Биотехнологии в пищевом производстве

Биотехнология производства продуктов питания и напитков. Понятие функциональных пищевых продуктов. Процесс ферментации овощей. Биотехнологии в производстве чая, кофе. Технология производства алкогольных напитков, сахарозаменителей, соков, кислот.

Рубрика Кулинария и продукты питания
Вид реферат
Язык русский
Дата добавления 16.06.2012
Размер файла 30,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Биотехнология -- это производство необходимых человеку продуктов и биологически активных соединений с помощью живых организмов, культивируемых клеток и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности, а именно -- в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна, кож и т.д., т.е. в процессах, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились.

Объектами биотехнологии служат вирусы, бактерии, протисты, дрожжи, а также растения, животные или изолированные клетки и субклеточные структуры (органеллы).

Основная цель биотехнологии - промышленное использование биологических процессов и агентов на основе получения высокоэффективных форм микроорганизмов, культур клеток и тканей растений и животных с заданными свойствами. Биотехнология возникла на стыке биологических, химических и технических наук.

Биотехнологический процесс - включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов.

I. Биотехнология производства продуктов питания и напитков

1. Функциональные пищевые продукты

Со временем становится все более очевидным, что существует самая тесная связь между продуктами питания и здоровьем человека. Неоднократно было доказано, что пищевые продукты или их отдельные компоненты могут быть единственной причиной многих патологий. Новые технологические подходы к производству пищевых продуктов дают возможность связать научные новшества массового производства пищевых продуктов с возможностью получения полноценной и здоровой пищи. Тесная взаимосвязь между здоровьем и пищевыми продуктами дала начало новому течению в производстве пищевых продуктов - "функциональной пище". Идея употребления здоровой пищи не нова. В 1950-х гг. была предложена идея пересмотра состава пищевых продуктов. Помимо этого, революционный лозунг 1960-х гг. "Назад к природе!" - вызвал значительные изменения в составе ингредиентов пищевых продуктов. Значительно уменьшилось содержание жиров, холестерола, сахара и соли. Снизился калорийный уровень пищевых продуктов. Подобным принципом руководствовались организации, производящие пищевые продукты до 1980-х гг. Сегодня подход к пищевым продуктам опять претерпел изменения. По современным представлениям, пища должна быть не только здоровой, но и функциональной, что подразумевает ее целенаправленное влияние на организм.

По мировым масштабам Япония является лидером по производству функциональных пищевых продуктов. В этой стране производство пищевых продуктов строго контролируется, хотя выпуском их заняты больше сотни специализированных компаний. Интересно, что более 70% производимой продукции -- напитки, а остальное -продукты разного вида. Использование функциональной пищи служит двум целям: в нужном количестве дать организму метаболически необходимые пищевые компоненты и защитить его от возможных заболеваний. Поскольку в производстве новых пищевых продуктов используются только нетоксичные и непатогенные натуральные компоненты, становится необходимым изыскание соответствующих источников для их массового производства. Роль биотехнологии заключается в получении экологически чистой функциональной пищи или корма в массовом количестве. С помощью биотехнологии (ферментативный катализ, культивирование микроорганизмов, культивирование растительных и животных клеток) возможно быстрое решение проблемы как массового производства пищевых продуктов, так и получения различных функционально важных ингредиентов.

Первыми продуктами, приготовленными с помощью микробных ферментов, были, по всей вероятности, пиво и сыр. Ферменты микроорганизмов или технологии, основанные на использовании самых микроорганизмов, представляют важнейший сектор современной пищевой промышленности. Сегодня производство пищевых продуктов является самой распространенной сферой промышленности и по обороту составляет 20-25% бюджета практически любой страны. Производство высококачественной продукции определяется многими факторами, среди которых важнейшими являются качество семян, порода животных, качественные показатели селективно подобранных многолетних растений и др. Стабильный коммерческий оборот пищевых продуктов в первую очередь связан с качеством сельскохозяйственной продукции. Связь между сельским хозяйством и потребителем продукции осуществляется через пищевую промышленность. Задача последней - произвести из сельскохозяйственного сырья продукты с высокой пищевой ценностью, привлекательные внешне, с хорошим вкусом и ароматом.

