Загрязнение воды канализационными стоками
Гидросфера как природная система, ее важнейшее свойство. Загрязнение водоемов в результате поступления в них вредных веществ, их виды. Опасности неочищенных сточных вод: угроза инфекционных заболеваний, первичные стоки. Методы очистки сточных вод.
Рубрика | Экология и охрана природы |
Вид | реферат |
Язык | русский |
Дата добавления | 10.01.2010 |
Размер файла | 163,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
25
Загрязнение воды канализационными стоками
Содержание
Введение
Глава 1. Гидросфера как природная система
1.1 Загрязнение поверхностных вод
Глава 2. Опасность неочищенных сточных вод
2.1 Угроза инфекционных заболеваний
2.2 Сбор и очистка сточных вод
2.3 Этапы очистки воды
Глава 3. Стандартная очистка сточных вод
Заключение
Литература
ВВЕДЕНИЕ
Вода - самое распространенное неорганическое соединение на нашей планете. Вода - основа всех жизненных процессов, единственный источник кислорода в главном движущем процессе на Земле - фотосинтезе. Вода присутствует во всей биосфере: не только в водоемах, но и в воздухе, и в почве, и во всех живых существах. Последние содержат до 80-90% воды в своей биомассе. Потери 10 - 20% воды живыми организмами приводят к их гибели. В естественном состоянии вода никогда не свободна от примесей. В ней растворены различные газы и соли, находятся взвешенные твердые частички. В 1 л пресной воды может содержаться до 1 г солей. Большая часть воды сосредоточена в морях и океанах. На пресные воды приходится всего 2% . Большая часть пресных вод (85%) сосредоточена во льдах полярных зон и ледников. Возобновление пресных вод происходит в результате круговорота воды.
С появлением жизни на Земле круговорот воды стал относительно сложным, так как к простому явлению физического испарения (превращения воды в пар) добавились более сложные процессы, связанные с жизнедеятельностью живых организмов. К тому же роль человека по мере его развития становится все более значительной в этом круговороте.
ГЛАВА 1. ГИДРОСФЕРА КАК ПРИРОДНАЯ СИСТЕМА
Гидросфера - это прерывистая водная оболочка Земли, совокупность морей, океанов, континентальных вод (включая подземные) и ледяных покровов. Моря и океаны занимают около 71% земной поверхности, в них сосредоточено около 96.5% всего объема гидросферы. Суммарная площадь всех внутренних водоемов суши составляет менее 3% ее площади. На долю ледников приходится 1.6% запасов воды в гидросфере, а их площадь составляет около 10% площади континентов.
Важнейшее свойство гидросферы - единство всех видов природных вод (Мирового океана, вод суши, водяного пара в атмосфере, подземных вод), которое осуществляется в процессе круговорота воды в природе. Движущими силами этого глобального процесса служат поступающая на поверхность Земли тепловая энергия Солнца и сила тяжести, обеспечивающие перемещение и возобновление природных вод всех видов. Испарение с поверхности Мирового океана и с поверхности суши является начальным звеном круговорота вода в природе, обеспечивающим не только возобновление наиболее ценного его компонента - пресных вод суши, но и их высокое качество. Показателем активности водообмена природных вод служит высокая скорость их возобновления, хотя различные природные воды возобновляются (замещаются) с неодинаковой скоростью. Наиболее мобильный агент гидросферы - речные воды, период возобновления которых составляет10-14 суток.
Воды выступает в качестве одного из важнейших экзогенных факторов, видоизменявших лик земной поверхности. Теплоемкость воды в 3.3 тыс. раз больше теплоемкости воздуха. Поглощая огромное количество тепловой энергии и медленно ее отдавая, вода служит регулятором климатических процессов глобального масштаба.
Преобладающая часть гидросферных вод сосредоточена в Мировом океане. Мировой океан - основное замыкающее звено круговорота воды в природе. Он отдает большую часть испаряющейся влаги в атмосферу. Водные организмы, населяющие поверхностный слой Мирового океана, обеспечивают возврат в атмосферу значительной части свободного кислорода планеты.
Огромный объем Мирового океана свидетельствует о неисчерпаемости природных ресурсов планеты. Кроме того, Мировой океан является коллектором речных вод суши, ежегодно принимая около 39 тыс. кубических километров воды. Наметившееся в отдельных районах загрязнение Мирового океана грозит нарушить естественный процесс влагооборота в его наиболее ответственном звене - испарении с поверхности океана.
1.1 Загрязнение
Под загрязнением водоемов понимается снижение их биосферных функций и экономического значения в результате поступления в них вредных веществ.
Одним из видов загрязнения водоемов является тепловое загрязнение. Электростанции, промышленные предприятия часто сбрасывают подогретую воду в водоем. Это приводит к повышению в нем температуры воды. С повышением температуры в водоеме уменьшается количество кислорода, увеличивается токсичность загрязняющих воду примесей, нарушается биологическое равновесие.
