Очистка сточных вод методами флотации

Флотация как физико-химический процесс, применяемый для обогащения полезных ископаемых, его виды, методы и области применения. Типы и принцип действия флотореагентов. Способы очистки бытовых и промышленных сточных вод, схемы флотационных установок.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 16.12.2009
Размер файла 491,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

12

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Камская государственная инженерно-экономическая академия

Кафедра «Химии и Экологии»

КОНТРОЛЬНАЯ РАБОТА

По дисциплине «Очистные сооружения»

Вариант 5

Выполнила: студентка гр.4532-з

Карасева Н.С.

Набережные Челны

2009г.

Содержание

Флотация. Общие сведения

Области применения

Виды флотации

Флотореагенты

Очистка сточных вод методами флотации

Список литературы

Введение

Флотамция (фр. flottation, от flotter -- плавать) -- процесс разделения мелких твёрдых частиц (главным образом, минералов), основанный на различии их в смачиваемости водой. Гидрофобные (плохо смачиваемые водой) частицы избирательно закрепляются на границе раздела фаз, обычно газа и воды, и отделяются от гидрофильных (хорошо смачиваемых водой) частиц. При флотации пузырьки газа или капли масла прилипают к плохо смачиваемым водой частицам и поднимают их к поверхности.

Флотация является сложным физико-химическим процессом, заключающимся в создании комплекса частица-пузырек воздуха или газа, всплывании этого комплекса и удалении образовавшегося пенного слоя. Процесс флотации широко применяют при обогащении полезных ископаемых, а также при очистке сточных вод.

Флотация -- один из основных методов обогащения полезных ископаемых, применяется также для очистки воды от органических веществ и твёрдых взвесей, разделения смесей, ускорения отстаивания в химической, нефтеперерабатывающей, пищевой и др. отраслях промышленности. В зависимости от характера и способа образования межфазных границ (вода -- масло -- газ), на которых происходит закрепление разделяемых компонентов различают несколько видов флотации.

Первой была предложена масляная флотация, на которую В. Хайнсу (Великобритания) в 1860 году был выдан патент. При перемешивании измельченной руды с маслом и водой сульфидные минералы избирательно смачиваются маслом и всплывают вместе с ним на поверхность воды, а порода (кварц, полевые шпаты) осаждается. В России масляная флотация графита была осуществлена в 1904 году в Мариуполе.

Способность гидрофобных минеральных частиц удерживаться на поверхности воды, в то время как гидрофильные тонут в ней, была использована А. Нибелиусом (США, 1892) и Маквистеном (Великобритания, 1904) для создания аппаратов плёночной флотации, в процессе которой из тонкого слоя измельченной руды, находящегося на поверхности потока воды, выпадают гидрофильные частицы.

Увеличение объёмов и расширение области применения флотации связано с пенной флотацией, при которой обработанные реагентами частицы выносятся на поверхность воды пузырьками воздуха, образуя пенный слой, устойчивость которого регулируется добавлением пенообразователей. Для образования пузырьков предлагались различные методы: образование углекислого газа за счёт химической реакции (С. Поттер, США, 1902), выделение газа из раствора при понижении давления (Ф. Элмор, Великобритания, 1906) -- вакуумная флотация, энергичное перемешивание пульпы, пропускание воздуха сквозь мелкие отверстия.

Области применения

Обогащение полезных ископаемых (руд цветных металлов, редких и рассеяных элементов, угля, самородной серы);

Разделение минералов комплексных руд;

Разделение солей;

Очистка сточных вод, в частности для выделения капель масел и нефтепродуктов.

