирового океана. Метангидраты - это фактически тот же лед, в котором в каркасах молекул воды за счет действия ван-дер-ваальсовских сил присутствуют еще молекулы метана (химическое взаимодействие отсутствует). Значительная часть метангидратов находится в метастабильном состоянии и подвергаются опасности разложения при небольшом повышении температуры (порядка одного-нескольких градусов) (Дядин, Гущин, 1998). Запасы метана в метангидратах просто огромны - около 1019 г (Валяев, 1997), т.е.104 Гт, что во много раз больше известных запасов его в залежах, а также угольных пластах, и в две тысячи раз превышает его содержание в атмосфере сегодня. Так что, высвобождение всего этого метана (даже не единовременное) способно очень сильно поднять температуру на поверхности Земли.


Подобные документы

  • Содержание в атмосфере газовых составляющих. Возрастание диоксида углерода в атмосфере усиливает парниковый эффект. Конвенция об изменении климата. Регулирование антропогенных выбросов и стоков парниковых газов.

    реферат [18,6 K], добавлен 25.10.2006

  • Понятие парникового эффекта. Потепление климата, повышение среднегодовой температуры на Земле. Последствия парникового эффекта. Накопление в атмосфере "парниковых газов", пропускающих кратковременные солнечные лучи. Решение проблемы парникового эффекта.

    презентация [1,3 M], добавлен 08.07.2013

  • Проблема парникового эффекта. Причины изменения климата. Основные принципы инвентаризации выбросов и стоков парниковых газов. Рамочная конвенция ООН по изменению климата. Киотский протокол - механизм торговли квотами. Проекты совместного осуществления.

    дипломная работа [82,7 K], добавлен 13.06.2013

  • Глобальный экологический кризис. Увеличение в атмосфере концентраций углекислого газа, метана и других парниковых газов. Нарушение радиационного баланса атмосферы. Накопление аэрозолей в атмосфере, разрушение озонового слоя.

    реферат [14,1 K], добавлен 25.10.2006

  • Состояние атмосферного воздуха в городе Омске. Меры по предотвращению загрязнения воздуха Омского ТЭЦ-5. Снижение выбросов окислов азота и диоксида серы. Технологии очистки дымовых газов от золы. Сокращение выбросов в населенные пункты парниковых газов.

    курсовая работа [359,0 K], добавлен 08.05.2014

  • Причины и последствия постепенного роста температуры поверхностного слоя атмосферы Земли и Мирового океана. Отрицательные показатели парникового эффекта. Возможные пути решения проблемы глобального потепления и меры по снижению выбросов парниковых газов.

    контрольная работа [20,2 K], добавлен 20.04.2015

  • Функции атмосферы Земли, возникновение, роль и состав парниковых газов. Причины предполагаемого потепления климата. Положительные и отрицательные последствия парникового эффекта для органического мира. Пути решения глобальной экологической проблемы.

    презентация [1,3 M], добавлен 16.12.2010

  • Исследование явления парникового эффекта, связанного с поступлением в атмосферу парниковых газов, которые препятствуют теплообмену между Землей и космосом. Сравнение баланса потоков углекислого газа для экосистем, вклада стран в мировое загрязнение.

    презентация [662,4 K], добавлен 27.09.2011

  • Сущность парникового эффекта. Пути исследования изменения климата. Влияние диоксида углерода на интенсивность парникового эффекта. Глобальное потепление. Последствия парникового эффекта. Факторы изменения климата.

    реферат [20,6 K], добавлен 09.01.2004

  • Глобальные проблемы человечества и перспективы современной цивилизации. Анализ биосферных процессов, сокращение биоразнообразия. Ожидание потепления климата из-за выброса в атмосферу СО2 и других "парниковых" газов. Понятие мальтузианской проблемы.

    контрольная работа [31,5 K], добавлен 25.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.