Чужеродные вещества пищи и основные пути их попадания

Классификация чужеродных веществ, попадающих в пищу. Источники загрязнения продовольственного сырья и продуктов питания. Загрязнение пищи химическими элементами, тяжелыми металлами, пестицидами, веществами, применяемыми в животноводстве и растениеводстве.

Рубрика Кулинария и продукты питания
Вид курсовая работа
Язык русский
Дата добавления 29.02.2016
Размер файла 60,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

"АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ"

Кафедра технологии производства и переработки продукции животноводства

КУРСОВАЯ РАБОТА

Чужеродные вещества пищи и основные пути их попадания

Выполнил: студентка 327 группы

биолого-технологического факультета

Куницкая А.А.

Руководитель: доцент, кандидат

биологических наук Попова Л.А.

Барнаул 2014

Содержание

  • Введение
  • 1. Классификация чужеродных веществ пищи
  • 2. Основные источники загрязнения продовольственного сырья и продуктов питания
  • 3. Загрязнения пищи химическими элементами и тяжелыми металлами
  • 1.1 Токсиколого-гигиеническая характеристика химических элементов
  • 4. Загрязнения пищи радионуклидами
  • 5. Загрязнение пищи нитратами, нитритами и нитрозосоеденениями
  • 6. Загрязнение пищи пестицидами и веществами, применяемыми в животноводстве и растениеводстве
  • 7. Загрязнение пищи полициклическими ароматическими и хлорсодержащими углеводородами, диоксинами и диоксиноподобными соединения
  • 8. Загрязнение пищи диоксинами и диоксиноподобными соединениями
  • 9. Загрязнение пищи метаболитами микроорганизмов
  • Заключение
  • Библиографический список

Введение

Проблема безопасности продовольственного сырья и продуктов питания с каждым годом возрастает, поскольку она является одним из основных факторов, определяющих здоровье людей и сохранение генофонда.

В практическом смысле безопасностью продуктов питания следует понимать отсутствие опасности для здоровья человека при их употреблении, как с точки зрения острого негативного воздействия (пищевые отравления и пищевые инфекции), так и с точки зрения опасности отдаленных последствий (канцерогенное, мутагенное и тератогенное действие).

Проблема пищи всегда была одной из самых важных проблем, стоящих перед человеческим обществом. Все кроме кислорода человек, получает для своей жизнедеятельности из пищи. Среднее потребление ее в сутки составляет около 800 г (без воды) и около 2000 г воды. [1]

Правильная организация питания требует знания, хотя бы в самом общем виде, химического состава пищевого сырья и готовых продуктов питания, представлений о способах их получения, о превращениях, которые происходят при их получении и при кулинарной обработке продуктов питания.

Все пищевые вещества полезны здоровому организму в оптимальных количествах и оптимальном соотношении. Но в пище всегда имеются микрокомпоненты, которые в относительно повышенных количествах вызывают неблагоприятный эффект. К ним относят, во-первых, так называемые токсиканты - натуральные, присущие данному виду продукта биологически активные вещества, которые могут при определенных условиях потребления вызвать токсический эффект, во - вторых, "загрязнители" - токсичные вещества, поступающие в пищу из окружающей среды вследствие нарушения технологии выращивания (кормление - для животных), производство или хранение продуктов или других причин. [2]

1. Классификация чужеродных веществ пищи

Чужеродные вещества, поступающие в человеческий организм с пищевыми продуктами и имеющие высокую токсичность, называют ксенобиотиками, или загрязнителями.

При оценке безопасности пищевой продукции базисными регламентами являются предельно допустимая концентрация (далее ПДК), допустимая суточная доза (далее ДСД), допустимое суточное потребление (далее ДСП) веществ, содержащихся в пище.

Наиболее распространённая в современной науке классификация загрязнителей продовольственного сырья и продуктов питания сводится к следующим группам:

1) химические элементы и тяжелые металлы (ртуть, свинец, кадмий, др.);

2) радионуклиды;

3) пестициды;

4) нитраты, нитриты и нитрозосоединения;

5) вещества, применяемые в животноводстве;

6) полициклические ароматические и хлорсодержащие углеводороды;

7) диоксины и диоксинподобные вещества;

8) метаболиты микроорганизмов. [11]

продукт питание чужеродное вещество

2. Основные источники загрязнения продовольственного сырья и продуктов питания

Основными источниками загрязнения продовольственного сырья и продуктов питания являются:

§ Атмосферный воздух, почва, воды, загрязнённые отходами жизнедеятельности человека.

§ Загрязнение растительного и животноводческого сырья пестицидами и веществами, которые являются продуктами их биохимических превращений.

§ Нарушение технологических и санитарно-гигиенических правил использования удобрений и оросительных вод в сельском хозяйстве.

§ Нарушение правил использования в животноводстве и птицеводстве кормовых добавок, стимуляторов роста, медикаментов.

§ Технологический процесс производства продукции.

§ Использование неразрешённых пищевых, биологически активных и технологических добавок.

§ Использование разрешённых пищевых, биологически активных и технологических добавок, но в повышенных дозах.

§ Внедрение новых плохо проверенных технологий, основанных на химическом или микробиологическом синтезе.

§ Образование в пищевых продуктах токсических соединений в процессе варки, жарки, облучения, консервирования и проч.

§ Несоблюдение санитарно-гигиенических правил производства продукции.

§ Пищевое оборудование, посуда, инвентарь, тара, упаковка, содержащие вредные химические вещества и элементы.

§ Несоблюдение технологических и санитарно-гигиенических правил хранения и транспортировки продовольственного сырья и продуктов питания. [11]

3. Загрязнения пищи химическими элементами и тяжелыми металлами

Рассматриваемые ниже химические элементы широко распространены в природе, они могут попадать в пищевые продукты, например, из почвы, атмосферного воздуха, подземных и поверхностных вод, сельскохозяйственного сырья, а через пищу - в организм человека. Они накапливаются в растительном и животном сырье, что обусловливает их высокое содержание в пищевых продуктах и продовольственном сырье. [5]

Большинство макро - и микроэлементов жизненно необходимы человеку, при этом для одних установлена определенная роль в организме, для других эту роль еще предстоит определить.