По оценке специалистов, исследования (в том числе и патенты), связанные с получением новых пищевых продуктов, не превышают 2% от себестоимости продукции. Как правило, продукция производится в большом объеме и, исходя из интересов потребителя, имеет низкую цену. Современные методы биотехнологии дают возможность массового производства отдельных пищевых компонентов, например таких, как пищевые органические и аминокислоты, которые широко применяются при производстве продуктов и напитков. Эти продукты имеют среднюю цену. Дорогостоящие пищевые компоненты, производимые в меньшем количестве, это: белки высокой чистоты и белки исключительного аминокислотного профиля, биологически активные пищевые добавки, заменители сахара, ароматизаторы и др.

Предполагается, что в ближайшем будущем пищевая промышленность найдет свое развитие в увеличении урожайности растений, повышении продуктивности микроорганизмов и животных. Этого можно достичь с помощью всех способов (классическая селекция, мутагенез, клеточная и генная инженерия) и без унификации увеличится производственный потенциал отрасли, улучшится качество продуктов питания, будет обеспечена их высокая экологическая чистота. Значительные изменения ожидаются в результате внедрения генной инженерии в технологию производства пищевых продуктов. Использование трансгенных высокоурожайных, стойких к заболеваниям и быстрорастущих растений, микроорганизмов и животных может дать начало новым направлениям отрасли. Современная био­технология тесно связана со всеми отраслями пищевой промышленности, начиная с качественного улучшения организмов, участвующих в технологических процессах, и кончая качеством пищевых продуктов. Ожидается активное вмешательство биотехнологии в процессы, которые связаны с брожением. Пищевые продукты (хлеб, сыр, кефир, йогурт), напитки (вино, пиво, коньяк, бренди, виски, саке, водка), овощные соленья (полученные ферментативным путем) в результате многочисленных биохимических реакций превращаются в легкоусвояемые пищевые компоненты с улучшенными вкусовыми качествами и высокой стойкостью к микробным загрязнителям. Если к этому добавить и современные возможности, связанные с такими процессами, как культивирование микроорганизмов в гигантских реакторах (500-1000 м3), мембранная фильтрация, производственная сепарация, селективная лучевая обработка продуктов и современная, основанная на ферментных превращениях, биохимическая инженерия, станет ясно, что продиктованная временем модернизация отрасли уже начата и все больше ускоряет темпы. Превращения, происходящие в процессе производства пищевых продуктов, представляют собой естественные биологические процессы и протекают с помощью ферментов. С другой стороны, для ускорения или усовершенствования технологических процессов в реакционную среду искусственно вводят ферменты.

2. Ферментация овощей.

В одном из древнейших методов консервирования овощей, основанном на действии ферментов, используется рассол, в котором присутствуют молочнокислые бактерии. Роль консервантов здесь выполняют поваренная соль и молочная кислота. Во многих странах этот метод применяют в производственных масштабах. В частности, капуста, огурцы, другие овощи и маслины консервируются в рассоле с помощью брожения. Иногда овощи требуют предварительной обработки. Например, до помещения маслин в 18%-й рассол их обрабатывают гидроксидом натрия для удаления терпкого вкуса, вызванного присутствием глюкозида - олеорупеина. В рассоле овощи подвергаются последовательному воздействию разных микроорганизмов. На начальном этапе благодаря наличию кислорода в ферментационной среде развивается аэробная микрофлора. Несмотря на это, довольно быстро развиваются молочнокислые бактерии и дрожжи, в результате образуются молочная и уксусная кислоты. На последней стадии брожения создаются более благоприятные условия для преимущественного развития дрожжей. Брожение заканчивается при исчерпании сбраживаемых углеводов. Для регулирования процесса брожения вместо спонтанно размножающейся микрофлоры стали использовать чистые культуры -- бактерии молочнокислого брожения. Точное соблюдение температуры (7,5 °С) и концентрации соли (2,25%) дает возможность получить соленые (отброженные) овощи высокого качества.В результате брожения овощи обогащаются метаболитами, которые придают им соответствующий вкус и аромат. В то же время при брожении пища обогащается белковыми соединениями. География пищевых продуктов, полученных молочнокислым брожением, имеет явную ориентацию на Восток, например соленая рыба - чисто восточная еда.

