Экология – наука о взаимодействии организмов и среды. Экосистемный и биосферный уровни жизни
Понятие биосферы, ее границы, структура, свойства, живое вещество, учение В.И. Вернадского о ней. Основные биологические системы в биосфере. Характеристика кругооборота воды, азота, углерода и фосфора. Экологическое равновесие и причины его нарушения.
Рубрика | Экология и охрана природы |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 02.05.2009 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- 1 -
НОУ ВПО "БАЛТИЙСКИЙ ИНСТИТУТ ЭКОНОМИКИ И ФИНАНСОВ" (БИЭФ)
Кафедра: 060400 «Финансы и кредит»
КОНТРОЛЬНАЯ РАБОТА
По дисциплине: «Экология»
На тему: «Экология - наука о взаимодействии организмов и среды.
Экосистемный и биосферный уровни жизни»
Студента: Горшковой Анастасии
Алексеевны
Курс, группа: 3811, 1 курс
Дата сдачи _________________
Дата проверки ________________
Проверил преподаватель:
Е.Н. Старикова
____________________
Калининград, 2008
Содержание
Введение...................................................................................................................2
§ 1. Понятие «Биосфера»........................................................................................4
1.1 Границы биосферы............................................................................................6
1.2 Состав и свойства биосферы............................................................................8
1.3 Учение В.И. Вернадского и биосфере...........................................................11
1.4 Живое вещество биосферы.............................................................................15
§ 2. Биоценоз, биогеоценоз и экосистема............................................................20
2.1 Основные биологические системы в биосфере............................................20
2.2 Биоценоз...........................................................................................................23
2.3 Понятия «Биогеоценоз» и «Экосистема»......................................................28
§ 3. Круговорот веществ и приток солнечной энергии......................................37
3.1 Понятие о круговороте веществ.....................................................................37
3.2 Круговорот воды..............................................................................................38
3.3 Круговорот азота.............................................................................................39
3.4 Круговорот углерода.......................................................................................41
3.5 Круговорот фосфора.......................................................................................42
§ 4. Экологические равновесие и его нарушение...............................................45
Заключение.............................................................................................................50
Список использованной литературы...................................................................53
Введение
Биосфера - это среда нашей жизни, это та природа, которая нас окружает, о котором мы говорим в разговорном языке. Человек - прежде всего - своим дыханием, проявлением своих функций, неразрывно связан с этой «природой», хотя бы он жил в городе или в уединенном домике. В. И. Вернадский.
Животные и растения, грибы и бактерии существуют не сами по себе, независимо друг от друга, а в тесном взаимодействии - влияют на проявления жизнедеятельности одних и сами зависят от других организмов.
С момента своего появления, около 3,5 млрд лет назад, живые организмы стали оказывать значительное влияние на эволюцию земной коры и атмосферы.
Факты и положения о биосфере накапливались постепенно в связи с развитием ботаники, почвоведения, географии растений и других преимущественно биологических наук, а также геологических дисциплин. Те элементы знания, которые стали необходимыми для понимания биосферы в целом, оказались связанными с возникновением экологии, науки, которая изучает взаимоотношения организмов и окружающей среды. Биосфера является определенной природной системой, а ее существование в первую очередь выражается в круговороте энергии и веществ при участии живых организмов.
Около 60 лет назад выдающийся русский ученый, академик В.И. Вернадский разработал учение о биосфере - оболочке Земли, населенной живыми организмами. В.И. Вернадский выявил геологическую роль живых организмов и показал, что их деятельность представляет собой важнейший фактор преобразования минеральных оболочек планеты.
Живое вещество настолько многообразно, что его изучают на разных уровнях организации и под разным углом зрения.
Уровни организмов, популяций и экосистем являются областью интересов классической экологии.
Безусловно, все живое на земле связано друг с другом.
Чтобы изучить эту взаимосвязь, мы рассмотрим в данной работе такие понятия, как «биосфера», «экосистема», «биоценоз» и др. Познакомимся с основными моментами работы В.И. Вернадского. Изучим роль биоразнообразия, круговороты веществ и энергии в природе. Узнаем о динамике экосистем и причинах, ее обуславливающих. А также рассмотрим экологическое равновесие в экосистеме, потенциальное бессмертие биосферы и т.д.
Для наиболее наглядного понимания изложенного, в работе представлены схемы и рисунки с пояснениями.
§ 1. Понятие «биосфера»
Биосфера (греч. bios - жизнь, sphaira - шар, сфера) - сложная наружная оболочка Земли, населенная организмами, составляющими в совокупности живое вещество планеты. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.
Впервые термин «биосфера» был введен в науку геологом из Австрии Эдуардом Зюссом в 1875 г. Он понимал под биосферой тонкую пленку жизни на земной поверхности. Роль и значение биосферы для развития жизни на нашей планете оказалась настолько велика, что уже в первой трети XX в. возникло новое фундаментальное научное направление в естествознании - учение о биосфере, основоположником которого является великий русский ученый В. И. Вернадский.
Однако задолго до этого под другими названиями, в частности "пространство жизни", "картина природы", "живая оболочка Земли" и т.п., содержание термина биосфера рассматривалось многими другими естествоиспытателями.
Первоначально под всеми этими терминами подразумевалась только совокупность живых организмов, обитающих на нашей планете, хотя иногда и указывалась их связь с географическими, геологическими и космическими процессами, но при этом скорее обращалось внимание на зависимость живой природы от сил и веществ неорганической природы. Даже автор самого термина "биосфера" Э. Зюсс в своей книге "Лик Земли", опубликованной спустя почти тридцать лет после введения термина (1909 г.), не замечал обратного воздействия биосферы и определял ее как "совокупность организмов, ограниченную в пространстве и во времени и обитающую на поверхности Земли".
Земля и окружающая ее среда сформировалась в результате закономерного развития всей Солнечной системы. Около 4,7 млрд лет назад из рассеянного в протосолнечной системе газопылеватого вещества образовалась планета Земля. Как и другие планеты, Земля получает энергию от Солнца, достигающую земной поверхности в виде электромагнитного излучения. Солнечное тепло - одно из главных слагаемых климата Земли, основа для развития многих геологических процессов. Огромный тепловой поток исходит из глубины Земли.
