Питьевая вода, ее подготовка и нормативы
Источники водоснабжения и основные методы очистки: способы очистки и фильтрации водопроводной воды, виды фильтрации и показатели её качества (водородный показатель, минерализация, железистая вода, окисляемость). СанПиН 2.1.4.559-96 очистки воды.
Рубрика | Экология и охрана природы |
Вид | реферат |
Язык | русский |
Дата добавления | 12.10.2009 |
Размер файла | 32,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования и науки Российской Федерации
Сибирский государственный аэрокосмический университет
имени академика М.Ф. Решетнева
кафедра инженерной экологии
РЕФЕРАТ
по экологии
«Питьевая вода, ее подготовка и нормативы»
Выполнил: ст. гр. Х-21
Маланчик А.О.
Проверил:
Степень Р.А.
Красноярск 2005
Содержание
1. Введение
2. Источники водоснабжения
3. Основные методы очистки
4. Способы очистки и фильтрации водопроводной воды
4.1 Виды фильтрации воды
5. Показатели качества воды
5.1 Водородный показатель
5.2 Минерализация воды
5.3 Железистая вода
5.4 Окисляемость воды
6. СанПиН 2.1.4.559-96
7. Заключение
8. Список литературы
1. ВВЕДЕНИЕ
Общее количество воды на земле оценивается в 14000 млн.км3. Однако стационарные запасы пресных вод, пригодных для использования составляют всего 0,3 % объема гидросферы ( около 4 млн. км3 ).
Вода на нашей планете находится в состоянии круговорота. Под действием солнечной энергии вода испаряется с поверхности мирового океана и суши, а затем выпадает в виде атмосферных осадков.
С поверхности мирового океана испаряется около 412 тысяч км3 в год, а количество атмосферных осадков, выпадающих на поверхность морей и океанов, составляют около 310 тыс. км3 в год. Разница и представляет собой речной сток с суши в моря и океаны.
Единовременный запас воды во всех реках земного шара составляет примерно 1200 км3, причем этот объем возобновляется примерно каждые 12 суток.
Речной сток состоит из подземного и поверхностного. Наиболее ценным является подземный источник воды.
В природе не существует воды, которая не содержала бы примесей. Даже атмосферные осадки содержат до 100 мг / л различных загрязнителей.
Централизованное снабжение водой городов, поселков и промышленных предприятий представляет собой сложный комплекс технико-экономических и организационных мероприятий. Их рациональное решение определяет уровень санитарного благоустройства городов и поселков, обеспечивает нормальные условия жизни населения, гарантирует бесперебойную работу промышленности.
Запасы пресной воды ограничены и распределены по поверхности и в земной коре неравномерно.
Огромное количество пресной воды необходимо для функционирования промышленных предприятий. Еще большее количество пресной воды используется в сельском хозяйстве, в рыбоводческих хозяйствах. Повышение жизненного уровня населения также требует больших расходов пресной воды на хозяйственные и бытовые нужды. В среднем один человек расходует около 250 литров воды в сутки. Создается диспропорция между естественным запасом пресной воды и ее потреблением. Возникает угроза дефицита воды. В этой связи возникает вопрос о рациональном использовании водных ресурсов.
2. Источники водоснабжения
Хозяйственно-питьевое водоснабжение индивидуальных жилых домов может осуществляться как от централизованных систем водоснабжения населенных мест, так и от индивидуальных источников (децентрализованные или местные системы). В централизованных системах водоснабжения качество подаваемой потребителям воды должно соответствовать СанПиН 2.1.4.559-96 с изм. "Вода питьевая. Гигиенические требования и контроль за качеством". Источниками при децентрализованных системах водоснабжения, как правило, являются подземные воды.
Виды подземных вод. Подземные воды могут быть трех типов: верховодка, грунтовые и межпластовые. Верховодка образуется на небольших глубинах за счет просачивания в почву атмосферных осадков. Грунтовые воды располагаются в первом от поверхности водоносном горизонте, под которым находится водоупорный пласт. Межпластовые воды залегают между двумя водонепроницаемыми пластами, могут иметь удаленную от места водозабора зону питания, а при наклонном залегании водоносного пласта - выходить на поверхность (фонтанировать, образовывать родники). Предпочтение при выборе источника следует отдавать межпластовым водам, защищенным от поверхностных загрязнений; возможно также использование грунтовых вод. Использование верховодки как нестабильного и незащищенного от загрязнений источника нецелесообразно. Размещение водозаборных сооружений, их устройство, содержание, а также качество источников регламентировано требованиями санитарных правил по устройству и содержанию колодцев и каптажей родников, используемых для децентрализованного хозяйственно-питьевого водоснабжения. Правила распространяются на устройство колодцев и каптажей общественного пользования, но могут использоваться и для сооружений индивидуального назначения.