3. Биотехнологии в производстве чая, кофе

В странах Восточной Азии, Африки и Латинской Америки безалкогольные ферментированные напитки готовят из чайных и кофейных растений. В восточных странах с незапамятных времен чай использовали в качестве бодрящего напитка, однако технология производства чая была разработана лишь в XX в. Разнообразие чайного продукта зависит от вида растений и технологии переработки листа. Известны три технологии приготовления чая - черного, зеленого и находящегося между ними по степени окисленности дубильных веществ желтый чай. Готовый чай по степени ферментации делится на следующие категории:

- неферментированный чай, в котором степень окисления дубильных веществ (катехинов) не превышает 12%;

- слабоферментированный чай, степень окисления дубильных веществ - до 12-30%;

- ферментированный чай, степень окисления дубильных веществ - в пределах 35-40%.

Каждая категория готовой продукции по степени окисления, в свою очередь, делится на более мелкие группы. Неферментированный - это зеленый чай. Для инактивации окислительных ферментов сырье фиксируют водяным паром и горячим влажным воздухом. В результате на следующих стадиях переработки в чайном листе не происходят процессы ферментативного окисления.

Чай второй категории - слабоферментированный, подвергается частичной ферментации; к нему относятся: желтый, оолонг (красный) и черный чай.

Если во время производства зеленого чая основной задачей является сохранение катехинов в нативном состоянии, то во время производства ферментированного черного чая стараются максимально окислить комплекс катехинов в чайном листе. Черный чай, приготовленный по указанной технологии, характеризуется интенсивным настоем и специфическим ароматом.

Для получения черного чая свежесобранные листья подвергают следующим технологическим операциям: завяливанию, скручиванию, ферментации и сушке. Завяливание является важным технологическим этапом, при котором происходят основные биохимические изменения в чайном листе, определяющие вкус и образование ароматических соединений во время процесса скручивания и ферментации. Во время скручивания чайного листа повреждается структура и нарушается целостность клетки, в результате обеспечивается контакт окислительных ферментов и их субстратов. В чайном листе ферментация осуществляется за счет эндогенных ферментов. Этим производство чая отличается от многих других процессов пищевой промышленности, где ферменты добавляют искусственно. В технологическом цикле производства чая ферментация является центральным процессом, от которого в значительной степени зависит качество готовой продукции.

4. Производство сыра.

Молоко было, одним из первых продуктов, претерпевших микробиологическую переработку естественным образом. Это происходит за счет того, что в молоке легко размножаются бактерии и оно скисает. В этом процессе один из основных этапов - превращение молочного сахара - лактозы в молочную кислоту. На протяжении тысячелетий усовершенствовался процесс спонтанного скисания молока, результатом чего явилась разработка технологии получения сыра и других продуктов молочнокислого брожения.