По новейшим данным, масса Земли составляет 6*1021 т, объем -- 1,083*1012 км3, площадь поверхности -- 510,2 млн км2. Размеры, а следовательно, и все природные ресурсы нашей планеты ограничены.
Наша планета имеет неоднородное строение и состоит из концентрических оболочек (геосфер) - внутренних и внешних. К внутренним - относятся ядро, мантия, а к внешним - литосфера, гидросфера, атмосфера и сложная оболочка Земли - биосфера.
1.1 Границы биосферы
Биосфера в атмосфере простирается примерно до озонового экрана (у полюсов - 8-10 км, у экватора - 17-18 км, над остальными территориями - 20-25 км).
Гидросфера практически вся, в том числе и самая глубокая впадина (Марианская) Мирового океана (11022 м) занята жизнью. К не биосфере следует относить также и донные отложения, где возможно существование живых организмов.
В литосферу жизнь проникает на несколько километров, но в основном ограничивается почвенным слоем, но по отдельным трещинам и пещерам она распространяется на сотни метров.
Границы палеобиосферы в атмосфере примерно совпадают с необиосферой, под водами к палеобиосферы следует относить и осадочные породы, которые практически полностью претерпели переработку живыми организмами. Это толща от сотен метров до десятков километров. Это применимо и к литосфере, пережившей водную стадию функционирования.
Таким образом, границы биосферы определяются наличием живых организмов или «следами» их жизнедеятельности.
Живое вещество образовало ничтожно тонкий слой в общей массе геосфер Земли. Его масса составляет 2420 млрд. тонн, что более чем в 2 тысячи раз меньше массы самой легкой оболочки Земли - атмосферы. Но эта ничтожная масса живого вещества встречается практически повсюду - в настоящее время живые существа отсутствуют лишь в областях обширного оледенения и в кратерах действующих вулканов.
«Всюдность жизни» в биосфере обязана потенциальным возможностям и масштабу приспособляемости организмов, которые постепенно, захватив моря и океаны, вышли на сушу и захватили ее. В.И. Вернадский считал, что этот захват продолжается.
Границы биосферы простираются от высот атмосферы, где царят холод и низкое давление, до глубин океана, где давление достигает 12 тысяч атмосфер. Это стало возможным, потому что пределы толерантности температур у различных организмов - от абсолютного 0 до +180°С, а некоторые бактерии могут существовать в вакууме. Широк диапазон химических условий среды для ряда организмов - от жизни в уксусе до жизни под действием ионизирующей радиации (бактерии в котлах ядерных реакторов). Более того, выносливость некоторых живых существ по отношению к отдельным факторам выходит даже за пределы биосферы, то есть у них есть еще определенный «запас прочности» и потенциальные возможности к распространению. Однако все организмы выживают еще и потому, что везде, где бы ни было их место обитания, существует биогенный ток атомов. Этот ток не смог бы иметь места, во всяком случае, в наземных условиях, если бы не было почвы.
В целом экологический диапазон распространения живого вещества очень велик.
В 1977 г. в океане на глубине нескольких километров были обнаружены горячие вулканические зоны, в которых при температуре 350°С существуют многочисленные термофильные бактерии.
В экспериментах американского исследователя Камерона сине-зеленые водоросли на протяжении нескольких месяцев не теряли жизнеспособности в условиях, которые соответствовали Марианским.
Живое вещество не гибнет в жидком азоте.
Некоторые виды, например, те же сине-зеленые водоросли, не гибнут под действием мощного ионизирующего излучения и поселяются в эпицентре ядерного взрыва уже после нескольких дней его действия.
Живое вещество может сохраняться даже в условиях открытого космоса. Так, третья экспедиция американских астронавтов забыла на Луне телекамеру. Когда через полгода ее возвратили на Землю, на внутренней стороне крышки были обнаружены земные бактерии, которые без каких-либо вредных последствий пережили длительное нахождение за пределами родной планеты.
1.2 Состав и свойства биосферы
Очень важным для понимания биосферы было установление немецким физиологом Пфефером (1845 - 1920) трех способов питания живых организмов:
автотрофное - построение организма за счет использования веществ неорганической природы;
гетеротрофное - строение организма за счет использования низкомолекулярных органических соединений;
миксотрофное - смешанный тип построения организма (автотрофно-гетеротрофный).
Биосфера (в современном понимании) - своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.
Биосфера, являясь глобальной экосистемой, как и любая экосистема, состоит из абиотической и биотической части.
Абиотическая часть представлена:
почвой и подстилающими ее породами до глубины, где в них еще есть живые организмы, вступающие в обмен с веществом этих пород и физической средой порового пространства.
Атмосферным воздухом до высот, на которых возможны еще проявления жизни.
Водной средой океанов, рек, озер и т.п.
Биотическая часть состоит из живых организмов всех таксонов, осуществляющих важнейшую функцию биосферы, без которой не может существовать сама жизнь: биогенный ток атомов. Живые организмы осуществляют этот ток атомов благодаря своему дыханию, питанию и размножению, обеспечивая обмен между всеми частями биосферы.
1) Атмосфера - наиболее легкая оболочка Земли, которая граничит с космическим пространством; через атмосферу осуществляется обмен вещества и энергии с космосом.
Атмосфера имеет несколько слоев:
тропосфера - нижний слой, примыкающий к поверхности Земли (высота 9-17 км). В нем сосредоточено около 80% газового состава атмосферы и весь водяной пар;
стратосфера;
ноносфера - там “живое вещество” отсутствует.
Преобладающие элементы химического состава атмосферы: N2 (78%), O2 (21%), CO2 (0,03%).
Гидросфера - водная оболочка Земли. Вследствие высокой подвижности вода проникает повсеместно в различные природные образования, даже наиболее чистые атмосферные воды содержат от 10 до 50 мгр/л растворимых веществ.