Выбор места для устройства водозаборов. Выбор места для устройства водозаборов должен производиться с участием специалистов-гидрогеологов и представителей санитарно-эпидемиологической станции. Его следует выбирать на незагрязненном выше по течению грунтовых вод возвышенном участке, удаленном не менее чем на 50 м от уборных, выгребных ям, сети канализации, скотных дворов, мест захоронений, складов удобрений и ядохимикатов. Территория водозабора должна содержаться в чистоте, не допускаются вблизи водозабора стирка белья и водопой животных.
3. Основные методы очистки воды
Основными методами очистки воды для хозяйственно-питьевого водоснабжения являются осветление, обесцвечивание и обеззараживание.
Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры. В осветлителях и отстойниках вода движется с замедленной скоростью, вследствие чего происходит выпадение в осадок взвешенных частиц. В целях осаждения мельчайших коллоидных частиц, которые могут находиться во взвешенном состоянии неопределенно долгое время, к воде прибавляют раствор коагулянта (обычно сернокислый алюминий, железный купорос или хлорное железо). В результате реакции коагулянта с солями многовалентных металлов, содержащимися в воде, образуются хлопья, увлекающие при осаждении взвеси и коллоидные вещества.
Коагуляцией примесей воды называют процесс укрупнения мельчайших коллоидных и взвешенных частиц, происходящий вследствие их взаимного слипания под действием сил молекулярного притяжения.
Фильтрование -- самый распространенный метод отделения твердых частиц от жидкости. При этом из раствора могут быть выделены не только диспергированные частицы, но и коллоиды.
В процессе фильтрования происходит задержание взвешенных веществ в порах фильтрующей среды и в биологической пленке, окружающей частицы фильтрующего материала. Вода освобождается от взвешенных частиц, хлопьев коагулянта и большей части бактерий.
Обесцвечивание воды, т. е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).
Обеззараживание воды, или ее дезинфекция, заключается в полном освобождении воды от болезнетворных бактерий. Так как полного освобождения ни отстаивание, ни фильтрование не дают, дезинфекция воды может быть достигнута: введением в воду сильных окислителей, способных убивать ферменты бактериальных клеток; нагреванием воды до температуры 80 °С (пастеризация) -- 100 °С (стерилизация); облучением воды ультрафиолетовыми лучами; озонированием (наиболее эффективный метод обеззараживания воды, однако он весьма дорог); воздействием ультразвуком; введением в воду серебра или других металлов, обладающих олигодинамическим действием на микроорганизмы.
Установка для дезодорации воды проектируется перед фильтрами. Привкусы и запахи природных вод бывают природного и искусственного происхождения, что обусловливает различие их химического состава и многообразие методов обработки воды для их локализации.
Для удаления из воды веществ, вызывающих нежелательные привкусы и запахи, применяют следующие методы ее обработки: аэрацию, окисление хлором, озоном, перманганатом калия и другими окислителями; сорбцию активным углем. Аэрация воды является наиболее простым способом ее дезодорации, основанным на летучести большинства веществ, обуславливающих привкусы и запахи.
Для удаления из воды запахов, обусловленных жизнедеятельностью микроорганизмов и водорослей, успешно применяют хлор и озон. В целях предотвращения появления хлорфенольного запаха при хлорировании воды рекомендуется применять: перхлорирование воды (для окисления фенолов), преаммонизацию (введение солей аммиака для связывания хлора) и комбинированную обработку воды совместно с марганцовокислым калием.
Активный уголь является наиболее универсальным средством для дезодорации воды.
4. Способы очистки и фильтрации водопроводной воды
По сведениям НИИ «Экологии человека и гигиены окружающей среды им. А. Н. Сысина» РАМН: в среднем по стране гигиеническим требованиям не соответствует практически каждая третья проба «водопроводной» воды по санитарно-химическим показателям и каждая десятая - по санитарно-бактериологическим;
в отдельных городских водоемах содержится от 2 до 14 тысяч синтезированных химических веществ;
только 1 процент поверхностных водоисточников отвечает требованиям первого класса, на которые рассчитаны используемые у нас традиционные технологии водоочистки.