В загрязненной воде с повышением температуры начинают бурно размножаться болезнетворные микроорганизмы и вирусы. Попав в питьевую воду, они могут вызвать вспышки различных заболеваний. В ряде регионов важным источником пресной воды являлись подземные воды. Раньше они считались наиболее чистыми. Но в настоящее время в результате хозяйственной деятельности человека многие источники подземной воды также подвергаются загрязнению. Нередко это загрязнение настолько велико, что вода из них стала непригодной для питья. Человечество потребляет на свои нужды огромное количество пресной воды. Основными ее потребителями являются промышленность и сельское хозяйство. Наиболее водоемкие отрасли промышленности - горнодобывающая, сталелитейная, химическая, нефтехимическая, целлюлозно-бумажная и пищевая. На них уходит до 70% всей воды, затрачиваемой в промышленности.
Главный же потребитель пресной воды - сельское хозяйство: на его нужды уходит 60-80% всей пресной воды. В современных условиях сильно увеличиваются потребности человека в воде на коммунально-бытовые нужды. Объем потребляемой воды для этих целей зависит от региона и уровня жизни, составлял от 3 до 700 л на одного человека, В Москве, например, на каждого жителя приходится около 650 л, что является одним из самых высоких показателей в мире. Из анализа водопользования за 5-6 прошедших десятилетий вытекает, что ежегодный прирост безвозвратного водопотребления, при котором использованная вода безвозвратно теряется для природы, составляет 4-5%. Перспективные расчеты показывают, что при сохранении таких темпов потребления и с учетом прироста населения и объемов производства к 2100 г. человечество может исчерпать все запасы пресной воды. Уже в настоящее время недостаток пресной воды испытывают не только территории, которые природа обделила водными ресурсами, но и многие регионы, еще недавно считавшиеся благополучными в этом отношении. В настоящее время потребность в пресной воде не удовлетворяется у 20% городского и 75% сельского населения планеты. Вмешательство человека в природные процессы затронуло даже крупные реки (такие, как Волга, Дон, Днепр), изменив в сторону уменьшения объемы переносимых водных масс (сток рек). Используемая в сельском хозяйстве вода по большей части расходуется на испарение и образование растительной биомассы и, следовательно, не возвращается в реки. Уже сейчас в наиболее обжитых районах страны сток рек сократился на 8% , а у таких рек, как Дон, Терек, Урал - на 11-20%. Весьма драматична судьба Аральского моря, по сути, прекратившего существование из-за чрезмерного забора вод рек Сырдарьи и Амударьи на орошение. Ограниченные запасы пресной воды еще больше сокращаются из-за их загрязнения. Главную опасность представляют сточные воды (промышленные, сельскохозяйственные и бытовые), поскольку значительная часть использованной воды возвращается в водные бассейны в виде сточных вод.
1.2 Загрязнение поверхностных вод
Качество воды большинства водных объектов не отвечает нормативным требованиям. Многолетние наблюдения за динамикой качества поверхностных вод обнаруживают тенденцию увеличения числа створов с высоким уровнем загрязненности (более 10 ПДК) и числа случаев экстремально высокого содержания (Свыше 100 ПДК) загрязняющих веществ в водных объектах. Состояние водных источников и систем централизованного водоснабжения не может гарантировать требуемого качества питьевой воды, а в ряде регионов (Южный Урал, Кузбасс, некоторые территории Севера) это состояние достигло опасного уровня для здоровья человека. Службы санитарно-эпидемиологического надзора постоянно отмечают высокое загрязнение поверхностных вод. Около 1/3 всей массы загрязняющих веществ вносится в водоисточники с поверхностным и ливневым стоком с территорий санитарно неблагоустроенных мест, сельскохозяйственных объектов и угодий, что влияет на сезонное, в период весеннего паводка, ухудшение качества питьевой воды, ежегодно отмечаемое в крупных городах, в том числе и в Москве. В связи с этим проводится гиперхлорирование воды, что, однако небезопасно для здоровья населения в связи с образованием хлорорганических соединений.
Одним из основных загрязнителей поверхностных вод является нефть и нефтепродукты. Нефть может попадать в воду в результате естественных ее выходов в районах залегания. Но основные источники загрязнения связаны с человеческой деятельностью: нефтедобычей, транспортировкой, переработкой и использованием нефти в качестве топлива и промышленного сырья. Среди продуктов промышленного производства особое место по своему отрицательному воздействию на водную среду и живые организмы занимают токсичные синтетические вещества. Они находят все более широкое применение в промышленности, на транспорте, в коммунально-бытовом хозяйстве. Концентрация этих соединений в сточных водах, как правило, составляет 5-15мг/л при ПДК - 0,1 мг/л. Эти вещества могут образовывать в водоёмах слой пены, особенно хорошо заметный на порогах, перекатах, шлюзах. Способность к пенообразованию у этих веществ появляется уже при концентрации 1-2 мг/л.
Наиболее распространенными загрязняющими веществами в поверхностных водах являются фенолы, легко окисляемые органические вещества, соединения меди, цинка, а в отдельных регионах страны - аммонийный и нитритный азот, лигнин, ксантогенаты, анилин, метил меркаптан, формальдегид и др. Огромное количество загрязняющих веществ вносится в поверхностные воды со сточными водами предприятий черной и цветной металлургии, химической, нефтехимической, нефтяной, газовой, угольной, лесной, целлюлозно-бумажной промышленности, предприятий сельского и коммунального хозяйства, поверхностным стоком с прилегающих территорий.