Следует отметить, что химические элементы проявляют биохимическое и физиологическое действие только в определенных дозах. В больших количествах они обладают токсическим влиянием на организм. Так, например, известны высокие токсические свойства мышьяка, однако в небольших количествах он стимулирует процессы кроветворения.

Таким образом, большинство химических элементов в строго определённых количествах являются необходимыми для нормального функционирования организма человека, но избыточное их поступление вызывает отравление. [3]

Согласно решению объединенной комиссии Продовольственной и сельскохозяйственной организации ООН (далее ФАО) и Всемирной организации здравоохранения (далее ВОЗ) по Пищевому кодексу, в число компонентов, содержание которых контролируется при международной торговле продуктами питания, включено восемь химических элементов: ртуть, кадмий, свинец, мышьяк, медь, цинк, железо, стронций. Список этих элементов в настоящее время дополняется. В России медико-биологическими требованиями определены критерии безопасности для следующих химических элементов: ртуть, кадмий, свинец, мышьяк, медь, цинк, железо, олово. [4]

1.1 Токсиколого-гигиеническая характеристика химических элементов

Свинец. Один из самых распространенных и опасных токсикантов. В земной коре содержится в незначительных количествах. Вместе с тем только в атмосферу поступает в переработанном и мелкодисперсном состоянии 4,5?105 т свинца в год.

Среднее содержание свинца по отдельным группам продуктов, мг/кг: фрукты - 0,1, овощи - 0, 19, крупы - 0,21, хлебобулочные изделия - 0,16, мясо и рыба - 0,16, молоко - 0,027.

Предусматривается содержание свинца в водопроводной воде не выше 0,03 мг/кг. Следует отметить активное накопление свинца в растениях и мясе сельскохозяйственных животных вблизи промышленных центров, крупных автомагистралей. Взрослый человек получает ежедневно с пищей 0,1-0,5 мг свинца, с водой - около 0,02 мг. Общее его содержание в организме составляет 120 мг. Из крови свинец поступает в мягкие ткани и кости.90% поступившего свинца выводится из организма с фекалиями, остальное с мочой и другими биологическими жидкостями. Биологический период полувыведения свинца из мягких тканей и органов составляет около 20 дней, из костей - до 20 лет.

Основными мишенями при воздействии свинца являются кроветворная, нервная, пищеварительная системы и почки. Отмечено отрицательное влияние на половую функцию организма. [3]

Мероприятия по профилактике загрязнения свинцом пищевых продуктов должны включать государственный и ведомственный контроль за промышленными выбросами свинца в атмосферу, водоемы, почву. Необходимо снизить или полностью исключить применение соединений свинца в бензине, стабилизаторах, изделиях из поливинилхлорида, красителях, упаковочных материалах. Немаловажное значение имеет гигиенический контроль за использованием луженой пищевой посуды, а также глазурованной керамической посуды, недоброкачественное изготовление которых ведет к загрязнению пищевых продуктов свинцом.

Кадмий. В природе в чистом виде не встречается. Земная кора содержит около 0,05 мг/кг кадмия, морская вода - 0,3 мкг/кг.

Кадмий широко применяется при производстве пластмасс, полупроводников. В некоторых странах соли кадмия используются в ветеринарии. Фосфатные удобрения и навоз также содержат кадмий.

Все это определяет основные пути загрязнения окружающей среды, а, следовательно, продовольственного сырья и пищевых продуктов. В нормальных геохимических регионах с относительно чистой экологией содержание кадмия в растительных продуктов составляет, мкг/кг: зерновые - 28-95; горох - 15-19; фасоль - 5-12; картофель - 12-50; капуста - 2-26; помидоры - 10-30; салат - 17-23; фрукты - 9-42; растительное масло - 10-50; сахар - 5-31; грибы - 100-500. В продуктах животного происхождения, в среднем, мкг/кг: молоко - 2,4; творог - 6; яйца - 23-250.

Установлено, что примерно 80% кадмия поступает в организм человека с пищей, 20% - через легкие из атмосферы и при курении.

С рационом взрослый человек получает в сутки до 150 и более мкг кадмия на 1 кг массы тела. В одной сигарете содержится 1,5-2,0 мкг кадмия, поэтому его уровень в крови и почках у курящих в 1,5-2,0 раза выше по сравнению с некурящими.

92-94% кадмия, попавшего в организм с пищей, выводится с мочой, калом и желчью. Остальная часть находится в органах и тканях в ионной форме или в комплексе с белковыми молекулами. В виде этого соединения кадмий не токсичен, поэтому синтез таких молекул - защитная реакция организма при поступлении небольших количеств кадмия. Здоровый организм человека содержит около 50 мг кадмия. Кадмий, как и свинец, не является необходимым элементом для организма млекопитающих. [3]

Попадая в организм в больших дозах, кадмий проявляет сильные токсические свойства. Известна способность кадмия в больших дозах нарушать обмен железа и кальция. Все это приводит к возникновению широкого спектра заболеваний: гипертоническая болезнь, анемия, снижение иммунитета и др. Отмечены тератогенный, мутагенный и канцерогенный эффекты кадмия. [3]

Мышьяк. Содержится во всех объектах биосферы: морской воде - около 5 мкг/кг, земной коре - 2 мг/кг, рыбах и ракообразных - в наибольших количествах. Фоновый уровень мышьяка в продуктах питания из нормальных геохимических регионов составляет в среднем 0,5-1 мг/кг. Высокая концентрация мышьяка, как и других химических элементов, отмечается в печени, пищевых гидробионтах, в частности морских. В организме человека обнаруживается около 1,8 мг мышьяка.