Подбирая систему водоочистки для своего жилища, надо отдавать себе отчет в том, что вода будет использоваться как в хозяйственно-бытовых целях, так и для питья и приготовления пищи. Задачу доведения качества воды до уровня, оптимального для каждого из ее применений, решают с помощью соответствующих систем водоочистки. Такие системы подразделяют на те, которые устанавливаются там, где вода поступает в дом, и на те, которые ставятся в точке пользования, например, на кухне. Первые делают воду «хозяйственно-бытовой»: с ней нормально работает стиральная машина, можно помыть посуду, ополоснуться под душем. Вторые - готовят питьевую воду. Требования к чистоте воды в первом и втором случаях должны быть разные. Иначе либо питьевая вода расточается на хозяйственные надобности, либо для питья используется вода, не прошедшая должной очистки.
На ходе в систему водоснабжения квартиры желательно поставить фильтр грубой очистки, с сеткой из нержавеющей стали или полимерными картриджами, которые могут задержать взвесь и ржавчину. Это нужно для того, чтобы продлить жизнь сантехники. Вы уменьшите внутреннюю коррозию смесителей, которые очень плохо реагируют на попадание частиц, керамика сантехники будет менее подвержена налетам ржавчины и солей жесткости. Иногда для фильтра нет места у водопроводного стояка. Тогда можно поставить совсем небольшое устройство из латуни, называемое "грязевиком" и избавляющее от грязи и ржавчины. Однако фильтры грубой очистки не могут помочь в устранении неприятных привкусов.
По большому счету, хороший прибор должен с минимальной громоздкостью давать максимальную очистку. Желательно выбрать фильтр, работающий постоянно, чтобы избежать размножения бактерий в самом фильтре. Рекомендуется пользоваться теми фильтрами, которые прошли тесты на соответствие государственным стандартам. Хороший фильтр не меняет естественный минеральный состав воды, которая поступает в организм человека. Цель установки домашнего фильтра состоит в том, чтобы вернуть нашей питьевой воде ее первоначальное качество.
4.1 Виды фильтрации воды
Очистные системы насыпного типа.
Сетчатые и дисковые фильтры механической очистки, удаляющие нерастворенные механические частицы, песок, ржавчину, взвеси и коллоиды.
Ультрафиолетовые стерилизаторы, удаляющие микробы, бактерии и другие микроорганизмы.
Окислительные фильтры, удаляющие железо, марганец, сероводород.
Компактные бытовые умягчители и ионообменные фильтры, умягчающие, а также удаляющие железо, марганец, нитраты, нитриты, сульфаты, соли тяжелых металлов, органические соединения.
Адсорбционные фильтры, улучшающие органолептические показатели (вкус, цвет, запах) и удаляющие остаточный хлор, растворенные газы, органические соединения.
Комбинированные фильтры - комплексные многоступенчатые системы.
Мембранные системы - обратноосмотические системы подготовки питьевой воды, высшая степень очистки.
Бытует мнение, что вода очень высокой степени очистки "не полезна". Кто-то считает, что в воде должно содержаться оптимальное количество микроэлементов. Другие утверждают, что человеческий организм усваивает только вещества органического происхождения, то есть из пищи животного и растительного происхождения, а вода служит растворителем и должна быть максимально чистой. Истина лежит где-то посередине. Говоря о питьевой воде, правильно, видимо, оперировать не категориями «опасно - безопасно».
Очистить воду до состояния, близкого к дистиллированной, проще и дешевле, чем обеспечить наличие в ней ряда веществ в определенной «оптимальной» концентрации. Так, за рубежом при производстве пива, воду чистят именно до такой стадии, а затем в нее добавляют строго дозированное количество веществ, делающих ее оптимальной для дальнейшего использования. Кроме того, элементарный расчет показывает, что для того, чтобы получать из воды оптимальный набор макро- и микроэлементов человек должен выпивать в день как минимум 30-50 литров воды. Иными словами, даже если мы и получаем из воды полезные вещества, они составляют не более 10-15% суточной дозы. Решая для себя проблему «чистить или не чистить», люди стоят перед дилеммой: либо заведомо удалить из воды вредные составляющие, пожертвовав 10-15% полезных веществ, либо оставить в воде вместе с полезными и часть вредных примесей.