Небольшую опасность для водной среды из металлов представляют ртуть, свинец и их соединения.
Расширенное производство (без очистных сооружений) и применение ядохимикатов на полях приводят к сильному загрязнению водоемов вредными соединениями. Загрязнение водной среды происходит в результате прямого внесения ядохимикатов при обработке водоемов для борьбы с вредителями, поступления в водоемы воды, стекающей с поверхности обработанных сельскохозяйственных угодий, при сбросе в водоемы отходов предприятий-производителей, а также в результате потерь при транспортировке, хранении и частично с атмосферными осадками. Наряду с ядохимикатами сельскохозяйственные стоки содержат значительное количество остатков удобрений (азота, фосфора, калия), вносимых на поля. Кроме того, большие количества органических соединений азота и фосфора попадают со стоками от животноводческих ферм, а также с канализационными стоками. Повышение концентрации питательных веществ в почве приводит к нарушению биологического равновесия в водоеме.
Вначале в таком водоеме резко увеличивается количество микроскопических водорослей. С увеличением кормовой базы возрастает количество ракообразных, рыб и других водных организмов. Затем происходит отмирание огромного количества организмов. Оно приводит к расходованию всех запасов кислорода, содержащегося в воде, и накоплению сероводорода. Обстановка в водоеме меняется настолько, что он становится непригодным для существования любых форм организмов. Водоем постепенно «умирает».
Современный уровень очистки сточных вод таков, что даже в водах, прошедших биологическую очистку, содержание нитратов и фосфатов достаточно для интенсивного эвтрофирования водоемов. Эвтрофизация - обогащение водоема биогенами, стимулирующее рост фитопланктона. От этого вода мутнеет, гибнут бентосные растения, сокращается концентрация растворенного кислорода, задыхаются обитающие на глубине рыбы и моллюски.
ГЛАВА 2. ОПАСНОСТЬ НЕОЧИЩЕННЫХ СТОЧНЫХ ВОД
2.1 Угроза инфекционных заболеваний
Неочищенные канализационные стоки - один из главных источников угрозы для здоровья человека, так как люди и животные бывают заражены патогенами (болезнетворными бактериями и другими паразитами). Зараженные люди или животные могут выделять с экскрементами огромное количество патогенов или их яиц. Иногда человек служит переносчиком инфекции, даже не ощущая симптомов заболевания. Если зараженные канализационные стоки попадут в питьевую воду, на источники пищи или в места для купания, паразиты могут инфицировать многих людей. В некоторых случаях инфекция передается через пищевые цепи. Например, устрицы, могут заглатывать паразитов, которые передаются человеку, когда он употребляет в пищу устриц. Поэтому устричные «банки», загрязненные канализационными стоками, закрыты для ловли. Кроме того, некоторые виды пищевых продуктов рекомендуется всегда подвергать термической обработке. В большинстве случаев патогенные организмы выживают вне хозяина не более нескольких дней, а их число, попавшее в его тело, определяет вероятность развития инфекции. Следовательно, когда плотность населения низка, перенос патогенов происходит относительно редко, так как уровень их распространения невелик и проходит довольно много времени между выделением их во внешнюю среду одним хозяином и встречей с другим. Однако, чем выше плотность населения, тем вероятнее заражение. Живя и работая в густозаселенных городах, люди становятся чрезвычайно уязвимыми для патогенных организмов.
Прежде чем в середине XIX в. была установлена связь между заболеваниями и наличием в отбросах патогенов, в городах часто случались опустошительные эпидемии. В настоящее время в большинстве стран приняты санитарно-гигиенические правила, которые предотвращают такой «круговорот» патогенов, в том числе:
(1) дезинфекция запасов воды для населения хлорированием или другими методами;
(2) личная санитария и гигиена, особенно во время приготовления и раздачи пищи;
(3) сбор и очистка канализационных стоков.
Многие связывают снижение заболеваемости с успехами современной медицины, но благодарить, прежде всего, стоит санитарно-гигиенические правила, часто воспринимаемые как что-то само собой разумеющееся.
Снижение содержания растворенного кислорода.
Сброс неочищенных канализационных стоков в водоемы не только чреват опасностью инфекционных заболеваний, но и может стать причиной снижения содержания растворенного в воде кислорода и деградации водных экосистем. Органическое вещество, присутствующее в стоках, охотно поедается редуцентами и детритофагами, которые поглощают кислород в процессе дыхания. Когда детрита избыток, эти организмы потребляют растворенный кислород быстрее, чем он пополняет систему, и его запасы истощаются. Концентрацию органики в канализационных стоках часто выражают биологической потребностью в кислороде (БПК), т.е. количеством кислорода, которое потребуется редуцентам, чтобы разложить поступившее вещество. Истощение запасов растворенного кислорода не наносит вреда самим бактериям-редуцентам, так как они способны к анаэробическому дыханию и брожению. Анаэробные (лишенные кислорода) водоемы не только не могут поддерживать жизнь рыб, моллюсков и ракообразных, но и дурно пахнут, так как у многих продуктов бескислородного метаболизма весьма неприятный запах. Этим же обусловлен столь характерный запах канализационных стоков.