Для производства сыра в молоко вносят культуру бактерий, род и вид которых зависит от типа производимого сыра.Размножение молочнокислых бактерий при скисании молока - это важный технологический процесс, так как они подавляют размножение других бактерий и тем самым обусловливают требуемые вкусовые качества и аромат сыра. Молочнокислые бактерии положительно влияют на желудочно-кишечную микрофлору. После внесения бактерий молоко инкубируют при определенной температуре и в результате оно скисает. Для углубления этого процесса -- гидролиза белка, искусственно вносят протеолитический фермент, называемый сычужным ферментом или ренином. Ренин образуется в сычуге - в четвертом отделении желудка ягненка или теленка, вскормленных молоком. С возрастом организм животных вместо сычужного фермента вырабатывает другие протеолитические ферменты, с другой субстратной специфичностью, не вызывающие образования сыра.Производство сычужного фермента в мировом масштабе составляет 25 млн. л. Несмотря на это, сычужный фермент является дефицитным и лимитирующим компонентом в технологии производства сыра. В результате многочисленных поисков получен протеолитический фермент микробного происхождения с аналогичной сычужному ферменту субстратной специфичностью. Этот фермент частично восполнил дефицит сычужного фермента. Другая значительная биотехнологическая новизна заключается в клонировании гена ренина в одну из культур мицелиальных грибов. Это позволило получить абсолютный аналог сычужного фермента. Для промышленных целей сычужный фермент получают из животных организмов (ягнят, телят, поросят) и из культур грибов.

По данным на 1998 г., аналог ренина, выделенный из грибов, удовлетворяет потребность в этом ферменте на одну треть. Микробный фермент широко используется в США и Франции - странах с большими традициями производства сыра.

Сразу же после внесения в молоко фермента, выделенного из животных или микроорганизмов, происходит ограниченный протеолиз казеина. Коагулированный казеин образует гелеподобную массу и соединяется с жиром, после чего сыворотку фильтруют, отжимают остаточную воду и высушивают завертыванием в ткань. Следующим этапом технологии является созревание сыра. Производство сыра из молока -- дегидратационный процесс, при котором происходит концентрирование казеина и жира в 6-12 раз. В процессе созревания некоторых сыров практикуется искусственное размножение микроорганизмов (бактерии и грибы) для придания сыру специфического вкуса и аромата.

Приблизительно 100 лет тому назад производство сыра достигло такого уровня и коммерческих масштабов, что производители перестали доверять процессу спонтанного размножения молочнокислых бактерий и начали применять чистые бактериальные культуры. Многообразие бактерий вызвало значительное расширение ассортимента сыров.

Вкус, аромат и качество разных сортов сыра определяют следующие факторы: разновидность молока (козье, коровье, овечье), температура приготовления сыра, наличие вторичной микрофлоры.

Если первичная микрофлора - молочнокислые бактерии осуществляют формирование сыра как продукта, то вторичная микрофлора (бактерии, грибы) придают аромат и свойства, определяющие специфический вкус сыра.

Из молока можно получить и другие продукты брожения. Из них можно выделить кислые продукты: йогурт - аналог грузинского мацони. Традиционно йогурт получают ферментацией в молоке болгарской палочки и термофильного стрептокока.

Сметану, кумыс, кефир, видя (распространенный напиток в Финляндии) и другие продукты получают из пастеризованного молока, обработанного молочнокислыми бактериями.

II. Технология производства алкогольных напитков, сахарозаменителей, соков, кислот, водорослей

1. Технология производства алкогольных напитков

Биотехнологические подходы приобретают все большее значение в производстве напитков. Алкогольные напитки могут быть классифицированы по разным признакам; очевидно, наиболее целе­сообразной является их классификация по технологическим параметрам на ферментированные и неферментированные; по содержанию алкоголя - концентрированные, дистиллированные и неконцентрированные. Процесс ферментации (брожения) подразумевает не только образование спирта. В этом процессе в пределах метаболических возможностей дрожжей происходит последовательное преобразование подавляющего числа соединений бродящей среды. С помощью методов современной биотехнологии удается расширить метаболические возможности организмов, участвующих в брожении, отсюда очевидна роль биотехнологии в производстве алкогольных напитков.