5. Показатели качества воды
Существуют объективные показатели качества воды, которые должны соблюдаться непосредственно при ее потреблении.
5.1 Водородный показатель
Водородный показатель характеризует концентрацию свободных ионов водорода в воде. Для удобства отображения был введен специальный показатель, названный рН и представляющий собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -log[H+].
Если говорить проще, то величина рН определяется количественным соотношением в воде ионов Н+ и ОН-, образующихся при диссоциации воды. Если в воде пониженное содержание свободных ионов водорода (рН>7) по сравнению с ионами ОН-, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ (рН<7) - кислую. В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга. В таких случаях вода нейтральна и рН=7. При растворении в воде различных химических веществ этот баланс может быть нарушен, что приводит к изменению уровня рН.
Контроль за уровнем рН особенно важен на всех стадиях водоочистки, так как его "уход" в ту или иную сторону может не только существенно сказаться на запахе, привкусе и внешнем виде воды, но и повлиять на эффективность водоочистных мероприятий.
Обычно уровень рН находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3. Вместе с тем известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9.
5.2 Минерализация воды
Общая минерализация представляет собой суммарный количественный показатель содержания растворенных в воде веществ. Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся именно в виде солей. К числу наиболее распространенных относятся неорганические соли (в основном бикарбонаты, хлориды и сульфаты кальция, магния, калия и натрия) и небольшое количество органических веществ, растворимых в воде.
В зависимости от минерализации природные воды можно разделить на следующие категории:
Категория вод Минерализация, г/дм3
Ультрапресные - < 0.2
Пресные - 0.5
Воды с относительно повышенной минерализацией - 0.5 - 1.0
Солоноватые - 1.0 - 3.0
Соленые - 3 - 10
Воды повышенной солености - 10 - 35
Рассолы - > 35
Кроме природных факторов, на общую минерализацию воды большое влияние оказывают промышленные сточные воды, городские ливневые стоки (особенно когда соль используется для борьбы с обледенением дорог) и т.п.
По данным Всемирной Организации Здравоохранения надежные данные о возможном воздействии на здоровье повышенного солесодержания отсутствуют. Поэтому по медицинским показаниям ограничения ВОЗ не вводятся. Обычно хорошим считается вкус воды при общем солесодержании до 600 мг/л, однако уже при величинах более 1000-1200 мг/л вода может вызвать нарекания у потребителей. Поэтому по органолептическим показаниям ВОЗ рекомендован верхний предел минерализации в 1000 мг/л. Разумеется, уровень приемлемости общего солесодержания в воде сильно варьируется в зависимости от местных условий и сложившихся привычек.
5.3 Железистая вода
Железо существует в природе в различных формах (в зависимости от валентности: Fe0, Fe+2, Fe+3), а также, в виде различных сложных химических соединений.
I. Элементарное железо (Fe0). Элементарное или металлическое железо, безусловно, нерастворимо в воде. В присутствии влаги и кислорода воздуха окисляется до трехвалентного, образуя нерастворимый оксид Fe2O3 (процесс, известный в быту как "ржавление").
II. Двухвалентное железо (Fe+2). Почти всегда находится в воде в растворенном состоянии, хотя возможны случаи (при определенных редко встречающихся в природной воде уровнях рН), когда гидроксид железа Fe(OH)2 способен выпадать в осадок.
III. Трехвалентное железо (Fe+3). Гидроксид железа Fe(OH)3 нерастворим в воде (кроме случая очень низкого рН). Хлорид (FeCl3) и сульфат (Fe2(SO4)3 трехвалентного железа - растворимы и могут образовываться даже в слабо - щелочных водах.
IV. Органическое железо. Органическое железо встречается в воде в разных формах и в составе различных комплексов. Органические соединения железа, как правило, растворимы или имеют коллоидную структуры и очень трудно поддаются удалению.
Различают следующие виды органического железа:
1) Бактериальное железо. Некоторые виды бактерий способны использовать энергию растворенного железа в процессе своей жизнедеятельности. При этом происходит преобразование двухвалентного железа в трехвалентное, которое сохраняется в желеобразной оболочке вокруг бактерии.