Мышьяк, в зависимости от дозы, может вызывать острое и хроническое отравление. Хроническая интоксикация возникает при длительном употреблении питьевой воды с 0,3-2,2 мг мышьяка на 1 л воды. Разовая доза мышьяка в 30 мг смертельна для человека. Специфическими симптомами интоксикации считают утолщение рогового слоя кожи ладоней и подошв. Неорганические соединения мышьяка более токсичны, чем органические. После ртути мышьяк является вторым по токсичности элементом, содержащимся в пищевых продуктах. Соединения мышьяка хорошо всасываются в пищевом тракте. 90% поступившего в организм мышьяка выделяется с мочой. Биологическая ПДК мышьяка в моче равна 1 мг/л, а концентрация 2-4 мг/л свидетельствует об интоксикации. В организме он накапливается в волосах, ногтях, коже, что учитывается при биологическом мониторинге. Необходимость мышьяка для жизнедеятельности организма человека не доказана, за исключением его стимулирующего действия на процесс кроветворения. [3]

Загрязнение продуктов питания мышьяком обусловлено его использованием в сельском хозяйстве. Мышьяк находит применение в производстве полупроводников, стекла, красителей. Бесконтрольное использование мышьяка и его соединений приводит к его накоплению в продовольственном сырье и пищевых продуктах, что обусловливает риск возможных интоксикаций и определяет пути профилактики.

Ртуть. Один из самых опасных и высокотоксичных элементов, обладающий способностью накапливаться в организме растений, животных и человека. Благодаря своим физико-химическим свойствам - растворимости, летучести - ртуть и ее соединения широко распространены в природе. В земной коре ее содержание составляет 0,5 мг/кг, морской воде - около 0,03 мкг/кг. В организме взрослого человека - около 13 мг, однако необходимость ее для процессов жизнедеятельности не доказана. [1]

Загрязнение пищевых продуктов ртутью может происходить в результате: естественного процесса испарения из земной коры в количестве 25-125 тыс. т ежегодно; использования ртути в народном хозяйстве - производство хлора и щелочей, зеркал, электротехническая промышленность, медицина и стоматология, сельское хозяйство и ветеринария; образование некоторыми группами микроорганизмов метилртути, диметилртути, других высокотоксичных соединений, поступающих в пищевые цепи.

Защитным эффектом при воздействии ртути на организм человека обладают цинк и особенно селен. Токсичность неорганических соединений ртути снижают аскорбиновая кислота и медь при их повышенном поступлении в организм, органических - протеины, цистин, токоферолы. [2]

Медь. Содержание в земной коре составляет 4,5 мг/кг, морской воде - 1-25 мкг/кг, организме взрослого человека - около 100 мг/кг.

Медь, в отличие от ртути и мышьяка, принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность - 4-5 мг. Дефицит меди приводит к анемии, недостаточности роста, ряду других заболеваний, в отдельных случаях - к смертельному исходу.

Однако при длительном воздействии высоких доз меди наступает "поломка" механизмов адаптации, переходящая в интоксикацию и специфическое заболевание. В этой связи является актуальной проблема охраны окружающей среды и пищевой продукции от загрязнения медью и ее соединениями. Основная опасность исходит от промышленных выбросов, передозировки инсектицидами, другими токсичными солями меди, потребления напитков, пищевых продуктов, соприкасающихся в процессе производства с медными деталями оборудования или медной тарой.

Цинк. Содержится в земной коре в количестве 65 мг/кг, морской воде - 9-21 мкг/кг, организме взрослого человека - 1,4-2,3 г/кг.

Цинк входит в состав около 80 ферментов, участвуя тем самым в многочисленных реакциях обмена веществ. Типичными симптомами недостаточности цинка являются замедление роста у детей, половой инфантилизм у подростков, нарушение вкуса и обоняния и др. [6]

Суточная потребность в цинке взрослого человека составляет 15 мг. Цинк, содержащийся в растительных продуктах, менее доступен для организма. Цинк из продуктов животного происхождения усваивается на 40%. Содержание цинка в пищевых продуктах составляет, мг/кг: мясо - 20-40, рыбопродукты - 15-30, устрицы - 60-1000, яйца - 15-20, фрукты и овощи - 5, картофель, морковь - около 10, орехи, зерновые - 25-30, мука высшего сорта - 5-8; молоко - 2-6 мг/л. В суточном рационе взрослого человека содержание цинка составляет 13-25 мг. Цинк и его соединения малотоксичны. Содержание цинка в воде в концентрации 40 мг/л безвредно для человека.

Вместе с тем возможны случаи интоксикации при нарушении использования пестицидов, небрежного терапевтического применения препаратов цинка. Признаками интоксикации являются тошнота, рвота, боль в животе, диарея. Отмечено, что цинк в присутствии сопутствующих мышьяка, кадмия, марганца, свинца в воздухе на цинковых предприятиях вызывает у рабочих "металлургическую" лихорадку. [7]

Известны случаи отравления пищей или напитками, хранившимися в железной оцинкованной посуде. В этой связи приготовление и хранение пищевых продуктов в оцинкованной посуде запрещено. ПДК цинка в питьевой воде - 5 мг/л, для водоемов рыбохозяйственного назначения - 0,01 мг/л.

Олово. Необходимость олова для организма человека не доказана. Вместе с тем в организме взрослого человека около 17 мг олова, что указывает на возможность его участия в обменных процессах.

Количество олова в земной коре относительно невелико. При поступлении олова с пищей всасывается около 1%. Олово выводится из организма с мочой и желчью.

Неорганические соединения олова малотоксичны, органические - более токсичны. Основным источником загрязнения пищевых продуктов оловом являются консервные банки, фляги, железные и медные кухонные котлы, другая тара и оборудование, которые изготавливаются с применением лужения и гальванизации. [8]

Железо. Этот элемент необходим для жизнедеятельности как растительного, так и животного организма. У растений дефицит железа проявляется в желтизне листьев и называется хлорозом, у человека вызывает железодефицитную анемию, поскольку железо участвует в образовании гемоглобина. Железо выполняет целый ряд других жизненно важных функций: перенос кислорода, образование эритроцитов и т.д.