Кроме того, истощение запасов растворенного кислорода может увеличить опасность микробного заражения. Многие патогенные организмы гораздо дольше живут в анаэробных условиях. В среде, богатой кислородом, они быстро погибают или съедаются другими организмами.
2.2 Сбор и очистка сточных вод
Первичные стоки
Санитарная канализационной системы объединяет все сточные трубы от расположенных в зданиях раковин, ванн и т.д., как ствол дерева объединяет все его ветви. Из основания этого «ствола» вытекает смесь всего, что попало в систему, - исходные стоки, или исходные сточные воды. Так как мы используем огромный объем воды для удаления мизерных количеств отходов или просто льем ее без особой нужды, в первичных стоках на каждую часть отходов приходится примерно 1000 частей воды, т.е. в них 99,9% воды и 0,1% отходов. С добавлением ливневых вод разбавление еще более увеличивается. Но отходы или загрязнители первичных стоков имеют огромное значение. Их подразделяют на три категории. Мусор и песок. Мусор - это тряпки, пластиковые пакеты и прочие предметы, попадающие в систему из туалетов или через ливнестоки, если те еще не отделены. К песку условно относят и гравий; их приносят в основном ливнестоки. Органическое вещество, или коллоиды. Это как живые организмы, - патогены и непатогенные бактерии-редуценты - так и неживая органика экскрементов, пищевых отходов и волокон тканей и бумаги. Термин коллоиды означает, что этот материал не оседает, а обычно остается взвешенным в воде.
Растворенные вещества. Это в основном биогены, такие как соединения азота, фосфора и калия из продуктов жизнедеятельности, обогащенные фосфатами из детергентов.
2.3 Этапы очистки
Чтобы очистка была полной, водоочистные сооружения должны устранить все названные категории загрязнителей. Мусор и песок удаляются на этапе предочистки.
Сочетание первичной и вторичной очистки позволяет избавиться от коллоидного материала. Растворенные биогены устраняются при помощи доочистки. Необходимо также иметь в виду, что обработка стоков в каждом конкретном случае не обязательно должна включать в себя все четыре этапа. Чаще всего они дополняют друг друга в зависимости от обстоятельств. Следовательно, в некоторых местах в водоемы все еще сбрасывают просто исходные стоки, в других - осуществляют только первичную их очистку, кое-где проводят вторичную, и лишь немного городов осуществляет доочистку водостоков.
Предочистка. Мусор и песок обычно засоряют систему и тормозят дальнейшую очистку стоков. Поэтому их устранение считается ее предварительным этапом. От мусора избавляются, пропуская исходные стоки через стержневую решетку, т.е. ряда стержней, расположенных на расстоянии около 2,5 см. друг от друга. Затем мусор механически собирают с решетки и отправляют в специальную печь для сжигания. Очищенная от мусора вода попадает в песколовку, или пескоотстойник, - емкость, напоминающую плавательный бассейн, где движение воды замедляется настолько, что песок оседает; затем он механически извлекается оттуда и вывозится на свалку.
Первичная очистка. После предочистки вода проходит первичную очистку - медленно пропускается через крупные баки, называемые первичными отстойниками. Здесь она в течение нескольких часов остается почти неподвижной. Это позволяет самым тяжелым частицам органического вещества, составляющим 30-50% его общего количества, осесть на дно, откуда их собирают. В то же самое время жирные и маслянистые вещества всплывают к поверхности, и их снимают как сливки. Весь этот материал называется ил-сырец.
При первичной очистке всего-навсего «заливают грязную воду в сосуд, дают отстояться и сливают». Тем не менее это позволяет устранить значительную часть органического вещества при минимальных затратах. Вода, покидающая первичные отстойники, все еще содержит 50-70% не осевших органических коллоидов и почти все растворенные биогены. Вторичная очистка предусматривает устранение оставшегося органического вещества, но не растворенных питательных элементов. Вторичная очистка. Эту очистку называют также биологической, так как в ней участвуют живые естественные редуценты и детритофаги, потребляющие органическое вещество и в процессе дыхания превращающие его в воду и углекислый газ. Обычно применяются два типа систем: капельные биофильтры и активный ил.