2) Коллоидное железо. Коллоиды - это нерастворимые частицы очень малого размера (менее 1 микрона), в силу чего они трудно поддаются фильтрации на гранулированных фильтрующих материалах. Крупные органические молекулы (такие как танины и лигнины) также попадают в эту категорию. Коллоидные частицы из-за своего малого размера и высокого поверхностного заряда (отталкивающего частицы друг от друга, препятствуя их укрупнению) создают в воде суспензии и не осаждаются, находясь во взвешенном состоянии.
3) Растворимое органическое железо. Также как, например, полифосфаты способны связывать и удерживать в растворе кальций и другие металлы, некоторые органические молекулы способны связывать железо в сложные растворимые комплексы, называемые хелатами. Примером такого связывания может служить удерживающая железопорфириновая группа гемоглобина крови или удерживающий магний хлорофилл растений. Так, прекрасным хелатообразующим агентом является гуминовая кислота, играющая важную роль в почвенном ионообмене.
5.4 Окисляемость воды
Окисляемость - это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых (при определенных условиях) одним из сильных химических окислителей.
В практике водоочистки для природных малозагрязненных вод определяют перманганатную окисляемость, а в более загрязненных водах - как правило, бихроматную окисляемость (называемую также ХПК - «химическое потребление кислорода»).
Окисляемость является очень удобным комплексным параметром, позволяющим оценить общее загрязнение воды органическими веществами.
Органические вещества, находящиеся в воде весьма разнообразны по своей природе и химическим свойствам. Их состав формируется как под влиянием внутриводоемных биохимических процессов, так и за счет поступления поверхностных и подземных вод, атмосферных осадков, промышленных и хозяйственно-бытовых сточных вод.
Величина окисляемости природных вод может варьироваться в широких пределах от долей миллиграммов до десятков миллиграммов О2 на литр воды. Поверхностные воды имеют более высокую окисляемость (а значит и более «богаты» органикой) по сравнению с подземными. Так, горные реки и озера характеризуются окисляемостью 2-3 мг О2/дм3, реки равнинные - 5-12 мг О2 /дм3, реки с болотным питанием - десятки миллиграммов на 1 дм3. Подземные же воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграмма О2 /дм3 (исключения составляют воды в районах нефтегазовых месторождений, торфяников, в сильно заболоченных местностях).
6. СанПиН 2.1.4.559-96
«Питьевая вода» Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества" был утвержден постановлением Госкомсанэпиднадзора РФ от 24.10.1996 г. и введен в действие с 1 июля 1997 года.
Принятие этого документа явилось серьезным прорывом в деле контроля за качеством питьевой воды в России, так как он был создан на основе последних разработок и данных российских ученых и с учетом рекомендаций ВОЗ. СанПиН устанавливает гигиенические требования к питьевой воде, нормирует содержание вредных химических веществ, наиболее часто встречающихся в природных водах, а также поступающих в источники водоснабжения в результате хозяйственной деятельности человека, определяет органолептические и некоторые физико-химические параметры питьевой воды.
Здесь необходимо отметить, что вопреки бытующему (все еще) мнению об отсталости нашей нормативной базы, по большинству параметров российский СанПиН удовлетворяет рекомендациям ВОЗ и не уступает зарубежным стандартам, а кое в чем их даже и превосходит.
Санитарные правила и нормы «Питьевая вода». Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества устанавливают гигиенические требования к качеству питьевой воды, а также правила контроля качества воды, производимой и подаваемой централизованными системами питьевого водос снабжения.
В таблице приведены рекомендуемые Всемирной Организации Здравоохранения (ВОЗ), Европейским Сообществом (EC) и Госкомсанэпидемнадзором России (СанПиН, раньше ГОСТ) значения наиболее важных параметров качества воды, приведенные, по возможности, к российским единицам измерения.снабжения населенных мест.