Большинство алкогольных напитков получено переработкой злаков или другого крахмалсодержашего сырья. В Скандинавских странах, России, Голландии, Германии, Польше и др. традиционно популярно производство пива и крепких напитков из злаков. В южных странах - Испании, Италии, Франции, Греции, Югославии, Грузии - более традиционным считается получение напитков на основе переработки винограда. Все более популярным становится получение напитков разной крепости из фруктов (яблоко, слива, шелковица, персик, плоды тропических и субтропических растений) и меда.

Необыкновенное разнообразие алкогольных напитков вызвано несколькими причинами. Из них наиболее значительной является различие в климатических условий регионов, в которых производят напитки.

Производство и коммерция алкогольных напитков представляет собой стабильный бизнес еще со средних веков. Исходя из этого, любое новшество в таких консервативных областях, как производство вина, бренди (коньяк), виски, водки и др., сталкивается с большими сложностями. Следует отметить, что в серьезную международную проблему превратилось производство фальсифицированных алкогольных напитков. К сожалению, пока не удалось создать единую международную контролирующую систему, которая строго запретила бы использование некачественных спиртов, содержащих, помимо этилового, и некоторые другие высшие спирты.

Для получения алкогольных напитков применяются растительные субстраты моно-, ди- и олигосахариды и полисахариды (крахмал, целлюлоза, в редких случаях гемицеллюлоза).

Полисахариды нуждаются в предварительном гидролизе. Последний осуществляется соответствующими ферментами (амилазами, целлюлазами, гемицеллюлазами) или, реже, концентрированными неорганическими кислотами (для технических целей). Целлюлозе- и гемицеллюлозосодержащее древесное сырье считается непригодным для получения пищевого этилового спирта. Этиловый спирт, полученный таким путем, даже несмотря на высокий уровень дистилляции, пригоден лишь для технических целей.

После соответствующей обработки субстратов (гидролиз полисахаридов), в водный раствор сахара вносят дрожжевую культуру. Для проведения процесса брожения, как правило, используют культуры сахаромицетов. Сахаромицеты интенсивно усваивают различные моносахариды: глюкозу, фруктозу, галактозу; дисахариды: сахарозу, мальтозу, сбраживая их в этиловый спирт. Установлено, что сахаромицеты, по сравнению с другим дрожжами, проявляют высокую толерантность к этиловому спирту. По окончании процесса брожения этиловый спирт накапливается в количестве 14-16%. Интересно, что в бродящей среде такая концентрация спирта подавляет размножение дрожжей; к этому моменту отличительным качеством среды является повышение кислотности за счет вновь образовавшихся органических кислот. Именно такое сочетание определяет биологические качества сброженного водного раствора спирта, что отличает его от раствора чистого спирта той же концентрации.

Следующим процессом технологического цикла является дистилляция. Этот процесс с соответствующим аппаратурным оформлением хорошо изучен и подробно описан. Дистилляция представляет собой концентрирование этилового спирта и выделение чистой фракции, что значительным образом определяет качество алкогольных напитков.

Иногда с целью улучшения органолептических качеств готовых напитков прибегают к настаиванию концентрированного этилового спирта на разных ароматических веществах. Как правило, концентрация спирта в крепких напитках колеблется в пределах 20-50%. При производстве тонизирующих напитков и ликеров используют ароматические соединения, выделенные из цветов, листьев и плодов растений, а также полученные синтетическим путем Вино. Может показаться необычным, но технология производства вина, по сравнению с технологией производства пива является более простой. Этот процесс почти не изменился на протяжении 5 000 лет. Предполагают, что вино - напиток ближневосточный и европейский, в этих районах распространены разные сорта винограда. На протяжении столетий собирают урожай из белых и красных, селективно подобранных сортов винограда и выжимают сок, содержащий 15-25% сахара. Красное вино получают прессованием черного винограда и ферментацией всей виноградной массы. Розовое - добавлением кожицы красного винограда в сок белого. Еще не так давно брожение виноградного сока происходило спонтанно, за счет естественной микрофлоры. Сегодня подход к процессу спиртового брожения существенно изменился. Для стабильного производства высококачественного вина необходимо осуществлять брожение чистыми культурами дрожжей, заранее выделенными, желательно адаптированными к местным условиям. Для этого к виноградному соку добавляют одну из чистых культур бактерий. Брожение проводится в определенных условиях: в специальных сосудах большой емкости, при температуре 7°-14 °С. О завершении брожения судят по разным параметрам. Среди них важнейшими являются: остаточный сахар, количество этилового спирта, глицерина, летучих кислот. После окончания брожения процентное содержание этилового спирта в разных типах вин составляет 10--14%. Кроме этого, во время брожения часто происходит спонтанное, бактериальное брожение, при котором первичная яблочная кислота превращается в молочную. По окончание брожения молодое вино для старения переливают в резервуары больших размеров, часто дубовые. При хранении вина температура снижается и образуется осадок. Как правило, этот процесс сопровождается химическими изменениями бродящей массы.