В системах с капельным биофильтром вода разбрызгивается и стекает струйками по слою камней величиной с кулак, толщина которого 2-3 м. Как и в естественных ручьях, в этих условиях функционирует сложная экосистема, включающая бактерии, простейших коловраток, различных мелких червей и других прикрепленных к камням детритофагов. Они буквально выедают из протекающей воды все органическое вещество, включая патогенов. Организмы, случайно смытые с биофильтров, позднее устраняются из воды, когда она попадает во вторичные отстойники-емкости, аналогичные первичным отстойникам. С отстоявшимся в них материалом поступают, как и с илом-сырцом. Пройдя первичную очистку и капельные биофильтры, сточные воды теряют 85-90% органического вещества. Все более широкое распространение получает еще один метод вторичной очистки - система активного ила. В этом случае вода после первичной очистки поступает в резервуар, где могли бы разместиться несколько припаркованных друг за другом трейлеров. Смесь детритофагов, называемая активным илом, добавляется в воду, когда та поступает в резервуар. По мере движения по нему она интенсивно аэрируется, т.е. создается богатая кислородом среда, идеальная для развития этих организмов. В ходе их питания количество органического вещества, включая патогенные микроорганизмы, уменьшается. Покидая аэрационный резервуар, вода содержит множество детритофагов, поэтому ее направляют во вторичные отстойники.
Так как организмы обычно собираются в кусочках детрита, осадить их относительно несложно; осадок представляет собой тот же самый активный ил, который снова закачивают в аэрационный резервуар. Таким образом, детритофаги рециклизуются, а вода очищается от органического вещества на 90-95%. Излишки активного ила, накапливающиеся в процессе размножения организмов, обычно объединяют с илом-сырцом и в дальнейшем обрабатывают их вместе.
Системы вторичной очистки не устраняют растворенных биогенов. До двух последних десятилетий не ощущалось острой необходимости осуществлять дополнительную очистку воды уже после вторичной. Воду после нее просто дезинфицировали хлоркой и сбрасывали в естественные водоемы. Такая ситуация преобладает и сейчас. Однако по мере обострения проблемы эвтрофизации все больше городов вводят еще один этап - доочистку, устраняющую биогены.
Доочистка. После вторичной очистки вода поступает на доочистку, устраняющую один или более биогенов. Для этого существует множество способов. На 100% воду можно очистить дистилляцией или микрофильтрованием. Однако это требует больших затрат. Суммарный объем стоков - около 150 галлонов в день на человека. Очистка такого количества воды названными методами слишком расточительна, поэтому в настоящее время разрабатываются и внедряются более доступные способы. Например, фосфаты можно устранить, добавив в воду известь (ионы кальция). Кальций вступает в химическую реакцию с фосфатом, образуя при этом нерастворимый фосфат кальция, который можно удалить фильтрованием. Если избыток фосфата - основная причина эвтрофизации, этого уже достаточно.
При соответствующей доочистке можно добиться того, что в конечном итоге получится вода, пригодная для питья. Многие люди бледнеют при мысли о вторичном использовании канализационных стоков, но стоит вспомнить о том, что в природе в любом случае вся вода совершает круговорот. Фактически соответствующая доочистка может обеспечить воду лучшего качества, нежели получаемая из рек и озер, не редко принимающих неочищенные канализационные стоки.
Глава 3. Стандартная очистка сточных вод
· Механическая очистка стоков.
Сюда относятся отстой сточных вод в специальных отстойниках, в которых происходит оседание взвешенных частиц на дно отстойников; сбор нефтепродуктов и других, нерастворимых в воде жидкостей с поверхности стоков устройствами типа механических рук и, наконец, фильтрация вод через слой песка примерно 1,5-метровой толщины.
· Химическая, или реагентная, очистка.
Один из видов обработки сточных вод - реакции нейтрализации.
Самую простую систему очистки на основе реакции нейтрализации можно представить в виде измельченного известняка, на который вылили раствор кислоты, а осадок собрали в отстойник.
· Биохимическая очистка воды.
а) Аэробная биохимическая очистка - минерализация органического вещества промышленных или бытовых стоков, происходящая в результате его окисления при содействии аэробных микроорганизмов (минерализаторов) в процессе использования ими этого вещества в качестве источника питания в условиях интенсивного потребления микроорганизмами растворенного в воде кислорода.
Было установлено, что органические вещества омертвевших организмов разрушаются под действием бактерий, если для последних созданы соответствующие условия, то есть своевременно подается кислород и среда-носитель оказывается благоприятной для развития микроорганизмов.
Наиболее универсальным способом обработки сточных вод является обработка активным илом. Сточные воды смешивают с илом, образовавшемся в результате предварительного окисления вод, поэтому способ и получил такое название.
Как известно, ил представляет собой огромную популяцию различных бактерий, грибков и другой флоры, добавление которой к сточным водам приводит к быстрому установлению равновесия, способствующего разложению органических веществ, в результате которого образуется углекислый газ и вода.
Бактерии, входящие в состав активного ила, способны перерабатывать только те сточные воды, из которых сформировался этот активный ил. Поэтому, если в состав очищаемых промышленных стоков будут введены новые вещества, например, при изменении технологии производства, то потребуется время, чтобы бактерии, способные окислить именно эти вещества, размножились в достаточном количестве и смогли обеспечить наилучшую очистку.
Обычно концентрацию активного ила поддерживают равной 2 - 4 г/л. В ходе очистки активный время от времени выводят из очистных сооружений, так как его количество растет. Часть его при этом используется в качестве ценного удобрения, если нет тяжелых металлов, часть стабилизируют, то есть обрабатывают избытком кислорода для удаления всевозможной органики, предотвращая, таким образом, гниение. Часть поступает на анаэробное разложение.