Показатель качества воды |
Ед. измер. |
ГОСТ 2874-82 |
ВОЗ |
Директива Совета ЕС 98/83/ЕС |
||
1 Органолептические показатели . /не более/ |
||||||
Запах при 20 град. |
баллы |
2 |
2 |
- |
- |
|
Привкус и привкус при 20 град. |
баллы |
2 |
2 |
- |
- |
|
Мутность по станд. шкале |
мг/л |
1,5 |
1,5 |
2,8 |
2,3 |
|
Цветность |
Град. |
20 |
20 |
15 |
20 |
|
2 Обобщенные показатели |
||||||
Водор. показ. / рН / конц. ионов водорода |
Отн.ед. |
6,0 - 9,0 |
6,0 - 9,0 |
6,5 - 8,5 |
6,5 - 9,5 |
|
Общая жесткость |
мг экв/л |
/ 7 |
/ 7 |
- |
50/ |
|
Перманганантная окисляемость |
мгО/л |
5 |
5 |
- |
5 |
|
ХПК |
мгО/л |
- |
15 |
- |
- |
|
Общая минерализация /сухой остаток / |
мг/л |
1000 |
1000 |
- |
- |
|
Проводимость |
мкСим/см |
- |
- |
- |
2500 |
|
Щелочность общая |
мг-экв/л |
- |
7 |
- |
- |
|
3 Химические /не более/ |
||||||
Алюминий |
мг/л |
0,5 |
0,5 |
- |
- |
|
Аммоний |
мг/л |
- |
0,5 |
- |
0,5 |
|
Железа Fe общ. /Fe2+ |
мг/л |
0,3 |
0,3 |
0,3 |
0,2 |
|
Марганца |
мг/л |
0,1 |
0,1 |
0,1 - 0,5 |
0,5 |
|
Натрия |
Мг/л |
- |
200 |
- |
200 |
|
Кальция |
мг/л |
- |
30 - 140 |
- |
- |
|
Сульфатов /SO / |
мг-экв./л |
500 |
500/11 |
250 |
250 |
|
Хлоридов /Cl / |
мг-экв./л |
350 |
350/10,2 |
250 |
250 |
|
Нитратов / по NO / |
мг-экв./л |
45 |
45 |
50 |
50 |
|
Нитритов /ион/ |
мг-экв./л |
0,1 |
/3,0/ |
- |
0,5 |
|
Фосфатов / РО / (полифосфаты) |
мг-экв./л |
3,5 |
3,5 |
- |
- |
|
Силикатов /активированных/ |
мгSi / л |
- |
10 |
- |
- |
|
Фторидов / F / |
мг/л |
- |
0,7 - 1,5 |
1,5 |
0,7 - 1,5 |
|
Бикарбонатов |
мг/л |
- |
400 |
- |
||
Растворенного кислорода |
мг/л,%нас |
- |
>50 % |
- |
>50 % |
|
Азот амонийный |
мг/л |
- |
1,5 |
- |
- |
|
Кремний / SI / |
мг/л |
- |
10 |
- |
- |
|
Медь / Cu / |
мг/л |
1 |
1 |
- |
2 |
|
Свинец |
мг/л |
0,03 |
0,03 |
- |
0,01 |
|
Мышьяк /As/ |
мг/л |
- |
0,05 |
- |
- |
|
Молибден / Mo / |
мг/л |
0,25 |
0,25 |
- |
- |
|
Кадмий |
мг/л |
- |
0,001 |
- |
0,005 |
|
Цинк / Zn / |
мг/л |
5 |
5 |
- |
- |
|
Магний |
мг/л |
- |
20 - 50 |
- |
- |
|
Беррилий |
мг/л |
0,0002 |
- |
- |
||
Селен |
мг/л |
0,0001 |
- |
- |
0,0001 |
|
Стронций |
мг/л |
7 |
- |
- |
- |
|
Никель |
мг/л |
- |
0,1 |
- |
- |
|
Хром |
мг/л |
- |
0,5 |
- |
0,5 |
|
Полиакриламид остаточый |
мг/л |
2 |
- |
- |
- |
|
Свободная углекислота |
мг/л |
- |
80 |
- |
- |
|
Свободный хлор |
мг/л |
- |
0,3 - 0,5 |
- |
- |
|
Сероводород /H S / |
мг/л |
- |
0,003 |
- |
- |
|
4. Биологические показатели |
||||||
Термотолерантные колифорбные бактерии |
Число бакт. в 100 мл |
- |
отсутсвие |
отсутсвие |
отсутсвие |
|
Общие колифорбные бактерии |
Число бакт. в 100 мл |
- |
отсутсвие |
отсутсвие |
отсутсвие |
|
Число бактерий группы кишечных палочек в 1л. воды / коли - индекс / |
- |
До 3 |
- |
- |
- |
|
Число микроорганизмов в 1 см. куб.воды |
- |
До 100 |
- |
- |
- |
|
Фенольный индекс |
мг/л |
- |
0,25 |
- |
- |
|
Спав |
мг/л |
- |
0,5 |
- |
- |
6. Заключение
Вся используемая вода хозяйственно-питьевого назначения предварительно очищается и обеззараживается на очистных сооружениях. Берется она из поверхностных источников. В момент очистки, дойдя до резервуаров чистой воды, она, как правило, соответствует самым высоким нормам СанПиНа. Однако при движении по многокилометровым магистралям из чугунных и стальных труб, подверженных коррозии, качество ее заметно ухудшается, появляется запах, снижается прозрачность, повышается содержание железа, меди, цинка и других тяжелых металлов, в воду попадают токсичные компоненты и бактерии из конструкционных и герметизирующих материалов. Все это может привести к развитию аллергии и заболеваний крови.