Преобладающие элементы химического состава гидросферы: Na+, Mg2+, Ca2+, Cl-, S, C. Концентрация того или иного элемента в воде еще ничего не говорит о том, насколько он важен для растительных и животных организмов, обитающих в ней. В этом отношении ведущая роль принадлежит N, P, Si, которые усваиваются живыми организмами. Главной особенностью океанической воды является то, что основные ионы характеризуются постоянным соотношением во всем объеме мирового океана.
Литосфера - внешняя твердая оболочка Земли, состоящая из осадочных и магматических пород. В настоящее время земной корой принято считать верхний слой твердого тела планеты, расположенный выше сейсмической границы Мохоровичича. Поверхностный слой литосферы, в котором осуществляется взаимодействие живой материи с минеральной (неорганической), представляет собой почву. Остатки организмов после разложения переходят в гумус (плодородную часть почвы). Составными частями почвы служат минералы, органические вещества, живые организмы, вода, газы.
Преобладающие элементы химического состава литосферы: O, Si, Al, Fe, Ca, Mg, Na, K.
Свойства биосферы
Биосфере, как и составляющим ее другим экосистемам более низкого ранга, присуща система свойств, которые обеспечивают ее функционирование, саморегулирование, устойчивость и другие параметры. Рассмотрим основные из них.
Биосфера - централизованная система.
Центральным звеном ее выступают живые организмы (живое вещество).
Биосфера - открытая система. Ее существование немыслимо без поступления энергии из вне.
Она испытывает воздействие космических сил, прежде всего солнечной активности.
3. Биосфера - саморегулирующаяся система, для которой, как отмечал Вернадский, характерна организованность. В настоящее время это свойство называется гомеостазом, понимая под ним способность возвращаться в исходное состояние, гасить возникающие возмущения включением ряда механизмов.
Опасность современной экологической ситуации связана прежде всего с тем, что нарушается линия механического гомеостаза и принцип Ле-Гиателье-Брауна, если не в планетарных, то в крупных региональных масштабах. Результат - распад экосистем, либо появление неустойчивых, практически лишенных свойств гомеостаза систем типа агроценоза или урбанизированных комплексов.
4. Биосфера - система, характеризующаяся большим разнообразием.
Разнообразие - важнейшее свойство всех экосистем. Биосфера как глобальная экосистема, характеризующаяся максимальным среди других систем разнообразием. Разнообразие рассматривается как основное условие устойчивости любой экосистемы и биосферы в целом. Это условие так универсально, что сформировалось в качестве закона.
В основе биогенной миграции атомов в биосфере лежат два биохимических принципа:
стремиться к максимальному проявлению, к «всюдности» жизни;
обеспечивать выживание организмов, что увеличивает саму биогенную миграцию.
5. Важнейшее свойство биосферы - наличие в ней механизмов, обеспечивающих круговорот вещества и связанного с ним неисчерпаемость отдельных химических элементов и их соединений. А также потенциально е бессмертие биосферы
1.3 Учение В.И. Вернадского о биосфере
Учение В.И. Вернадского1 о биосфере представляет собой обобщение естественнонаучных знаний, оно вобрало в себя эволюционные взгляды Ч. Дарвина, периодический закон Д.И. Менделеева, теорию единства пространства и времени А. Энштейна, идеи о неразрывной связи живой и неживой природы многих отечественных и зарубежных ученых.
Вернадский Владимир Иванович (12.03.1863, Петербург - 06.01.1945, Москва) - русский учёный, академик. Родился в семье профессора политэкономии. Окончил одно из лучших в России учебных заведений - Петербургскую классическую гимназию. Вернадский самостоятельно изучал европейские языки и впоследствии читал научную литературу на 15 языках, а некоторые статьи писал на английском, немецком и французском. Очень много читал, увлекаясь естествознанием, но в первой самостоятельной работе обратился к истории славян. После окончания Петербургского университета в 1885 был оставлен для подготовки к профессорскому званию. Член Петербургского общества естествоиспытателей и Вольного экономического общества, Вернадский стал известен как автор многих публикаций по вопросам почвоведения, физической географии, минералогии. В 1890 он был приглашён в Московский университет преподавать минералогию. Наряду с минералогией занимался кристаллографией, историей естественных наук и написал капитальные монографии по этим темам. В 1926 он опубликовал свою монографию «Биосфера», став основоположником нового учения. Биосферой Вернадский назвал оболочку Земли, где протекают биохимические процессы.
По мысли Вернадского, в результате человеческой деятельности биосфера перейдет в новое состояние - ноосферу, то есть сферу разума, когда люди будут не только черпать из неё ресурсы, но и преобразовывать её для умножения взятого. Труды Вернадского принципиально изменили научное мировоззрение XX века.
Сущность учения В. И. Вернадского заключена в признании исключительной роли «живого вещества», преобразующего облик планеты. Суммарный результат его деятельности за геологический период времени огромен. По словам Вернадского, «на земной поверхности нет химической силы более постоянно действующей, а потому более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом». Именно живые организмы улавливают и преобразуют энергию Солнца и создают бесконечное разнообразие нашего мира.
Вторым главнейшим аспектом учения В. И. Вернадского является разработанное им представление об организованности биосферы, которая проявляется в согласованном взаимодействии живого и неживого, взаимной приспособляемости организма и среды. «Организм, - писал В. И. Вернадский, - имеет дело со средой, к которой он не только приспособлен, но которая приспособлена к нему». В. И. Вернадский обосновал также важнейшие представления о формах превращения вещества, путях биогенной миграции атомов, т.е. миграции химических элементов при участии живого вещества, накоплении химических элементов, о движущих факторах развития биосферы и др.
В работах В.И. Вернадского рассматриваются компоненты биосферы, ее границы, функции живого вещества, эволюция биосферы.
Ученый впервые показал, что живая и неживая природа Земли тесно взаимодействуют и составляют единую систему.
В биосфере можно выделить следующие основные компоненты: живое вещество, косное (неживое) вещество, неживое биогенное вещество, биокосное вещество.