б) Анаэробная биохимическая очистка. В случае, если БПК на много выше нормы, а так же для удаления избытка активного ила и отходов сельскохозяйственных продуктов применяют анаэробную биохимическую очистку в метантенках (реактор с мешалкой и теплообменником). При этом источником кислорода в воде служат группы кислородосодержащих анионов.
Однако не всякие сточные и природные воды могут быть очищены биохимическими методами. Нормы на содержание вредных веществ в сточных и природных водах, поступающих на биологические очистные сооружения, по некоторым металлам следующие: Al - 5 мг/л; Fe - 5 мг/л; Сr - 0,1 мг/л; Mg - 1000 мг/л.
Не все органические вещества разлагаются на станциях биохимической очистки. Так, практически не разрушается бензин, красители, мазут и другие. Эффективность биохимической очистки на самых современных установках составляет 90% по органическим веществам и лишь 20 - 40% - по неорганическим, то есть практически не снижается солесодержание. Не могут быть очищены воды, содержащие более 1000 мг/л фенолов, 300 - 500 мг/л спиртов, 25 мг/л нефтепродуктов, то есть для многих случаев эти методы не эффективны. В среднем эффективность анаэробного метода составляет около 40 %.
Термические методы кондиционирования осадков сточных вод
Термическому кондиционированию перед обезвоживанием подвергаются органические осадки городских и промышленных сточных вод, прошедших биологическую очистку. К методу термического кондиционирования относятся тепловая обработка, жидкофазное окисление, замораживание и оттаивание (последнее в основном для кондиционирования осадков водопроводных станций).
Тепловая обработка является одним из перспективных методов кондиционирования. Она применяется для кондиционирования осадков городских и промышленных сточных вод с зольностью 30-40 %. В технологических схемах, завершающихся стадией обезвоживания, ее преимущества, помимо подготовки осадков к обезвоживанию, состоят в обеспечении надежной стабилизации и полной стерилизации осадков.
Варианты этого метода, предназначенные для обработки органических осадков городских сточных вод, получили в последние годы широкое распространение за рубежом. В отечественной практике тепловая обработка осадка находится в стадии освоения и внедрения (Ново-Люберецкая станция аэрации Москвы).
Сущность метода тепловой обработки состоит в нагревании осадков до температуры 150-200°С и выдерживании их при этой температуре в закрытой емкости в течение 0,5--2 ч. В результате такой обработки происходит резкое изменение Структуры осадка, около 40 % сухого вещества переходит в раствор, а оставшаяся часть приобретает водоотдающие свойства. Осадок после тепловой обработки быстро уплотняется до влажности 92--94 %, и его объем составляет 20--30 % исходного.
Уплотненный осадок легко обезвоживается на вакуум-фильтрах или фильтр-прессах. Причем производительность 1 м2 этих аппаратов, как правило, выше, а влажность обезвоженного осадка ниже, чем при реагентной обработке. В среднем эти значения составляют соответственно 25--30 кг/ч (65-- 70%) для вакуум-фильтров и 10-15 кг/ч (40-50 %) для фильтр-прессов. Отделенная на стадиях уплотнения и обезвоживания вода, вследствие распада органического вещества Осадка, содержит большое количество растворенных- веществ с химической потребностью кислорода (ХПК) около 10 кг на 1 м3. Эта вода обычно возвращается на аэрационные очистные сооружения, что вызывает необходимость увеличения их мощности на 10--15 %. При этом общая стоимость обработки осадка с учетом дополнительных затрат на очистку отделенной воды оказывается на 25--30 % ниже, чем стоимость обработки осадка по схеме "сбраживание --реагентная обработка --механическое обезвоживание".
Рис. 1. Технологическая схема тепловой обработки по методу Портеуса
1 - подача исходного осадка; 2 - резервуар-накопитель; 3 - насос высокого давления; 4 - теплообменник; 5 - подача пара; 6 - реактор; 7 - выпуск парогазовой смеси; 8 - устройство для снижения давления: 9 - уплотнитель; 10 - насос; 11 - обезвоживающий аппарат; 12 - отделенная вода (на очистку)
Впервые тепловая обработка была предложена в 1912-1914 гг. в Великобритании, однако тогда этот метод не получил распространения. Практическое внедрение его, относящееся к 1935 г., осуществил английский инженер Портеус, который получил несколько патентов и организовал специализированную фирму. Первые установки наибольшей производительности были построены в г.г. Лутон, Горсхем, Галифакс (Великобритания). Массовое внедрение обработки осадков началось в основном в 50--60 гг. и продолжается до настоящего времени.
Существуют различные схемы, т.е. различные конструктивные оформления процессов тепловой обработки (тепловая обработка с догревом осадка острым паром, схема с догревом осадка промежуточным теплоносителем и т.д). Принципиальная схема тепловой обработки по методу Портеуса представлена на рис. 1.