Для проведения пенной флотации производят измельчение руды до крупности 0,5-1,0 мм в случае природногидрофобных неметаллических полезных ископаемых с небольшой плотностью (сера, уголь, тальк) и до 0,1-0,2 мм для руд металлов. Для создания и усиления разницы в гидратированности разделяемых минералов и придания пене достаточной устойчивости к пульпе добавляются флотационные реагенты. Затем пульпа поступает во флотационные машины. Образование флотационных агрегатов (частиц и пузырьков воздуха) происходит при столкновении минералов с пузырьками воздуха, вводимого в пульпу, а также при возникновении на частицах пузырьков газов, выделяющихся из раствора. На флотацию влияют ионный состав жидкой фазы пульпы, растворённые в ней газы (особенно кислород), температура, плотность пульпы. На основе изучения минералого-петрографического состава обогащаемого полезного ископаемого выбирают схему флотации, реагентный режим и степень измельчения, которые обеспечивают достаточно полное разделение минералов. Лучше всего флотацией разделяются зёрна размером 0,1-0,04 мм. Более мелкие частицы разделяются хуже, а частицы мельче 5 мкм ухудшают флотацию более крупных частиц. Отрицательное действие частиц микронных размеров уменьшается специфическими реагентами. Крупные (1-3 мм) частицы при флотации отрываются от пузырьков и не флотируются. Поэтому для флотации крупных частиц (0,5-5 мм) в СССР были разработаны способы пенной сепарации, при которых пульпа подаётся на слой пены, удерживающей только гидрофобизированные частицы. С той же целью созданы флотационные машины кипящего слоя с восходящими потоками аэрированной жидкости. Это -- гораздо более производительные процессы, чем масляная и плёночная флотации.

Для очистки воды, а также извлечения компонентов из разбавленных растворов в 1950-х годах был разработан метод ионной флотации, перспективный для переработки промышленных стоков, минерализованных подземных термальных и шахтных вод, а также морской воды. При ионной флотации отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимодействуют с флотационными реагентами-собирателями, чаще всего катионного типа, и извлекаются пузырьками в пену или плёнку на поверхности раствора. Тонкодисперсные пузырьки для флотации из растворов получают также при электролитическом разложении воды с образованием газообразных кислорода и водорода (электрофлотация). При электрофлотации расход реагентов существенно меньше, а в некоторых случаях они не требуются.

Широкое использование флотации для обогащения полезных ископаемых привело к созданию различных конструкций флотационных машин с камерами большого размера (до 10-30 мі), обладающих высокой производительностью. Флотационная машина состоит из ряда последовательно расположенных камер с приёмными и разгрузочными устройствами для пульпы. Каждая камера снабжена аэрирующим устройством и пеносъёмником.

В СССР и за рубежом благодаря флотации вовлекаются в промышленное производство месторождения тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Фабрики выпускают до пяти видов концентратов. В ряде случаев хвосты флотации не являются отходами, а используются в качестве стройматериалов, удобрений для сельского хозяйства и в др. целях. Флотация является ведущим процессом при обогащении руд цветных металлов. Внедряется использование оборотной воды, что снижает загрязнение водоёмов.

В развитии теории флотации сыграли важную роль работы рус. физикохимиков -- И.С. Громека, впервые сформулировавшего в конце XIX века основные положения процесса смачивания, и Л.Г. Гурвича, разработавшего в начале XX века положения о гидрофобности и гидрофильности. Существенное влияние на развитие современной теории флотации оказали труды А. Годена, А. Таггарта (США), И. Уорка (Австралия), сов. учёных П.А. Ребиндера, А.Н. Фрумкина, И.Н. Плаксина, Б. В. Дерягина и др.

Виды флотации

Пенная -- при которой через смесь частиц с водой пропускают мелкие пузырьки воздуха, частицы определённых минералов собираются на поверхности раздела фаз «воздух-жидкость», прилипают к пузырькам воздуха и выносятся с ними на поверхность в составе трехфазной пены, которую в дальнейшем сгущают и фильтруют. В качестве жидкости чаще всего используется вода, реже насыщенные растворы солей (разделение солей, входящих в состав калийных руд) или расплавы (обогащение серы). Этот метод применяется наиболее широко;

Ионная -- перспективный метод для применения в химической промышленности, заключается в осаждении из растворов ионов полезных веществ специальными реагентами в мелкодисперсные осадки, которые затем выделяют флотацией.