Живым веществом В.И. Вернадский назвал совокупность живых организмов, населяющих нашу планету. Это главная сила, преобразующая поверхность планеты, основа формирования и существования самой биосферы. Во все геологические эпохи живое вещество, преобразуя и аккумулируя солнечную энергию, влияло на химический состав земной коры, было мощной геохимической силой, формирующей лик Земли. Живое вещество имеет количественные характеристики, его можно изучать, используя математические законы.
Количество живого вещества в биосфере (биомасса) - величина постоянная или мало изменяющаяся с течением времени. Во все геологические эпохи на Земле количество живого вещества было практически одинаковым. Ученый подчеркивал, что современное живое вещество генетически родственно живому веществу прошлых геологических эпох.
Под косным веществом В.И. Вернадский понимал такие вещества биосферы, в создании которых живые организмы не участвуют. Это, например, газы, твердые частицы и водяные пары, выбрасываемые вулканами, гейзерами.
Кроме живого и косного веществ, в состав биосферы входят:
неживое биогенное вещество, которое образовано живым веществом современной и прошлых геологических эпох (ископаемые остатки организмов, нефть, уголь, газы атмосферы, озерный ил - сапропель, осадочные породы, например, известняки);
биокосное вещество, которое создавалось одновременно и живыми организмами и косным веществом (например, почва, вода обитаемых водоемов, глинистые минералы).
Границы биосферы совпадают с границами распространения живых организмов в оболочках Земли, что определяется наличием условий существования жизни (благоприятный температурный режим, уровень радиации, достаточное количество воды, минеральных веществ, кислорода, углекислого газа). Биосфера охватывает всю поверхность суши, а также океаны, моря и ту часть недр Земли, где находятся породы, созданные в процессе жизнедеятельности живых организмов. Иначе говоря, биосфера - это часть литосферы, атмосферы, гидросферы, заселенная живым веществом.
Для существования живых организмов необходимы следующие условия: достаточное количество воды, минеральных веществ, О2, СО2, оптимальный температурный режим, уровень радиации и др.
Верхняя граница биосферы определяется озоновым экраном, представляющим собой тонкий слой (2-4 мм) газа озона (О3). Роль озонового слоя в биосфере велика: он задерживает губительные для живого ультрафиолетовые лучи солнечного света. Этот слой расположен на высотах 16 - 20 км.
Нижняя граница биосферы неровная. К примеру, в литосфере живые организмы или продукты их жизнедеятельности можно встретить на глубине 3,5-7,5 км, а в Мировом океане организмы - на глубине 10 - 11 км.
Нижняя граница на суше связана с областями "былых биосфер" - так В.И. Вернадский назвал сохранившиеся остатки биосфер прошлых геологических эпох (накопления осадочных пород, углей, горючих сланцев и др.). "Былые биосферы" служат доказательством длительной эволюции биосферы Земли.
Ученый отмечал, что живое вещество распределено в биосфере неравномерно. Основная его масса сконцентрирована в приповерхностном слое суши толщиной 50-100 м и в приповерхностной толще воды (10-20 м). Здесь находится более 90% биомассы Земли. Но и в приповерхностном слое имеются пространства, густо заселенные живыми организмами (тропики и субтропики, теплые моря), и менее заселенные территории (пустыни, высокогорья, арктические и антарктические области). Для остальных территорий биосферы характерно, по словам В.И. Вернадского, "разрежение живого вещества".
Тем не менее, в пределах биосферы нет абсолютно безжизненных пространств. Даже в самых суровых условиях обитания можно найти бактерии и другие микроорганизмы. В.И. Вернадский высказал идею о "всюдности жизни", живое вещество способно "растекаться" по поверхности планеты; оно с огромной скоростью захватывает все незанятые участки биосферы, что обусловливает "давление жизни" на неживую природу.
1.4 Живое вещество биосферы
На земной поверхности нет химической силы, могущественней по своим конечным последствиям, чем живые организмы, взятые в целом.
Что принципиально отличает нашу планету от какой-либо другой планеты Солнечной системы? «Если бы на Земле не было жизни, лицо ее было бы точно также неизменным и химическим инертным, как недвижимое лицо Луны, как инертные обломки небесных светил».
Живое вещество биосферы есть совокупность всех ее живых организмов. Как ученый В.И. Вернадский понимает, что объект его исследований требует некоторых характеристик, а поэтому отмечает: «Я буду называть совокупность организмов, сведенных к массе, химического состава и энергии, живым веществом». Живое вещество в его понимании - это форма активной материи, и ее энергия тем больше, чем больше масса живого вещества. Понятие «живое вещество» ввел в науку В.И. Вернадский и понимал над ним совокупность всех живых организмов планеты.
Свойства живого вещества:
Живое вещество биосферы характеризуется огромной свободной энергией, которую можно было бы сравнить разве что с огненным потоком лавы, но энергия лавы не долговременна.
В живом веществе, благодаря присутствию ферментов, химические реакции происходят в тысячи, а иногда и в миллионы раз быстрее, чем в неживой. Для жизненных процессов характерно то, что полученные организмом вещества и энергия перерабатываются и отдаются в значительно больших количествах. Например, масса насекомых, которых съедает синица за день, равна ее собственной массе, а некоторые гусеницы употребляют и перерабатывают за сутки в 200 раз больше еды, чем весят сами.
Индивидуальные химические элементы (белки, ферменты, а иногда и отдельные минеральные соединения синтезируются только в живых организмах).
Живое вещество стремится заполнить собой все возможное пространство. В.И. Вернадский называет две специфические формы движения живого вещества:
а) пассивную, которая осуществляется размножением, и присуща как животным, так и растительным организмам;
б) активную, которая осуществляется за счет направленного движения организмов (меньшей мерой характера для растений).
Живое вещество проявляет значительно большее морфологическое и химическое разнообразие, чем неживое. В природе известно более 2 млн. органических соединений, которые входят в состав живого вещества, тогда когда количество минералов неживого вещества составляет около 2 тыс., то есть на три порядка ниже.
Живое вещество представлено дисперсными телами - индивидуальными организмами, каждый из которых имеет свой собственный генезис, свой генетический состав. размеры индивидуальных организмов колеблется от 2 нм у наименьших до 100 м (диапазон более 109). Крупнейшими из растений считаются секвойи, а из животных - киты. По мнению Вернадского, минимальные и максимальные размеры организмов определяются граничными возможностями их газового обмена со средой.