Тепловая обработка осуществляется в теплообменниках и реакторах. В теплообменниках происходит нагрев исходного осадка горячим осадком, прошедшим обработку. Применяются, как правило, многосекционные теплообменники типа "труба в трубе". Их устанавливают в большинстве случаев в закрытом помещении, однако существует несколько примеров расположения их на открытом воздухе. Минимальный диаметр внутренней трубы 80 мм, наружной -- 150. Секции теплообменников расположены горизонтально, реже вертикально.
Общая длина труб теплообменников для установки производительностью 18--20 м3 /ч составляет около 320 м. Такая установка имеет примерно 90 поворотов на 180°. Время пребывания осадка в теплообменниках составляет 5--10 мин.
|
Рис. 2. Технологическая схема процесса жидкофазного окисления 1 - подача исходного осадка; 2 - приемный резервуар; 3 - питательный насос; 4 - насос высокого давления; 5, 6 - теплообменники; 7 - реактор; 8 - сепаратор; 9 - турбина; 10 - компрессор
Жидкофазное окисление (метод Циммермана) получило распространение за рубежом в последние 40 лет. Метод наиболее широко применяется в США. Его сущность заключается в окислении органической части осадка кислородом воздуха при высоких температуре и давлении. Эффективность процесса оценивается глубиной окисления органической части осадка (снижением ХПК осадка). Эта величина зависит в основном от температуры обработки. Для окисления на 50 % необходима температура около 200°С, на 70 % и более -- 250--800°С. Две трети действующих в настоящее время установок работают при температуре 300°С и давлении 21 МПа (210 кгс/см2), одна треть -- при температуре 100--200°С и давлении 1,8-2,4 МПа (18-24 кгс/см2).
Окисление осадка сопровождается выделением тепла. При влажности осадка около 96 % выделенного тепла достаточно для самоподдержания температурного режима и основная энергия затрачивается на подачу сжатого воздуха.
Технологическая схема процесса жидкофазного окисления представлена на рис. 2. Смесь осадка первичных отстойников и избыточного активного ила поступает по трубе 1 в приемный резервуар 2, где предварительно нагревается до 40-- 50°С. Нагретый осадок питательным насосом 3 подается в насос высокого давления 4, который перекачивает его через последовательно установленные теплообменники 5 и 6 в реактор 7. В напорный трубопровод насоса подается сжатый воздух от компрессора 10. На входе в реактор температура паровоздушной смеси составляет около 240°С.
В реакторе в течение 0,5--0,7 ч происходит интенсивное окисление органического вещества осадка кислородом воздуха. При этом выделяется дополнительное тепло, в результате температура осадка повышается до 300°С.
Горячая смесь продуктов окисления, воздуха и золы удаляется из реактора через теплообменник 6 в сепаратор 8. В теплообменнике смесь частично охлаждается поступающим на обработку осадком.
В сепараторе происходит отделение от жидкой фазы осадка газов, которые выбрасываются в атмосферу или используются в турбогенераторе 9 для приведения в действие компрессора 10, подающего воздух в систему.
Зарубежный опыт показал, что турбогенераторы работают с низким КПД (около 30 %), и их применение эффективно на установках большой производительности (около 150--200 т/сут сухого вещества осадка), когда расход энергии на сжатие воздуха крайне высок.
В тех случаях, когда тепло отходящих газов не утилизируется, экономичнее применение более низких параметров обработки. Горячий осадок из сепаратора проходит теплообменник 5 и далее резервуар 2, отдавая тепло осадку, поступающему на обработку.
Охлажденный осадок, поступая в уплотнитель, отстаивается в течение 4 ч. Сливная вода (ХПК 5--6 кг/м3) сбрасывается в аэротенки, а уплотненный осадок влажностью 95 % подается на иловые площадки или механическое обезвоживание. Производительность вакуум-фильтров по осадку составляет 40--50кг/(м2- ч). Влажность обезвоженного осадка -около 60 %.
Тепловое оборудование сильно подвержено коррозии и требует применения сталей специальных марок. Систему периодически (один раз в 3--4 мес) промывают сначала раствором щелочи (5 %-ный раствор едкого натрия), а затем слабым (0,5 %-ным) раствором кислоты.
Дополнительно тепла на нагрев осадка в процессе работы установки, как правило, не требуется. Установка разогревается паром лишь в период запуска.
Заключение
Нарушение естественного состояния окружающей среды, ведущее к деградации всего живого и представляющее угрозу здоровью человека - явление не новое: оно прослеживается с древних времен и стало заметно проявляться на самой начальной стадии урбанизации - с появлением небольших городов. Население земного шара постоянно растет, продолжается стремительный рост городов, появляются города-гиганты - мегаполисы. Потребление различных материальных ресурсов, товаров и энергии на душу населения непрерывно увеличивается. Рост населения, урбанизация, массовое производство промышленной и сельскохозяйственной продукции неизбежно ведут к активному вторжению человека в окружающую среду. Эта тема актуальна, так как защита окружающей среды в настоящее время является чрезвычайно важной задачей. Уже сейчас некоторые граждане разных стран вне зависимости от их профессиональной деятельности и политических воззрений заявляют о готовности покупать дорогие, но экологически чистые продукты, платить высокие подоходные налоги ради оздоровления среды обитания.