Флотореагенты

Существует несколько типов флотореагеантов, отличающихся принципом действия:

Собиратели -- реагенты, избирательно сорбирующиеся на поверхности минерала, который необходимо перевести в пену, и придающие частицам гидрофобные свойства. В качестве собирателей используют вещества, молекулы которых имеют дифильное строение: гидрофильная полярная группа, которая закрепляется на поверхности частиц, и гидрофобный углеводородный радикал. Чаще всего собиратели являются ионными соединениями; в зависимости от того, какой ион является активным различают собиратели анионного и катионного типов. Реже применяются собиратели, являющиеся неполярными соединениями, не способными к диссоциации. Типичными собирателями являются: ксантогенаты и дитиофосфаты -- для сульфидных минералов, натриевые мылам и амины -- для несульфидных минералов, керосин -- для обогащения угля. Расход собирателей составляет сотни граммов на тонну руды;

Регуляторы -- реагенты, в результате избирательной сорбции которых на поверхности минерала, последний становится гидрофильным и не способным к флотации. В качестве регуляторов применяют соли неорганических кислот и некоторые полимеры;

Пенообразователи -- предназначены для улучшения диспергирования воздуха и придания устойчивости минерализованным пенам. Пенообразователями служат слабые поверхностно-активные вещества. Расход пенообразователей составляет десятки граммов на тонну руды.

Известно уже несколько тысяч различных флотореагентов.

Очистка сточных вод методами флотации:

флотация пузырьками, образующимися путем механического дробления воздуха (механическими турбинами-импеллерами, форсунками, с помощью пористых пластин и каскадными методами);

флотация пузырьками, образующимися из пересыщенных растворов воздуха в воде (вакуумная, напорная);

электрофлотация.

Процесс флотации -- образования комплекса пузырек-частица происходит в три стадии: сближение пузырька воздуха и частицы в жидкой фазе, контакт пузырька с частицей и прилипание пузырька к частице. Прочность соединения пузырек-частица зависит от размеров пузырька и частицы, физико-химических свойств пузырька, частицы и жидкости, гидродинамических условий и других факторов.

Процесс очистки стоков при флотации заключается в следующем: поток жидкости и поток воздуха (мелких пузырьков) в большинстве случаев движутся в одном направлении. Взвешенные частицы загрязнений находятся во всем объеме сточной воды и при совместном движении с пузырьками воздуха происходит агрегирование частицы с воздухом. Если пузырьки воздуха значительных размеров, то скорости воздушного пузырька и загрязненной частицы различаются так сильно, что частицы не могут закрепиться на поверхности воздушного пузырька. Кроме того, большие воздушные пузырьки при быстром движении сильно перемешивают воду, вызывая разъединение уже соединенных воздушных пузырьков и загрязненных частиц. Поэтому для нормальной работы флотатора во флотационную камеру не допускаются пузырьки более определенного размера.

Вакуумная флотация

Вакуумная флотация основана на понижении давления ниже атмосферного в камере флотатора. При этом происходит выделение воздуха, растворенного в воде. При таком процессе флотации образование пузырьков воздуха происходит в спокойной среде, в результате чего улучшается агрегирование комплексов частица-пузырек и не нарушается их целостность вплоть до достижения ими поверхности жидкости.

Напорная флотация

Этот вид флотации выполняется в две стадии: насыщение воды воздухом под давлением; выделение пузырьков воздуха соответствующего диаметра и всплытие взвешенных и эмульгированных частиц примесей вместе с пузырьками воздуха. Если флотация проводится без добавления реагентов, то такая флотация относится к физическим способам очистки сточных вод.

Импеллерная флотация

Флотаторы импеллерного типа применяют для очистки сточных вод нефтяных предприятий от нефти, нефтепродуктов и жиров. Их также можно использовать для очистки сточных вод других предприятий. Данный способ флотации в промышленности применяют редко из-за его небольшой эффективности, высокой турбулентности потоков во флотационной камере, приводящей к разрушению хлопьевидных частиц, и необходимости применять поверхностно-активные вещества.

Флотация с подачей воздуха через пористые материалы

Для получения пузырьков воздуха небольших размеров можно использовать пористые материалы при флотации, которые должны иметь достаточное расстояние между отверстиями, чтобы не допустить срастания пузырьков воздуха над поверхностью материала. На размер пузырька большое влияние оказывает скорость истечения воздуха из отверстия. Для получения микропузырьков необходима относительно небольшая скорость истечения.

Электрофлотация

Сточная жидкость при пропускании через нее постоянного электрического тока насыщается пузырьками водорода, образующегося на катоде. Электрический ток, проходящий через сточную воду, изменяет химический состав жидкости, свойства и состояние нерастворимых примесей. В одних случаях эти изменения положительно влияют на процесс очистки стоков (флотации), в других -- ими надо управлять, чтобы получить максимальный эффект очистки.