Будучи дисперсным, живое вещество никогда не попадается на Земле в морфологически чистой форме, например в виде популяционного вида. Она может существовать только в виде биоценоза: «… даже простенький биоценоз какого-то сухого соснячка на песочке есть группировка, которая состоит приблизительно из тысячи видов живых организмов».
Принцип Реди (флорентийский академик, врач и натуралист, 1626-1697: «все живое из живого» - является отличительной особенностью живого вещества, которое существует на Земле в форме беспрерывного чередования поколений и характеризуется генетической связью с живым веществом всех прошлых геологических эпох. Неживые абиогенные вещества, как известно, поступают в биосферу из космоса, ним же выносятся порциями из оболочки земного шара. Они могут быть аналогичными по составу, но генетической связи в общем случае у них нет. «Принцип Реди … не указывает на невозможность абиогенеза вне биосферы или при установлении наличия в биосфере (теперь или раньше) физико-химических явлений, не принятых при научном определении этой формы организованности земной оболочки» [8].
Живое вещество в лице конкретных организмов, в отличие от неживого, осуществляет на протяжении своей исторической жизни грандиозную работу. По сути, только биогенные вещества метабиосферы - это интеграл массы живого вещества, тогда как масса неживого вещества земного происхождения является величиной постоянной в геологической истории: 1 г архейского гранита и сегодня остается 1 г того же вещества, а та же масса живого вещества, то есть 1 г, на протяжении миллиардов лет существовала за счет изменения поколений и все это время выполняла геологическую работу.
Функции живого вещества.
Одна из основных заслуг В.И. Вернадского состоит в том, что он впервые обратил внимание на роль живых организмов как мощного геологического фактора, на то, что живое вещество выполняет в биосфере различные биогеохимические функции. Благодаря этому обеспечиваются круговорот веществ и превращение энергии и, в итоге, целостность, постоянство биосферы, ее устойчивое существование. Важнейшими функциями являются:
энергетическая;
газовая;
окислительно-восстановительная;
концентрационная.
Энергетическая функция заключается в накоплении и преобразовании растениями энергии Солнца (бактерии-хемоавтотрофы преобразуют энергию химических связей) и передаче ее по пищевым цепям: от продуцентов - к консументам и, далее, - к редуцентам. При этом энергия постепенно рассеивается, но часть ее вместе с остатками организмов переходит в ископаемое состояние, "консервируется" в земной коре, образуя запасы нефти, угля и др.
В осуществлении газовой функции ведущая роль принадлежит зеленым растениям, которые в процессе фотосинтеза поглощают углекислый газ и выделяют в атмосферу кислород. В то же время, большинство живых организмов (и растения в том числе) в процессе дыхания используют кислород, выделяя в атмосферу углекислый газ. Таким образом, участвуя в обменных процессах, живое вещество поддерживает на определенном уровне газовый состав атмосферы.
Окислительно-восстановительная функция тесно связана с энергетической. Существуют микроорганизмы, которые в процессе жизнедеятельности окисляют или восстанавливают различные соединения, получая при этом энергию для жизненных процессов. Велико их значение для образования многих полезных ископаемых. Например, деятельность железобактерий по окислению железа привела к образованию таких осадочных пород как железные руды; серобактерии, восстанавливая сульфаты, образовали месторождения серы.
Концентрационная функция заключается в способности живых организмов накапливать различные химические элементы. Например, осоки и хвощи содержат много кремния, морская капуста и щавель - йод и кальций. В скелетах позвоночных животных содержится большое количество фосфора, кальция, магния. Осуществление данной функции способствовало образованию залежей известняка, мела, торфа, угля, нефти.
§ 2. Биоценоз, биогеоценоз и экосистема
2.1 Основные биологические системы в биосфере
Мир живых существ, включая человека, представлен биологическими системами различной структурной организации и разного уровня сложности. Все живые организмы состоят из клеток. Клетка может представлять собой целый организм, а может быть частью многоклеточного растения или животного.
В многоклеточном организме клетки и межклеточное вещество образуют связанные выполнением определенных функций ткани и органы. В результате многоклеточный организм представляет собой целостную систему органов, способную к самостоятельному существованию.
Элементарной клеточкой синтетической теории эволюции является популяция - совокупность особей одного вида, длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений. Элементарной единицей наследственности выступает ген. Наследственное изменение популяции в каком-либо определенном направлении осуществляется под воздействием таких эволюционных факторов, как мутационный процесс, популяционные волны, изоляция, естественный отбор.
Таким образом, в синтетической теории эволюции на первый план выступает не оногенез - совокупность преобразований, происходящих в организме от зарождения до конца жизни, т.е. индивидуальное развитие организма, а развитие популяций.
Онтогенетический уровень организации жизни на Земле связан с жизнедеятельностью отдельных биологических особей, дискретных индивидуумов, а популяционный уровень надындивидуален.
Популяция- это совокупность особей одного вида, населяющих определенную территорию, более или менее изолированную от соседних совокупностей того же вида.
Виды - это системы популяций. Популяции и виды как надындивидуальные образования способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию.
Популяции - это генетические открытые системы, т.к. особи из разных популяций иногда скрещиваются. Виды являются наименьшими генетически закрытыми системами.
Совокупность совместно обитающих популяций разных видов живых организмов называется биоценозом.
Биоценоз - совокупность растений, животных, грибов и микроорганизмов, населяющих участок среды с более или менее однородными условиями существования и характеризующихся определенными взаимосвязями между собой и приспособленностью к условиям окружающей среды (например, биоценоз озера, леса и т.д.).
Совокупность растений на участке с одинаковыми природными условиями, которые взаимодействуют друг с другом и со своим окружением, называется фитоценозом или растительным сообществом.
Растительное сообщество (фитоценоз) - совокупность видов растений на однородном участке, находящихся в сложных взаимоотношениях между собой и с условиями окружающей среды (лес, степь, луг и т.д.). Фитоценоз характеризуется определенным видовым составом, строением и сложением. Фитоценоз - это часть биоценоза.