Вне всяких сомнений, защита окружающей среды должна быть основана на естественнонаучных, профессиональных знаниях.
Литература
1. В.Ф. Протасов, А.В. Молчанов «Экология, здоровье и природопользование в России», М. 1995
2. Н.А. Агаджанян, В.И. Торшин «Экология человека» ММП «Экоцентр», КРУК, 1994
3. Бернард Небел «Наука об окружающей среде» (В 2-ух томах), М. «МИР» 1993
4. Защита окружающей среды от техногенных воздействий.
5. Учебное пособие / Под общей ред. Г.Ф. Невской. М.: изд-во МГУ, 1993. С. 216.
6. Одум Ю. Экология / Пер. сангл. Т. 1-2. М.: Мир, 1986. С. 328, 376.
7. Охрана окружающей природной среды. Постатейный комментарий к закону России. М.: Р·еспублика, 1993. С. 224.
8. Розанов Б.Г. Основы учения об окружающей среде. М.: из д-во МГУ, 1984. С. 370.
9. Экологические проблемы: что происходит, кто виноват и что сделать? Учебное пособие / Под ред. В.И. Данилова-Данильяна. М.: изд-во МНЭПУ, 1997. С. 332.
10. Бигон М., Харпер Дж., Таунсед К. Экология. Особи, популяции, сообщества / Пер. с англ. Т. 1-2. М.: Мир, 1989. С. 478, 667.
11. В. И. Вернадский и современность / Под ред. В.С. Соколова и А.Л. Яншина. М.: Наука, 1986. С. 390.
12. Войткевич Г.В., Вронский В.А. Основы учения о биосфере:
13. Учебное пособие для вузов. Изд. 2-е, переработ. Ростов н/Д: издво "Феникс», 1996. С. 480.
14. Вронский В.А. Прикладная экология: Учебное пособие. Ростов н/Д: изд-во "Феникс», 1996. С. 512.
Подобные документы
Загрязнение атмосферы. Виды загрязнения гидросферы. Загрязнение океанов и морей. Загрязнение рек и озер. Питьевая вода. Актуальность проблемы загрязнения водоемов. Спуск сточных вод в водоемы. Методы очистки сточных вод.
реферат [47,3 K], добавлен 06.10.2006Понятие, характеристика, функции и значимость гидросферы. Виды и источники загрязнений поверхностных и подземных вод. Группы сточных вод. Влияние сельского хозяйства и тепловых электростанций на загрязнение рек и водоемов. Методы очистки сточных вод.
реферат [24,9 K], добавлен 17.11.2016Загрязнение поверхностных и подземных вод. Угроза инфекционных заболеваний из-за неочищенных канализационных стоков. Снижение содержания растворенного кислорода. Сбор и очистка сточных вод. Характеристика водно-ресурсного потенциала Кемеровской области.
контрольная работа [38,1 K], добавлен 08.06.2013Санитарно-гигиеническое значение воды. Характеристика технологических процессов очистки сточных вод. Загрязнение поверхностных вод. Сточные воды и санитарные условия их спуска. Виды их очистки. Органолептические и гидрохимические показатели речной воды.
дипломная работа [88,8 K], добавлен 10.06.2010Основные пути загрязнения гидросферы Земли. Источники засорения поверхностных, подземных вод, рек, озер и мирового океана. Методы их очистки и охраны от истощения. Проникновение вредных веществ в круговорот воды. Изучение способов самоочищения водоемов.
презентация [1,3 M], добавлен 29.11.2014Общая характеристика водной среды. Водный баланс Земли. Гидросфера как природная система. Вода с точки зрения химии, общие свойства воды. Ионный состав природных вод. Подземные воды, загрязнение водоемов. Загрязнение поверхностных и подземных вод.
реферат [29,7 K], добавлен 09.06.2010Качество питьевой воды, доступ к чистой воде городского и сельского населения. Основные пути и источники загрязнения гидросферы, поверхностных и подземных вод. Проникновение загрязняющих веществ в круговорот воды. Методы и способы очистки сточных вод.
презентация [3,1 M], добавлен 18.05.2010Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Выбор технологической схемы очистки сточных вод. Физико-химические методы очистки сточных вод с применением коагулянтов. Отделение взвешенных частиц от воды.
реферат [29,9 K], добавлен 05.12.2003Загрязнение внутренних водоёмов. Загрязнение поверхностных и подземных вод. Загрязнение вод суши. Загрязнение и самоочищение морей и океанов. Нефть и нефтепродукты. Тяжёлые металлы. Бытовые отходы. Методы отчистки сточных вод.
реферат [32,1 K], добавлен 13.11.2006Загрязнение водных ресурсов сточными водами. Влияние выпуска сточных вод металлургических предприятий на санитарное и общеэкологическое состояние водоемов. Нормативно-правовая база в области очистки сточных вод. Методика оценки экологических аспектов.
дипломная работа [214,2 K], добавлен 09.04.2015