В организме взрослого человека содержится около 4,5 г железа. Содержание железа в пищевых продуктах колеблется в пределах 0,07-4 мг в 100 г. Основным источником железа в питании являются печень, почки, бобовые культуры. Потребность взрослого человека в железе составляет около 14 мг/сут, у женщин в период беременности и лактации она возрастает. [10]

4. Загрязнения пищи радионуклидами

Источники радиоактивности, как и другие загрязнители, являются компонентами пищевых цепей: атмосфера-ветер-дождь-почва-растения-животные-человек. Анализируя данные о взаимодействии радионуклидов с компонентами природной среды и организмом человека, необходимо отметить следующее. Радионуклиды естественного происхождения постоянно присутствуют во всех объектах неживой и живой природы, начиная с момента образования нашей планеты.

Существуют три пути попадания радиоактивных веществ в организм человека: а) при вдыхании воздуха, загрязненного радиоактивными веществами; б) через желудочно-кишечный тракт - с пищей и водой; в) через кожу.

Для наиболее опасных искусственных радионуклидов, к которым следует отнести долгоживущие 90 Sг, 137Сs и короткоживущий 131I, в настоящее время выявлены закономерности всасывания, распределения, накопления и выделения, а также механизмы их связи с различными биологическими структурами. Одной из главных задач по профилактике и снижению степени внутреннего облучения следует считать уменьшение всасывания радиоактивных элементов при их длительном поступлении в организм человека с пищевыми продуктами.

Эффект действия ионизирующих излучений на клетку и организм в целом можно понять, проследив изменения, происходящие на всех этапах следующей цепи: биомолекулы-клеточный компартмент-клетка-ткани-организм, и установив взаимосвязь между ними. [12]

Клетка - это слаженная динамическая система биологически важных макромолекул, которые скомпонованы в компартменты (субклеточные образования), выполняющие определенные физиологические функции.

Наиболее чувствительными к облучению органеллами клеток организма млекопитающих являются ядро и митохондрии. Здесь повреждения проявляются в малые сроки и при малых дозах. Наиболее всего угнетаются процессы окислительного фосфорилирования, изменяются физико-химические свойства нуклеопротеидов, в результате чего происходят количественные и качественные изменения в ДНК, нарушаются процессы транскрипции и трансляции. Кроме этого, угнетаются энергетические процессы, выброс в цитоплазму ионов К+ и N+, нарушаются функции мембран. Одновременно возможны все виды мутаций: геномные мутации (кратные изменения гаплоидного числа хромосом), хромосомные мутации или хромосомные аберрации (структурные или численные изменения хромосом), генные или точковые мутации (изменения молекулярной структуры генов, в результате чего синтезируются белки, утратившие свою биологическую активность).

Принято рассматривать три этапа радиационного поражения клетки.

I этап можно назвать физическим. На этом этапе происходит ионизация и возбуждение макромолекул; при этом поглощенная энергия реализуется в слабых местах (в белках - 5Н-группы, в ДНК - хромофорные группы тимина, в липидах - ненасыщенные связи).

II этап - химические преобразования. На этом этапе происходит взаимодействие радикалов белков, нуклеиновых кислот, липидов с водой, кислородом, с радикалами воды и т.п. Это в свою очередь приводит к образованию гидроперекисей, ускоряет процессы окисления, вызывает множественные изменения молекул. В результате этого начальный эффект многократно усиливается. Разрушается структура биологических мембран, усиливаются другие процессы деструкции, высвобождаются ферменты, наблюдается изменение их активности. [9]

III этап - биохимический. На этом этапе происходят нарушения активности. Различные ферментные системы реагируют на облучение неоднозначно. Активность одних ферментов после облучения возрастает; других - снижается, третьих - остается неизменной. К числу наиболее радиочувствительных процессов в клетке относится окислительное фосфорилирование. Нарушение этого процесса отмечается через 20 - 30 минут при дозе облучения 100 рад. Оно проявляется в повреждении системы генерирования АТФ, без которой не обходится ни один процесс жизнедеятельности. [8]

Многие радионуклиды накапливаются в почве, затем с пылью и продуктами питания попадают в организм. Мало радиоактивных веществ поступает в рацион с пищевыми продуктами морского происхождения, так как из-за высокой минерализации морской воды продукты моря очень слабо загрязнены стронцием и цезием. Свободны от загрязнения радионуклидами глобальных выпадений артезианские и многие грунтовые воды благодаря изоляции от поверхности земли. А вот воды подземных водоемов, талые, дождевые воды могут служить источником поступления некоторых радионуклидов в организм человека.

Хлебопродукты являются ведущим поставщиком радионуклидов в организм. На втором месте по значимости стоит молоко, на третьем - картофель, овощи и фрукты, затем мясо и рыба. В пресноводной рыбе радионуклидов больше, чем в морской, в растительноядной - больше, чем в хищной. [4]

5. Загрязнение пищи нитратами, нитритами и нитрозосоеденениями

Нитраты - соли азотной кислоты, широко распространенные в окружающей среде, главным образом в почве и в воде. Весь нитратный азот находится в почве в растворе, легко подвижен и доступен для растений. Они входят в состав удобрений, а также являются естественным компонентом пищевых продуктов растительного происхождения. Нитритов - солей азотистой кислоты в растениях содержится небольшое количество, поскольку они представляют собой промежуточную форму восстановления окисленных форм азота в аммиак. Нитрозосоединения - вещества, содержащие нитрозогруппу (>N-N=O), к которой могут присоединяться различные радикалы.

ДСД нитратов - 5 мг на 1 кг массы тела человека, ДСД нитритов - 0,2 мг/кг. Наиболее опасны для организма нитриты, вызывающие превращение гемоглобина в метгемоглобин, который не способен переносить кислород, а нитраты в основном потенциально опасны, т. к могут окисляться в организме до нитритов. Нитраты и нитриты так же в организме человека превращаются в нитрозосоединения, которые являются канцерогенами. Больше всего нитратов в листовой зелени, кольраби, редисе, нитрозосоединений - в солёной сельди, жареном беконе, солёно-вяленой рыбе. Нитрозосоединений нет в овощах, говядине и свинине, молоке, свежих сливках, кисломолочных продуктах, твороге, зерне, муке. [5]

Можно выделить следующие источники поступления соединений азота в организм человека:

§ в составе продуктов питания, содержащих соединения азота вследствие своего природного происхождения;

§ с мясными изделиями, содержащими нитратные пищевые добавки;

§ с продуктами питания, изготовленными из продовольственного сырья, полученного в условиях нарушения технологии использования азотных удобрений.