Биоценозы входят в качестве составных частей в еще более сложные системы, представляющие собой взаимообусловленный комплекс живых и абиотических компонентов, связанных между собой обменом веществ и энергией - в биогеоценозы.
Биогеоценоз - это однородный участок земной поверхности с определенным составом живых (биоценоз) и абиотических косных (приземной слой атмосферы, солнечная энергия, почва и др.) компонентов и динамическим взаимодействием между ними (обменом веществ и энергии). Термин предложил В.М.Сукачев (1940 г). Иногда этот термин употребляется как синоним экосистемы. Раздел биологии, изучающий экологические системы (биоценозы, биогеоценозы), называется биогеоценология.
В развитии экосистем большую роль играют организмы, способные самостоятельно синтезировать органическое вещество из неорганических соединений. Эти организмы называются автотрофами.
Автотрофы - это организмы, синтезирующие из неорганических веществ (главным образом воды, двуокиси углерода, неорганических соединений азота) все необходимые для жизни органические вещества, используя энергию фотосинтеза (все зеленые растения - фототрофы) или хемосинтеза (некоторые бактерии - хемотрофы).
Автотрофы служат первичной биотической основой для сложения биогеоценозов.
Рис.4. Схема биогеоценоза
Организмы, использующие для питания органические вещества, произведенные другими организмами, называются гетеротрофами. К гетеротрофным организмам относится человек, все животные, грибы, большинство бактерий, вирусов.
Автотрофные растения и микроорганизмы представляют жизненную среду для гетеротрофов. Складывается биогеоценотический комплекс, который может существовать веками.
Пространство, включающее околоземную атмосферу и наружную оболочку Земли, освоенное живыми организмами и находящееся под влиянием их жизнедеятельности, называется биосферой.
Биосфера Земли образуется всей совокупностью биогеоценозов, связанных между собой круговоротом веществ и энергии. Она представляет собой область активной жизни, охватывающую нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. В биосфере живые организмы и среда их обитания органически связаны и взаимодействуют друг с другом, образуя целостную динамическую систему
2.2 Биоценоз
Биоценоз (от био. и греч. koinos -- общий), совокупность растений, животных, микроорганизмов, населяющих участок суши пли водоёма и характеризующихся определёнными отношениями, как между собой, так и с абиотическими факторами среды.
Термин «Биоценоз» был предложен нем. биологом К. Мёбиусом (1877). Биоценоз -- комплекс организмов биогеоценоза, формирующийся в результате борьбы за существование, естественного отбора и других факторов эволюции. Внутри экологической системы органические вещества создаются автотрофными организмами (например, растениями). Растения поедают животные, которых, в свою очередь, поедают другие животные. Такая последовательность называется пищевой цепью; каждое звено пищевой цепи называется трофическим уровнем (греч. trophos «питание»). По участию в биогенном круговороте веществ в биоценозе различают три группы организмов.
1. Продуценты (производители) -- автотрофные организмы, создающие органические вещества из неорганических; основные продуценты во всех биоценозах-- зелёные растения Деятельность продуцентов определяет исходное накопление органические веществ в биоценозах.
2. Консументы (потребители)-- гетеротрофные организмы, питающиеся за счёт автотрофных.
·Консументы 1-го порядка -- растительноядные животные, а также паразитические бактерии, грибы и др. бесхлорофольные растения, развивающиеся за счёт живых растений.
·Консументы 2-го порядка -- хищники и паразиты растительноядных организмов.
Бывают консументы 3-го и 4-го порядков (сверхпаразиты, суперпаразиты и т. п.), но всего в цепях питания по более 5 звеньев.
На каждом последующем трофическом уровне кол-во биомассы резко снижается. Деятельность консументов способствует превращениям и перемещениям органических веществ в биоценозах, частичной их минерализации, а также рассеянию энергии, накопленной продуцентами,
3. Редуценты (восстановители) -- животные, питающиеся разлагающимися остатками организмов (сапрофаги), и особенно непаразитирующие гетеротрофные микроорганизмы -- способствуют минерализации органических веществ, их переходу в усвояемое продуцентами состояние.
Взаимосвязи организмов в биоценозах многообразны. Кроме трофических связей, определяющих цепи питания, существуют связи, основанные на том, что одни организмы становятся субстратом для других (топические связи), создают необходимый микроклимат и т. п. Часто можно проследить в биоценозах группы видов, связанные с определённым видом и целиком зависящие от последнего (консорции).
Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища -- потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды. Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами. Чаще всего на этом месте находятся растения, грибы, водоросли. Организмы последнего звена в цепи не выступают в роли пищи для других организмов.
Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия. В процессе питания потенциальная энергия пищи переходит к её потребителю. При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального.
Пищевые сети служат основой для построения экологических пирамид. Простейшими из них являются пирамиды численности, которые отражают количество организмов (отдельных особей) на каждом трофическом уровне. Для удобства анализа эти количества отображаются прямоугольниками, длина которых пропорциональна количеству организмов, обитающих в изучаемой экосистеме, либо логарифму этого количества. Часто пирамиды численности строят в расчёте на единицу площади (в наземных экосистемах) или объёма (в водных экосистемах).
В пирамидах численности дерево и колосок учитываются одинаково, несмотря на их различную массу. Поэтому более удобно использовать пирамиды биомассы, которые рассчитываются не по количеству особей на каждом трофическом уровне, а по их суммарной массе. Построение пирамид биомассы - более сложный и длительный процесс.
Пирамиды биомассы не отражают энергетической значимости организмов и не учитывают скорость потребления биомассы. Это может приводить к аномалиям в виде перевёрнутых пирамид. Выходом из положения является построение наиболее сложных пирамид - пирамид энергии. Они показывают количество энергии, прошедшее через каждый трофический уровень экосистемы за определённый промежуток времени (например, за год - чтобы учесть сезонные колебания). В основание пирамиды энергии часто добавляют прямоугольник, показывающий приток солнечной энергии. Пирамиды энергии позволяют сравнивать энергетическую значимость популяций внутри экосистемы. Так, доля энергии, проходящей через почвенных бактерий, несмотря на их ничтожную биомассу, может составлять десятки процентов от общего потока энергии, проходящего через первичных консументов.