С применением технологии рекомбинантной ДНК получены дрожжевые культуры с расширенным метаболическим спектром. Некоторые из них применяются только в конкретных случаях (сбраживание лактозы, целлобиозы, пентоз). В перспективе для приготовления экологически чистых вин целесообразно создать такие формы дрожжей, которые кроме своей главной функции (брожение) будут способны усваивать и превращать те химикаты, которые предусмотрены агротехническими мероприятиями и часто попадают в ягоды винограда, а затем и в вино.

2. Соки

Важное место в рационе питания человека занимают фрукты, овощи и ягоды в свежем виде или в виде консервов и соков. Современное производство соков немыслимо без применения ферментов, среди которых ведущее место принадлежит пектиназам -- комплексу ферментов, состоящему из полигалактуроназы, пектинметилэстеразы и др.

Пектиназы продуцируют микромицеты Aspergillus niger, бактерии Erwinia carotovora, Clostridium sp. и др. Применение пек-тиназ в производстве соков обусловлено тем, что они катализируют гидролиз пектиновых веществ растительных клеток, тем самым освобождая сок из клеточных структур. В 1 л виноградного сока содержится 0,2--4,0 г пектина, еще больше его в яблочном и томатном соках. При хранении сока пектин оседает. Освобождение сока от пектина обязательно при изготовлении сиропов путем упаривания, так как присутствие пектина может вызвать желеобразование. Обработка соков пектолитическими ферментами снижает содержание пектина до 50 мг/л.

3. Пиво

биотехнология пищевая продукт ферментация

Известно, что в растворе, содержащем сахаристые вещества, быстро развиваются микроорганизмы. Этот факт стал основой многих производственных технологий. Археологическими исследованиями в разных частях земного шара установлено, что сбраживание экстрактов злаковых культур применяли еще 6000 лет тому назад. Основными потребителями пива еще 15-20 лет тому назад считались страны Европы, США и Австралия; на сегодняшний день положение значительно изменилось. Пиво стало предметом повседневного потребления в Китае, Индии (из риса), в арабских странах. Значительно возросло потребление пива в Центральной и Южной Африке, Южной Америке (из сорго). Сегодня пиво пьют практически во всех странах. Это дало толчок невиданному развитию производства пива.

Пиво получают из злаковых, содержащих крахмал чаще всего для этой цели используют ячмень. Пиво производится по следующей технологической схеме.Сухой ячмень замачивают в воде для получения всходов, содержащих ферменты (амилаза и протеаза). Амилаза способствует разложению крахмала на олигодекстрины, чем в основном определяется вязкость пива и характерная способность к пенообразованию, протеаза катализирует гидролиз белков до аминокислот, которые необходимы для размножения дрожжей и формирования специфического аромата пива. После прорастания ростки солода дробят и помещают в воду при температуре 60°-65 °С. В результате инкубирования в этих условиях ростки теряют способность к дальнейшему росту (отмирают), а ферменты (амилаза, протеаза) сохраняют свою активность. Водный раствор ростков солода наливают в чан с субстратом и настаивают в течение нескольких часов. За это время протекают основные ферментативные процессы, при которых происходит гидролиз крахмала и белков. Водный раствор, или, как его называют, пивное сусло, отделяют от осадка и варят с хмелем для придания аромата и антисептических свойств, характерных для пива. После этого хмель удаляют фильтрацией и полученный раствор готов для сбраживания.