В общем, достоинствами флотации являются непрерывность процесса, широкий диапазон применения, небольшие капитальные и эксплуатационные затраты на флотацию, простая аппаратура флотации, селективность выделения примесей, по сравнению с отстаиванием большая скорость процесса, а также возможность получения шлама более низкой влажности (90-95%), высокая степень очистки (95-98%), возможность рекуперации удаляемых веществ.

Флотацию растворенным в воде воздухом обычно ведут совместно с коагуляцией и флокуляцией взвеси для удаления коллоидных малоконцентрированных (> 1 %) примесей.

Пузырьки воздуха размером 10--100 мкм, выделяющиеся из воды, пересыщенной растворенным в ней воздухом, захватывают взвесь частиц. Воздух диспергируется турбиной -- импеллером флотационной машины. Иногда воздух вводят под избыточным давлением 0,03 -- 0,2 МПа через сопла или фильтры. Флотация осуществляется крупными (> 1000 мкм) быстро всплывающими пузырьками (при расходе воздуха 0,3 -- 5 м3/м3 воды).

При электрофлотации очистку промышленных стоков осуществляют кислородом и водородом, которые выделяются на электродах, размещаемых в осветленной воде. Выделяющийся в ламинарном режиме газ с размером пузырьков 50 мкм обеспечивает высокий эффект очистки.

Биологическая и химическая флотация (автофлотация) происходят в результате взаимодействия пузырьков газа размером 5 -- 50 мкм с поверхностью взвешенных в воде частиц, которые освобождаются от воды.

Наибольшую эффективность разделения достигают при соотношении между твердой и газовой фазами, равном 0,01--0,1, и определяют по формуле

Gвоз/Gч = 1,3Y*(fнР- 1)Q1/(CчQ), (1)

где Gвоз, Gч -- соответственно масса воздуха и частиц суспензии, г; Y* -- растворимость воздуха в воде при атмосферном давлении и рабочей температуре, см3/дм3; fн = 0,5ч0,8 -- степень насыщения; Р -- давление насыщения воды воздухом, Па; Q1 -- количество воды, насыщенное воздухом, м3/ч; Сч -- концентрация твердой фазы (частиц) в суспензии, г/см3; Q -- расход сточной воды, м3/ч.

На практике в сочетании с химической коагуляцией широко применяют напорную флотацию, позволяющую обеспечивать осветление воды за 15 -- 40 мин со скоростью, в 4-- 5 раз превышающей скорость осаждения и при расходе энергии 0,1 -- 0,2 кВт ч/м3.

Установка с рециркуляцией (рис. 1) работает следующим образом. Вода, смешанная с коагулянтом в смесителе 1, поступает в камеру хлопьеобразования 2 с лопастной мешалкой, где образуются крупные хлопья коагулянта, сорбирующие коллоидные взвеси. Из камеры 2 коагулированная вода со скоростью 0,2--0,5 м/с перетекает по трубе 3 в центральную камеру 4. В трубу 3 врезан трубопровод, по которому со скоростью 1 -- 2 м/с вводится вода, пересыщенная воздухом. Часть воды, очищенная во флотаторе насосом 7, подается под давлением в смеситель 9, куда компрессором 8 вводится сжатый воздух, и затем в сатуратор 10. В сатураторе за 1 -- 3 мин происходит насыщение воды воздухом и отделение нерастворившегося воздуха. Насыщенная вода после снижения давления в дросселирующем устройстве 11 становится пересыщенной и поступает во флотатор. Тонкий слой пены (10-- 15 см) со взвесью собирается скребком 6 в приемный бункер 5.

Рис. 1. Схема установки для напорной флотационной очистки воды с рециркуляцией: 1 -- смеситель; 2 -- камеры хлопьеобразования; 3 -- труба; 4 -- центральная камера; 5 -- приемный бункер; б -- скребок; 7 -- насос; 8 -- компрессор;

9 -смеситель; 10 -- сатуратор; 11 -- дросселирующее устройство

Применяемые в отечественной и зарубежной практике сатураторы представлены на рис. 2. Недостатком барботажного и эйр-лифтного сатураторов является введение воздуха в насос, что снижает его производительность и КПД при увеличенном кавитационном износе. Более эффективны сатураторы механического перемешивания с кольцами Рашига, с эжекторной циркуляцией воздуха, распылительного и струйного, в которых воздух вводится после насоса. Для повышения эффективности используется насадочный с кольцами Рашига, а также распылительный и струйный сатураторы.