Органическое вещество, производимое автотрофами, называется первичной продукцией. Скорость накопления энергии первичными продуцентами называется валовой первичной продуктивностью, а скорость накопления органических веществ - чистой первичной продуктивностью. ВПП примерно на 20 % выше, чем ЧПП, так как часть энергии растения тратят на дыхание. Всего растения усваивают около процента солнечной энергии, поглощённой ими.
При поедании одних организмов другими вещество и пища переходят на следующий трофический уровень. Количество органического вещества, накопленного гетеротрофами, называется вторичной продукцией. Поскольку гетеротрофы дышат и выделяют непереваренные остатки, в каждом звене часть энергии теряется. Это накладывает существенное ограничение на длину пищевых цепей; количество звеньев в них редко бывает больше 6. Отметим, что эффективность переноса энергии от одних организмов к другим значительно выше, чем эффективность производства первичной продукции. Средняя эффективность переноса энергии от растения к животному составляет около 10 %, а от животного к животному - 20 %. Обычно растительная пища энергетически менее ценна, так как в ней содержится большое количество целлюлозы и древесины, не перевариваемых большинством животных.
Рис. 10.Поток энергии через пастбищную пищевую цепь. Все цифры даны в кДж/м2·год.
Изучение продуктивности экосистем важно для их рационального использования. Эффективность экосистем может быть повышена за счёт повышения урожайности, уменьшения помех со стороны других организмов (например, сорняков по отношению к сельскохозяйственным культурам), использования культур, более приспобленных к условиям данной экосистемы. По отношению к животным необходимо знать максимальный уровень добычи (то есть количество особей, которые можно изъять из популяции за определённый промежуток времени без ущерба для её дальнейшей продуктивности).
Биоценоз -- диалектически развивающееся единство, меняющееся в результате деятельности входящих в него компонентов, вследствие чего происходят закономерные изменение и смена биоценоза (сукцессии), которые могут приводить к восстановлению резко нарушенных биоценоза (напр., леса после пожара и т. п.). Различают насыщенные и ненасыщенные биоценозы в насыщенном биоценозе все экологические ниши заняты и вселение нового вида невозможно без уничтожения или последующего вытеснения какого-либо компонента биоценоза. Ненасыщенные биоценоза характеризуются возможностью вселения в них новых видов без уничтожения других компонентов. Можно различать первичные биоценозы, сложившиеся без воздействия человека (целинная степь, девственный лес), и вторичные, изменённые деятельностью человека (леса, выросшие на месте сведённых, население водохранилищ). Особую категорию представляют агробиоценозы, где комплексы основных компонентов биоценоза сознательно регулируются человеком. Между первичным биоценозом и агробиоценозам имеется вся гамма переходов. Изучение биоценоза важно для рационального освоения земель и водных пространств, т. к. только правильное понимание регулятивных процессов в биоценозе позволяет человеку изымать часть продукции биоценоза без его нарушения и уничтожения.
2.3 Понятия «биогеоценоз» и «экосистема»
Термин «биогеоценоз» (био -- жизнь, гео -- земля, ценз -- сообщество) был предложен В. Н. Сукачевым в 1940 г. Им обозначают наземные и водные природные комплексы -- леса и степи, озера и реки и т. д. Наряду с термином «биогеоценоз» существует термин «экологическая система» (экосистема), предложенный А. Тенсли в 1935 г. Термины «биогеоценоз» и «экосистема» отражают близкие понятия. Некоторые авторы их отождествляют, что, однако, неправильно.
Понятие экосистема введено английским ботаником А. Тенсли, который обозначил этим термином любую совокупность совместно обитающих организмов и окружающую их среду. как основная структурная единица биосферы -- это взаимосвязанная единая функциональная совокупность живых организмов и среды их обитания, или уравновешенное сообщество живых организмов и окружающей неживой среды. В этом определении подчеркнуто наличие взаимоотношений, взаимозависимости, причинно-следственных связей между биологическим сообществом и абиотической средой, объединение их в функциональное целое. Биологи считают, что экосистема -- совокупность всех популяций разных видов, проживающих на общей территории, вместе с окружающей их неживой средой. природные образования с четкими границами, состоящие из совокупности живых существ (биоценозов), занимающих определенное место. Для водных организмов -- это вода, для организмов суши -- почва и атмосфера. Понятия биогеоценоз и экосистема до некоторой степени однозначны, но они не всегда совпадают по объему. Экосистема -- широкое понятие, экосистема не связана с ограниченным участком земной поверхности. Это понятие применимо ко всем стабильным системам живых и неживых компонентов, где происходит внешний и внутренний круговорот веществ и энергии. Так, к экосистемам относятся капля воды с микроорганизмами, аквариум, горшок с цветами, аэротенк, биофильтр, космический корабль.
Биогеоценозами же они не могут быть. Экосистема может включать и несколько биогеоценозов (например, биогеоценозы округа, провинции, зоны, почвенно-климатической области, пояса, материка, океана и биосферы в целом). Таким образом, не каждую экосистему можно считать биогеоценозом, тогда как всякий биогеоценоз является экологической системой. Масштабы экосистем различны: микросистемы (например, болотная кочка, дерево, покрытый мхом камень или пень, горшок с цветком и т.п.), мезоэкосистемы (озеро, болото, песчаная дюна, лес, луг и т.п.), макроэкосистемы (континент, океан и т.п.). Следовательно, существует своеобразная иерархия макро-, мезо- и микросистем разных порядков. Биосфера -- экосистема высшего ранга, включающая, как уже было отмечено, тропосферу, гидросферу и верхнюю часть литосферы в пределах поля существования жизни. Она имеет громаднейшее разнообразие сообществ, в структуре которых обнаруживаются сложные сочетания растений, животных и микроорганизмов с разными способами жизни. В этой мозаике прежде всего выделяются экосистемы наземные и водные. Согласно сформулированному В.В.Докучаевым (1896) закону географической зональности на земной поверхности закономерно распространены различные природные сообщества, которые в комплексе и образуют единую экосистему нашей планеты. В пределах обширных территорий, или зон, природные условия сохраняют общие черты, изменяясь от зоны к зоне. Климат, растительность и животные распределяются на земной поверхности в строго определенном порядке. А раз агенты-почвообразователи, в своем распространении подчиненные известным законам, распределяются по поясам, то результат их деятельности -- почва -- должен распределяться по земному шару в виде определенных зон, идущих более или менее параллельно широтным кругам. Отчетливо видна смена Арктики и Субарктики тундрой, тундры --лесотундрой, таежно-лесной зоны -- лесостепью и степью, а далее и полупустынными пространствами на территории России. Заметна и смена равнинных экосистем горными (Кавказ, Урал, Алтай и др.).