6. Загрязнение пищи пестицидами и веществами, применяемыми в животноводстве и растениеводстве

Пестициды - химические соединения, применяемые для защиты культурных растений от вредных организмов. Пестициды различаются по объектам применения. Например: гербициды используются для борьбы с сорными растениями, зооциды - для борьбы с грызунами, инсектициды - для борьбы с вредными насекомыми. [6]

Больше всего пестицидов может содержаться в овощах, молочных продуктах, зерне и зернобобовых, меньше всего - в рыбе и растительных маслах. Острые отравления пестицидами встречаются довольно редко. Гораздо чаще наблюдаются хронические отравления пестицидами и их метаболитами.

Длительная устойчивость пестицидов является основным фактором в процессе вторичного загрязнения, когда продукты питания, никогда не обрабатываемые пестицидами, содержат их. Циркуляция пестицидов может происходить по следующим схемам "воздух > растения > почва > растения > травоядные животные > человек; почва > вода > зоофитопланктон > рыба > человек". [9]

Пестициды основное влияние оказывают на почвенную биоту, т.е. - живую фазу почвы. Почвенные микроорганизмы либо адаптируются к пестицидам и начинают разрушать или использовать их, либо угнетаются и погибают. В любом случае это усложняет соблюдение технологии использования пестицида, что отрицательно сказывается на чистоте получаемого растительного и животного продовольственного сырья.

Пестициды обладают высокой токсичностью для организма человека, опасны в связи с возможностью мутагенного, тератогенного и канцерогенного действия. Они могут оказать токсическое действие на плод, не принося вреда организму матери и, выделяясь с молоком, затем отрицательно влиять на рост и развитие младенца. [11]

В настоящее время в мире в качестве пестицидов используется около 900 активных соединений, входящих в состав 60 тыс. препаратов, которыми обрабатывается более 4 млрд. гектаров земли. Вредное воздействие данных токсичных веществ на здоровье человека, их способность накапливаться в тканях организма общеизвестны.

7. Загрязнение пищи полициклическими ароматическими и хлорсодержащими углеводородами, диоксинами и диоксиноподобными соединения

Полициклические ароматические углеводороды (далее ПАУ) образуются в процессе горения органических веществ (бензина, др. видов топлива, табака), в т. ч., при копчении, подгорании продуктов питания. Они содержатся в воздухе (пыль, дым), проникают в почву, воду, а оттуда - в растения и животных. ПАУ являются устойчивыми соединениями, поэтому обладают способностью накапливаться.

По своему действию на организм человека ПАУ являются канцерогенами, т. к имеют углубление в структуре молекулы, характерное для многих канцерогенных веществ. В организм человека ПАУ попадают через дыхательную, пищеварительную систему, через кожу.

Снизить попадание ПАУ в организм можно: не допуская подгорания продуктов питания; сведя до минимума обработку продовольственного сырья и продуктов питания дымом; выращивая продовольственные растения вдали от промышленных зон; производя тщательную мойку продовольственного сырья и продуктов питания. Кроме того, большому риску попадания в организм ПАУ подвергаются курильщики и пассивные курильщики.

Хлорсодержащие углеводороды (хлорированные алканы и алкены) широко используются в качестве растворителей, есть пестициды.

Они летучи, растворимы в воде, липофильны, поэтому встречаются повсеместно и включаются в пищевые цепи.

Попадая в организм человека хлорсодержащие углеводороды разрушают печень, повреждают нервную систему. [1]

8. Загрязнение пищи диоксинами и диоксиноподобными соединениями

К диоксинам - полихлорированным дибензодиоксинам (далее ПХДД) относится большая группа ароматических трициклических соединений, содержащих от 1 до 8 атомов хлора. Кроме этого существует две группы родственных химических соединений - полихлорированные дибензофураны (далее ПХДФ) и полихлорированные бифенилы (далее ПХБ), которые присутствуют в окружающей среде, продуктах питания и кормах одновременно с диоксинами.

В настоящее время выделено 75 ПХДД, 135 ПХДФ и более 80 ПХБ. Они являются высокотоксичными соединениями, обладающими мутагенными, канцерогенными и тератогенными свойствами. [12]

Наилучшим путем предотвращения или снижения уровня воздействия диоксинов на людей является принятие мер, ориентированных на источник, например, строгий контроль промышленных процессов для максимально возможного снижения уровня выделяемых диоксинов. Это является обязанностью национальных правительств. Комиссия "Кодекс Алиментариус" приняла в 2001 году Кодекс практики по мерам, ориентированным на источник, для уменьшения загрязнения пищевых продуктов химикатами (CAC/RCP 49-2001) и в 2006 году был принят Кодекс практики для предотвращения и снижения уровня загрязнения пищевых продуктов и кормов диоксинами и диоксиноподобными ПХБ (CAC/RCP 62-2006).

Более 90% случаев воздействия диоксинов на людей происходит через пищевые продукты, главным образом, через мясные и молочные продукты, рыбу и моллюсков. Следовательно, решающее значение имеет защита пищевых продуктов. Один из подходов, как уже указывалось выше, включает принятие ориентированных на источник мер для уменьшения выбросов диоксина. Необходимо не допускать вторичного загрязнения пищевых продуктов в пищевой цепи. Решающее значение для производства безопасных пищевых продуктов имеют надлежащие средства управления и практика во время первичного производства, обработки, распределения и продажи. [10]

9. Загрязнение пищи метаболитами микроорганизмов

Пищевые отравления бактериального происхождения протекают по типу токсикоинфекций и токсикозов (интоксикаций). Пищевые токсикоинфекций возникают при употреблении пищи, содержащей массивные количества размножившихся в ней живых микроорганизмов. Пищевые токсикозы связаны с действием на организм токсинов (экзотоксинов) некоторых микроорганизмов, размножившихся в пище.