Рис. 2. Схемы сатураторов:

а -- барботажного; 6 -- эрлифтного; в -- механического перемешивания; г -- с кольцами Рашига; д -- с эжекторной рециркуляцией воздуха; е -- распылительного; ж -- струйного

При расчете напорной флотации с сатурацией необходимо учитывать, что выделение пузырьков газа из воды происходит совместно с твердыми частицами.

Эффективность флотационного выделения частиц определяют по формуле

зФ = хп[1 - exp(-бгхпT/Cг)]/H1 (2)

где хп -- скорость движения пузырьков; Т1 -- время пребывания жидкости во флотаторе; Т = Т1+ Т2; Т2 -- время обработки до Флотатора; бг -- число столкновений пузырьков газа с частицами на единице длины пути; Сг -- объемная концентрация газовой Фазы; Н1 -- высота слоя жидкости во флотаторе.

Список литературы

1.Мещеряков Н.Ф. Флотационные машины, М., 1972;

2. Глембоцкий В.А., Классен В.И., Флотация, М., 1973;

3. Справочник по обогащению руд, М., 1974.


Подобные документы

  • Характеристика современной очистки сточных вод для удаления загрязнений, примесей и вредных веществ. Методы очистки сточных вод: механические, химические, физико-химические и биологические. Анализ процессов флотации, сорбции. Знакомство с цеолитами.

    реферат [308,8 K], добавлен 21.11.2011

  • Анализ технологического процесса и условий образования опасных факторов. Действие вредных факторов на рабочем месте. Изучение особенностей применения методов флотации, сорбции и коагуляции для очистки сточных вод. Расчет интегральной оценки тяжести труда.

    курсовая работа [902,2 K], добавлен 06.07.2015

  • Очистка промышленных сточных вод с использованием электрохимических процессов и мембранных методов (ультрафильтрация, нанофильтрация, обратный осмос). Новые изобретения для очистки и обеззараживания коммунально-бытовых и сельскохозяйственных сточных вод.

    курсовая работа [1,3 M], добавлен 09.12.2013

  • Очистка сточных вод как комплекс мероприятий по удалению загрязнений, содержащихся в бытовых и промышленных водах. Особенности механического, биологического и физико-химического способа. Сущность термической утилизации. Бактерии, водоросли, коловратки.

    презентация [580,0 K], добавлен 24.04.2014

  • Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа [3,0 M], добавлен 04.10.2009

  • Физико-химическая характеристика сточных вод. Механические и физико-химические методы очистки сточных вод. Сущность биохимической очистки сточных вод коксохимических производств. Обзор технологических схем биохимических установок для очистки сточных вод.

    курсовая работа [1,0 M], добавлен 30.05.2014

  • Понятие, принципы и возможные методы очистки сточных вод, особенности их бытовых, производственных и поверхностных видов. Общая характеристика используемых систем очистки, их эффективность. Проблемы и нарушения при очистке бытовых и промышленных стоков.

    реферат [33,5 K], добавлен 08.11.2011

  • Теоретические основы и методы очистки сточных вод. Виды и устройство отстойников. Описание технологической схемы узла механической очистки сточных вод. Материальный баланс, оценка эффективности и контроль решетки, песколовки, отстойника и осветлителя.

    курсовая работа [409,0 K], добавлен 29.06.2010

  • Механическая очистка сточных вод на канализационных очистных сооружениях. Оценка количественного и качественного состава, концентрации загрязнений бытовых и промышленных сточных вод. Биологическая их очистка на канализационных очистных сооружениях.

    курсовая работа [97,3 K], добавлен 02.03.2012

  • Анализ полной биологической очистки хозяйственно–бытовых сточных вод поселка городского типа. Технологическая схема биологической очистки стоков и ее описание. Расчет аэротенка-вытеснителя с регенератором, технологической схемы очистки сточных вод.

    дипломная работа [1,1 M], добавлен 19.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.