Во всех этих макроэкосистемах разного порядка следует рассматривать лишь сходные типы сообществ, формирующихся в сходных климатических условиях среды различных частей планеты, а не видовой состав и популяции макроэкосистем. Кроме того, выражена дифференциация экосистем в зависимости от локальных условий (геологических факторов, рельефа, почвообразующих пород, почв и т.д.), где уже можно рассматривать и оценивать популяции разных видов, видовой состав экологических систем. Все это многообразие экосистем биосферы, особенно планетарных (суша и океан), а также провинциальных и зональных, необходимо изучать, сопоставляя их продуктивность, которая будет рассмотрена в отдельном разделе. Для наземных экосистем установлена следующая иерархия: биосфера -- экосистема суши -- климатический пояс -- биоклиматическая область -- природная ландшафтная зона -- природный (ландшафтный) округ-- природный (ландшафтный) район -- природный (ландшафтный) подрайон -- биогеоценотический комплекс -- экосистема. (полезащитные лесные полосы, поля, занятые сельскохозяйственными культурами, сады, огороды, виноградники и др.). Их основой являются культурные фитоценозы -- многолетние и однолетние травы, зерновые и другие сельскохозяйственные культуры. Они получают дополнительную энергию в виде обработки почвы, внесения удобрений, поливных вод, пестицидов и от других мелиорации, что существенно преобразует почвы, изменяет видовой состав, структуру флоры и фауны. В результате взамен устойчивых экосистем формируются менее устойчивые. Дотации энергии новым агроэкосистемам, возможности мелиорации природных экосистем должны основываться на нормах соотношения пашни, лугов, леса и вод в соответствии с почвенно-климатическими и хозяйственными условиями, а также на законах, правилах и принципах экологии. в исследованиях. На основе системного подхода изучают свойства высокоорганизованных объектов, т.е. многообразие связей между элементами экосистемы, их разнокачественость и соподчинение. При этом нельзя забывать о том, что экосистемы находятся в состоянии динамического равновесия и способны противостоять изменениям природной среды.
Структура экосистемы многопланова. Различают видовую, пространственную и трофическую структуры.
Видовая структура экосистемы - это разнообразие видов, взаимосвязь и соотношение их численности. Различные сообщества, входящие в состав экосистемы, состоят из разного числа видов - видового разнообразия. В таежном лесу, например, на площади в 100 м , как правило, произрастают растения около 30 различных видов, а на лугу вдоль реки - в два раза больше. Видовое разнообразие степей еще шире: на той же площади произрастают сотни растений.
Подобные документы
Биосфера как сложнейшая планетарная оболочка жизни, населенная организмами, составляющими в совокупности живое вещество. Роль циркуляции воды в глобальном круговороте веществ. Структура и функции биосферы. Среда и условия существования организмов.
контрольная работа [26,4 K], добавлен 10.02.2013Глобальная экосистема. Границы, состав и свойства, живое вещество биосферы. Свойства и функции живого вещества. Геохимические циклы, круговороты кислорода, углекислого газа, азота. Биогенная миграция атомов. Глобальные проблемы компонентов биосферы.
курсовая работа [31,9 K], добавлен 30.09.2008Биосфера - одна из геологических оболочек земного шара. Материально–энергетические процессы и свойства биосферы, человечество как ее составная часть. Средообразующие свойства и биосферно-геологические функции живых организмов в глобальной системе Земли.
реферат [44,4 K], добавлен 17.09.2015Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.
методичка [66,2 K], добавлен 07.01.2012Биосфера как арена жизни, основные ее черты. Характеристика воздушной, водной и почвенной оболочки земного шара. Понятие и химический состав живого вещества, его средообразующие свойства и функции. Влияния деятельности человека на биосферные процессы.
реферат [33,5 K], добавлен 21.11.2010Кругооборот химических веществ из неорганической среды. Сущность большого (геологического) круговорота. Описание циркуляции веществ в биосфере на примере углерода, азота, кислорода, фосфора и воды. Антропогенные воздействия на окружающую природную среду.
реферат [201,9 K], добавлен 17.12.2011Что такое биосфера, ее особенности и закономерности в теории Вернадского. Идеи о живом веществе, учение Вернадского о биосфере как ключевая, центральная концепция современного естествознания. Учение о ноосфере как качественно новом состоянии биосферы.
реферат [29,4 K], добавлен 03.10.2009Поток вещества и энергии в биогеоценозе. Принцип самоуправляемого расширенного воспроизводства. Устойчивость и саморегуляция в процессе развития биосферы. Компоненты биосферы: живое, биогенное, биокосное, неживое, радиоактивное вещество, рассеянные атомы.
презентация [405,1 K], добавлен 10.08.2015Понятие, состав и структура биосферы. Основные функции биосферы: газовая; концентрационная; окислительно-восстановительная; информационная. Биогеохимические круговороты веществ в биосфере. Основные фазы эволюции биосферы. Закон ноосферы Вернадского.
контрольная работа [138,4 K], добавлен 03.05.2009Живое вещество как основа биосферы. Свойства и функции экосистемы. Системы взглядов на существование биосферы: антропоцентрическая и биоцентрическая. Виды загрязнения окружающей среды. Способы защиты окружающей среды. Внебюджетные экологические фонды.
лекция [64,9 K], добавлен 20.07.2010