Пищевые токсикозы (интоксикации) - это заболевания, возникающие при употреблении пищевых продуктов, содержащих токсины бактерий. К этой группе заболеваний относятся стафилококковые токсикозы, ботулизм и микотоксикозы. [10]

Заражение пищевых продуктов микроорганизмами и их токсинами происходит различными путями. Так, продукты могут заражаться вследствие санитарных и технологических нарушений производства, транспортировки, хранения и реализации продуктов. Продукты животного происхождения (мясо, яйца, рыба) могут быть поражены еще при жизни животного (в случаях инфекционных заболеваний или бактерионосительства у животных). Однако при употреблении зараженных микробами пищевых продуктов не всегда возникают пищевые отравления. Продукт становится причиной заболевания только при массивном размножении в нем микроорганизмов или значительном накоплении токсинов. Этим объясняется наибольшее количество пищевых отравлений в теплый период года, когда создаются оптимальные условия для развития микроорганизмов. [8]

Исходя из закономерностей распространения и воз­никновения пищевых заболеваний, предупреждение их на предприятиях пищевой промышленности сводится к трем основным группам мероприятий:

§ предупреждению загрязнения пищевых продуктов па­тогенными микроорганизмами;

§ созданию условий, ограничивающих жизнедеятель­ность возбудителей пищевых отравлений;

§ обеспечению условий, губительно действующих на возбудителя пищевых заболеваний. [8]

Стафилококковые интоксикации (токсикозы).

Роль стафилококков в возникновении пищевых отравлений впервые определил П.Н. Лащенков (1901). Он выделил стафилококки из тортов с кремом, послуживших причиной заболевания людей.

Среди обширной группы стафилококков различают патогенные и непатогенные.

Патогенные стафилококки из рода Staphylocokkus вызывают воспалительные процессы кожи, подкожной клетчатки, носоглотки (ангины, риниты, катары верхних дыхательных путей и др.). Некоторые типы патогенных стафилококков при попадании на пищевые продукты могут вырабатывать энтеротоксин, который вызывает пищевое отравление. В настоящее время установлено шесть серологических типов стафилококковых энтеротоксинов, обозначаемых буквами А, В, С, D, Е, F. Большинство этих бактерий образует золотистый пигмент. [2]

Стафилококки относятся к бесспоровым, факультативным анаэробам. Оптимальное размножение их происходит при температуре 25-37°С. Однако они могут раз­множаться и при температуре 20-22°С, при температуре 10°С рост их замедляется, а при 4-6°С - прекращается. Стафилококки устойчивы к воздействиям факторов внеш­ней среды. Они могут выдерживать температуру 700С более часа, при 80°С погибают через 20-30 мин; при этой же температуре во влажной среде стафилококки гибнут через 1-3 мин. Отдельные штаммы переносят нагревание до 100°С в течение получаса (Г.А. Носкова). В замороженных пищевых продуктах они сохраняют жизнеспособность в течение нескольких месяцев. При обычной температуре хранения пищевых продуктов они остаются жизнеспособными более 4 мес. Стафилококки хорошо переносят высокую концентрацию сахара и по­варенной соли; развитие стафилококков задерживается при концентрациях сахара в водной фазе более 60%, по­варенной соли-более 12%. Стафилококки чувствитель­ны к кислой среде. Так, при активной кислотности (рН 4,5 и ниже) рост их прекращается. [5]

Наиболее благоприятной средой для развития стафи­лококков является молоко. Это подтверждается частотой возникновения интоксикаций, вызываемых молоком и продуктами его переработки. При температуре 35-37°С энтеротоксин образуется в молоке через 5-12 ч, а при комнатной температуре хранения (18-20°С) - через 8-18 ч. Нередко причиной интоксикации являются творог и творожные изделия, изготовленные из не пастеризованного молока, сычужные сыры, сметана, молодая брынза.

Мясо и мясопродукты являются хорошей средой для развития стафилококков и накопления энтеротоксина. Заражение мяса стафилококками может произойти при жизни животных в результате перенесенных ими воспалительных заболеваний. [7]

Источниками заражения пищевых продуктов патоген­ными стафилококками являются человек и животные. Наиболее частый путь заражения продуктов - воздушно-капельный, поскольку больные стафилококковыми заболеваниями верхних дыхательных путей (ангины, риниты, фарингиты) активно выделяют их в окружающую среду при дыхании, кашле, чихании.

Одним из опасных источников обсеменения продуктов - больные со стафилококковыми поражениями кожи (нагноившиеся порезы, ожоги, ссадины, абсцессы и др.). В этом случае обсеменение продуктов происходит при непосредственном соприкосновении их с пораженными органами или через загрязненные стафилококками оборудование, инвентарь, посуду.

Большое эпидемиологическое значение в распространении стафилококковых пищевых заболеваний имеют люди - бактерионосители. В носоглотке почти каждого второго здорового человека обнаруживается патогенный стафилококк. Не менее важно эпидемиологическое значение кишечной формы носительства стафилококков. [8]

Распространенным источником стафилококковой инфекции являются также животные, больные маститом, гнойными заболеваниями печени, мышц и др. Продукты животного происхождения могут заражаться стафилококками при жизни животных (молоко при мастите вымени) или при разделке туши.

Ботулизм.

Он относится к наиболее тяжелым пищевым отравлениями. Ботулизм возникает при употреблении пищи, содержащей токсины ботулиновой палочки. В настоящее время хорошо изучены причины возникновения ботулизма, а также разработаны и осуществляются меры по борьбе с этим заболеванием. В результате широко проводимых профилактических мероприятий заболеваемость ботулизмом резко снизилась.