Присутствие в воде бытового назначения механических примесей и соединений железа способствует преждевременному износу сантехники. Жесткая вода образует на сантехнике и кафеле трудноудаляемый налет, накипь в водонагревательных приборах. Стало быть, вода нуждается в дополнительной очистке непосредственно на месте потребления, что особенно необходимо для питьевой воды, чистота которой важна для здоровья человека.
8. Список литературы
1. Фрог Б.И., Левченко А.П. Водоподготовка. - М.; изд. МГУ, 1996
2. Сан ПиН 2.1.4.559 - 96 Питьевая вода. - М.; инф.изд Центр
3. Госкомсанэпиднадзора России, 1996;
4. Николадзе Г.И., Солов М.А. Водоснабжение. - М.; Стройиздат, 1995;
5. http://edu.secna.ru/main/review/1999/n1/appendix/sek004.html#S04_234
Подобные документы
Основание существования биосферы и человека на использовании воды. Химические, биологические и физические загрязнители воды. Факторы, обуславливающие процессы загрязнения поверхностных вод. Характеристика показателей качества воды, методы ее очистки.
курсовая работа [57,9 K], добавлен 12.12.2012Основные источники загрязнения водных объектов. Физико-химические, бактериологические и паразитологические, радиологические показатели качества воды, методы очистки. Влияние химического состава питьевой воды на здоровье и условия жизни населения.
реферат [459,5 K], добавлен 28.11.2011Санитарно-гигиеническое значение воды. Характеристика технологических процессов очистки сточных вод. Загрязнение поверхностных вод. Сточные воды и санитарные условия их спуска. Виды их очистки. Органолептические и гидрохимические показатели речной воды.
дипломная работа [88,8 K], добавлен 10.06.2010Факторы загрязнения поверхностных вод. Основные физические, химические и биологические загрязнители воды. Естственные источники загрязнения подземных вод. Методы обеззараживания и очистки поверхностных вод, используемых для питьевого водоснабжения.
реферат [25,4 K], добавлен 25.04.2010Проведение экологического мониторинга состояния питьевой воды. Выявление основных загрязнителей. Установление соответствия качества питьевой воды санитарным нормам. Характеристика основных методов очистки воды для хозяйственно-питьевого водоснабжения.
презентация [1,1 M], добавлен 12.04.2014Гидрологический и гидрохимический режим поверхностных водотоков. Организация водоснабжения района. Общая технологическая схема очистки питьевой воды. Химические и физические процессы, происходящие при этом. Методы обработки воды для улучшения ее качества.
курсовая работа [2,5 M], добавлен 24.10.2014Температура как гидрологическая характеристика водоема. Органолептические показатели качества воды. Показатели щелочности и кислотности проб воды. Основные источники загрязнения природных вод; процесс их очистки. Методы утилизации обезвоженного осадка.
презентация [64,4 K], добавлен 08.10.2013Влияние воды и растворенных в ней веществ на организм человека. Санитарно-токсикологические и органолептические показатели вредности питьевой воды. Современные технологии и методы очистки природных и сточных вод, оценка их практической эффективности.
курсовая работа [60,0 K], добавлен 03.01.2013Очистка и обесцвечивание природной воды коагулянтами и флокулянтами. Условия применения флокулянтов для очистки воды. Методы определения показателей качества питьевой воды. Исследование флоккулирующих свойств новых сополимеров акриламида в воде.
дипломная работа [577,3 K], добавлен 30.07.2010Способы очистки сточных вод гальванического производства. Анализ предприятия и производственных процессов. Техногенное влияние предприятия ООО "УК Татпроф" на окружающую среду. Реконструкция станции очистки, позволяющая сократить объемы расхода воды.
дипломная работа [3,1 M], добавлен 12.11.2013