Возбудитель ботулизма широко распространен в при­роде; обитает он в кишечнике теплокровных животных, рыб, человека, грызунов, птиц, кошек, в почве, в иле водоемов и др. Cl. botulum - спороносная палочка, являющаяся строгим анаэробом. Различают шесть типов ботулиновой палочки (А, В, С, D, Е, F). [2]

Оптимальные условия развития и токсинообразования ботулиновой палочки создаются при температуре 25 - 30°С. Однако образование токсина достаточно интенсив­но происходит и при температуре 37°С. При более низ­ких температурах (15-20°С) размножение микроба и токсинообразование протекают медленнее и полностью прекращаются при температуре 4°С (исключение составляет ботулинус типа В, который выделяет токсин). Токсин - возбудитель ботулизма по токсическому действию на организм является самым сильным из всех известных бактериальных токсинов; смертельная доза для человека - сотые доли миллиграмма на 1 кг массы тела. В кислой среде токсин устойчив, а в слабощелочной (рН 8,0) теряет активность на 90%. Длительное хранение токсина в замороженном состоянии не снижает его активности. При температуре - 79°С он сохраняет активность в течение 2 мес. Поваренная соль даже при высокой концентрации не вызывает инактивации токсина. Токсинообразование задерживается только при содержании NaСl в пищевом продукте в количестве 11%. [5]

Возбудитель ботулизма способен при благоприятных условиях к размножению и токсинообразованию в любых продуктах и животного, и растительного происхождения. При этом установлено, что наиболее частой причиной ботулизма являются консервированные продукты. Обычно при развитии микробов органолептические свойства продукта заметно не изменяются, иногда лишь ощущается слабый запах прогорклого жира, значительно реже продукт размягчается и изменяется его цвет. В консервах в результате развития микробов и гидролиза белковых и других веществ могут накапливаться газы, вызывающие стойкое вздутие донышка банки (бомбаж).

Ботулизм - крайне тяжелое заболевание, характеризуется высокой летальностью (60-70%). Инкубационный период 12-24 ч, реже-несколько дней, а в отдельных случаях он может сокращаться до 2 ч.

Первыми признаками болезни являются недомогание, слабость, головная боль, головокружение и нередко рвота. Затем появляются симптомы расстройства зрения (ослабление зрения, двоение в глазах, дрожание глазных яблок, опущение век). Голос становится слабым, глотание и жевание затруднены. Продолжительность болезни различна, в среднем - от 4 до 8 дней, иногда до месяца и более. [8]

Микотоксикозы

Пищевые микотоксикозы-это заболевания, возникающие при употреблении продуктов переработки зерна, зараженного токсическими веществами микроскопических грибов. К микотоксикозам относятся эрготизм, фузариотоксикоз и афлотоксикоз. В настоящее время микотоксикозы регистрируются крайне редко.

Эрготизм возникает при употреблении изделий из зерна, содержащего примесь спорыньи. Для профилактики эрготизма важное значение имеет тщательная очистка семенного и продовольственного зерна от спорыньи. Содержание спорыньи в муке и крупе допускается не более 0,05%.

Фузариотоксикозы к ним относятся алиментарно-токсическая алейкия и отравление "пьяным хлебом". [4]

Алиментарно-токсическая алейкия, или септическая ангина, развивается в результате потребления изделий из перезимовавшего в поле зерна, зараженного токсинами грибов из рода Fusarium. Токсическое вещество этих грибов термоустойчиво и при тепловой обработке изделий из зерна не теряет активности.

Отравление "пьяным хлебом" также возникает при употреблении изделий из зерна, пораженного токсическим грибом Fusarium graminearum. Признаки этого заболевания напоминают состояние опьянения и характеризуются состоянием возбуждения, эйфории (смех, пение и т.д.), нарушением координации движений (шаткая походка). Нередко появляются расстройства желудочно-кишечного тракта - понос, тошнота, рвота.

Основная мера предупреждения фузариотоксикозов - запрещение использования в пищу изделий из перезимовавшего в поле зерна.

К мерам профилактики этого пищевого отравления относится также соблюдение необходимых влажностно - температурных условий хранения зерна, исключающих его увлажнение и плесневение.

Афлотоксикоз - это заболевание, возникающее при длительном употреблении изделий из злаковых культур, пораженных грибами рода Penicillium и Aspergillus. [3]

В последние годы за рубежом получены данные, свидетельствующие о том, что некоторые виды плесневых грибов рода Asp. flauus и Pen. pube, паразитирующие на растительных продуктах (арахис, пшеница, рожь, кукуру­за, рис и т.д.) выделяют токсическое вещество - афлотоксин (фурокумарины), которое обладает выраженным канцерогенным действием и вызывает тяжелые поражения печени. Афлотоксины термолабильны, в воде плохо растворимы, разрушаются только крепкой желчью. В пищевых продуктах афлотоксины образуются при различной температуре, но особенно активно - при 22-30°С и влажности 85-90%.

Основной мерой профилактики микотоксикозов является создание правильных условий хранения продуктов (особенно зерна), исключающих их увлажнение и плесневение. [2]

Заключение

В целом вопросы безопасности пищевых продуктов включают в себя довольно широкий спектр проблем, которые в последние десятилетия в мировой прессе, в том числе научных и научно-популярных изданиях, обсуждаются довольно широко. Исследования в этой области в последнее время в связи с ухудшением экологической обстановки проводятся в широких масштабах, однако не всегда имеют системный подход. Основными путями решения этой актуальной задачей являются следующие:

§ пересмотр нормативной документации, регламентирующей критерии и методы оценки качества и безопасности пищевой продукции и продовольственного сырья;

§ введение дополнительных показателей, принятых за рубежом (определение ряда антибиотиков и других лечебных препаратов, стильбенов, стероидных гормонов, бета-антогонистов, тиреостатиков и т.д.);

§ разработка ускоренных методов анализа, приемлемых для широкого практического применения.

§ С экономической точки зрения необходимо создание отечественных тест-наборов, тест-систем и измерительной аппаратуры, которые были бы дешевле импортных и доступны для производственных лабораторий;

§ постепенный переход от контроля готовой продукции к предварительному контролю на стадии ее производства, позволяющему существенно снизить затраты на проведение исследований и прогнозировать качество и безопасность продовольственного сырья и пищевой продукции;

§ разработка системы экологического регионального мониторинга объектов окружающей среды (почва, вода, воздух), оказывающих непосредственное влияние на качество и безопасность сельскохозяйственной продукции;

§ планирование и соответствующая координация тематик научно-исследовательских учреждений с учетом приоритета разработок в области методического обеспечения оценки качества и безопасности продовольственного сырья и пищевой продукции.

Таким образом, в настоящее время стратегию безопасности пищевых продуктов определяет предупреждение загрязнения и заражения - как химического, так и биологического, на всех стадиях и ступенях пищевой цепи. [1]

Библиографический список

1. Алексеев С.В. Экология человека / С.В. Алексеев, Ю. П, Пивоваров, О.И. Янушанец. - М.: ИКАР, 2002 - С.4.

2. Витол И.С. Безопасность продовольственного сырья и продуктов питания: учебник / И.С. Витол, А.В. Коваленок, А.П. Нечаев. - М.: ДеЛи принт, 2013. - С.162 - 164.

3. Горбунов А.В. Оценка поступления микроэлементов в организм человека с продуктами питания в центральных регионах России. Экологическая химия, т.15 вып.1/ А.В. Горбунов, С.М. Ляпунов, О.И. Окина, М.В. Фронтасьева. - М.: НГАУ, 2006 - С.15 - 26.

4. Гордейчик В.И. Основы микробиологии, санитарии и гигиены: Учебное пособие / В.И. Гордейчик. - Мн.: Беларуская Энц., 2010. - 199 c.

5. Донченко Л.В., Надыкта В.Д. Безопасность пищевой продукции: Учебник.2-е изд., перераб. и доп. - М.: ДеЛи принт, 2005. - С.85.

6. Кужаков В. Препарат для защиты зерна и кормов от плесени и мокотоксинов / В. Кужаков, Т. Айдинян // Комбикорма. 2000. - № 6. - С.38 - 39.

7. Мартинчик А.Н. Микробиология, физиология питания, санитария: Учебник для студентов сред. проф. учебных заведений / А.Н. Мартинчик, А.А. Королев, Ю.В. Несвижский. - М.: ИЦ Академия, 2013. - С 320-326.

8. Нечаев А.П. Пищевые добавки: Учеб. / А.П. Нечаев, А.А. Кочеткова, А.Н. Зайцев. - М.: Колос; Колос - Пресс, 2002. - С.15.

9. Позняковский В.М. Гигиенические основы питания, качество и безопасность пищевых продуктов. - 4-е изд., испр. и доп. - Новосибирск: Сиб. унив. изд-во, 2005. - С.183.

10. Позняковский В.М. Гигиенические основы питания, качество и безопасность пищевых продуктов. - 4-е изд., испр. и доп. - Новосибирск: Сиб. унив. изд-во, 2005. - С. 198.

11. Рубина, Е.А. Микробиология, физиология питания, санитария: Учебное пособие / Е.А. Рубина, В.Ф. Малыгина. - М.: Форум, НИЦ ИНФРА-М, 2013. - С.150 - 156.

12. Скальная М.Г. Макро - и микроэлементы в питании современного человека: эколого-физиологические и социальные аспекты. - М.: РОСМЭМ, 2004. - С. 190.

Размещено на Allbest.ru


Подобные документы

  • Основные источники пищи, которые используются при создании комбинированных продуктов питания. Добавление к основному продукту сырья животного и растительного происхождения с целью регулирования состава конечного продукта. Пищевые и непищевые источники.

    контрольная работа [24,2 K], добавлен 13.12.2012

  • Сущность здорового питания. Биологические опасности пищи. Уровни воздействия техногенных факторов на организм человека в процессе поглощения питания. Генно–модифицированные продукты. Обеспечение государством продовольственной безопасности России.

    реферат [27,4 K], добавлен 05.12.2008

  • Усилитель вкуса – глутамат натрия. Основные и дополнительные вещества пищи. Влияние пищевых добавок на здоровье человека. Воздействие посуды пищевого назначения на организм человека. Характеристика и классификация поверхностно-активных веществ.

    реферат [32,8 K], добавлен 16.05.2011

  • Приготовление пищи, рецепты, название блюд и кухонной утвари в Древнем Риме. Основные продукты питания в средние века. Сервировка, этикет, обязанности главных слуг на английских пирах. Культура принятия пищи. Средневековые правила поведения за столом.

    реферат [39,1 K], добавлен 23.04.2012

  • Раскладка продуктов и ее значение в планировании питания. Распределение продуктов морского пайка по энергетической ценности на отдельные приемы пищи. Блюда и гарниры, рекомендуемые для приготовления на завтрак. Суточная норма продуктов морского пайка.

    методичка [25,1 K], добавлен 29.04.2010

  • Как сохранить здоровье. Тайны здоровой пищи. Пищевая диверсия (о продуктах, которые мы употребляем). Нутриенты. Чужеродные вещества. О соевых бобах, о хлебе. Овощи и фрукты, которые могут помочь при разных недугах. О вредных продуктах.

    реферат [17,4 K], добавлен 27.01.2007

  • Природные компоненты пищи установленной химической структуры, присутствующие в пище в миллиграммах, играющие важную роль в адаптационных реакциях организма. Свойства и функции витаминоподобных веществ. Продукты, богатые инозитом, холином и L-карнитином.

    презентация [1,7 M], добавлен 18.12.2015

  • Особенности символизации пищи в современном обществе. Кухня, как искусство приготовления из сырых растительных и животных продуктов разнообразной пищи. Взаимосвязь народной кухни и современности. Исторические сведения о развитии искусства кулинарии.

    контрольная работа [37,8 K], добавлен 01.03.2011

  • Сертификация услуг общественного питания в России. Физиологические требования к продуктам питания. Характеристика производственной программы и складского хозяйства предприятия. Анализ способов тепловой кулинарной обработки продуктов. Раздача готовой пищи.

    отчет по практике [41,0 K], добавлен 10.01.2016

  • Определение качества пищевых продуктов, рекомендации по их хранению и заготовке. Особенности приготовления в полевых условиях простых блюд из круп, растений, муки. Способы обработки пищи: кипячение, тушение, подсушивание, обжаривание на огне, запекание.

    реферат [1,4 M], добавлен 13.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.