Ферментация или брожение протекает в специальном сосуде - биореакторе, где к раствору добавляется чистая культура дрожжей. Если можно внести какую-нибудь биотехнологическую новизну в эту ставшую классической технологию -- это в первую очередь касается культуры дрожжей. С этой целью традиционно использовали селективно отобранные в течение сотен лет дрожжи.

4. Технология производства сахарозаменителей

Употребление сахарозы или любого другого натурального сахара даже при рациональном подходе в ряде случаев вызывает развитие атеросклероза, диабет, прибавление в весе и ряд других патологий. Поэтому большое внимание уделяется изысканию эквивалентных вкусовых сахарозаменителей не сахаристой природы. Соединения, обладающие сладким вкусом, могут быть разделены на две группы: природные органические соединения - белки, дипептиды и другие натуральные соединения и вещества, полученные путем химического синтеза.

Как правило, при выборе сахарозаменителей большое внимание уделяется их способности включаться в метаболизм, калорийности, безопасности для здоровья человека, а также себестоимости и технологии получения. На сегодняшний день в научной литературе описано большое количество сахарозаменителей, но по разным причинам реально в практике применяется только их небольшая часть.

К натуральным сладким соединениям относятся моносахариды и низкомолекулярные олигосахариды, продукты гидролиза крахмала и частичной изомеризации - смесь глюкозы и фруктозы, а также соединения неуглеводного типа. Сахарозаменитель сахарин, получаемый химическим синтезом и в течение нескольких десятков лет интенсивно используемый в кондитерской промышленности, сегодня полностью вытеснен новыми натуральными, низкокалорийными сахарозаменителями, например, метилированным дипептидом аспартамом, производимым биотехнологическим методом. Аспартам (торговое название "Нутрисвит") широко применяется в производстве диетических напитков.

При синтезе аспартама аминокислота фенилаланин является самым дорогим компонентом, ее в большом количестве получают путем культивирования соответствующего продуцента. Токсикологические исследования в течение десяти лет предшествовали применению аспартама в производстве пищевых продуктов.

Среди большого числа других сахарозаменителей заслуживает внимания стевиозид, содержащийся в растении Stevia vebaudiana, распространенном в Южной Америке. Это растение культивируется на Черноморском побережье, дает хороший урожай в виде сладких листьев. Широкое использование стевиозида в пищевой промышленности пока ограничено ввиду сложности его получения в чистом виде.

Сахарозаменители другого типа -- флавонол-7-глюкозиды -содержат цитрусовые растения. В результате незначительной химической модификации этих соединений образуются дигидрохалконы, которые намного слаще сахара. Наибольший интерес среди этих соединений представляют нарингениндигидрохалкон, неогесперединдигидрохалкон и гесперединдигидрохалкон-4-Я-D-глюкозид. Последние два соединения в 300 раз слаще сахарозы. Что касается нарингениндигидрохалкона, характеризующегося незначительной токсичностью, тоэто соединение в 2000 раз слаще сахарозы. Хорошим сырьем для получения неогесперединдигидрохалкон-4-Я-глюкозида является цитрусовый отжим, накапливающийся при переработке цитрусовых (получение сока).

Тауматин - соединение белкового происхождения. В промышленных масштабах тауматин получают экстракцией из плодов этого растения. Из всех известных сегодня сахарозаменителей это соединение - самое сладкое.

Сахарозаменители используются в производстве разных напитков (алкогольных и безалкогольных), варений, джемов, пирожных, конфет, жевательных резинок и других сладких продуктов.

5. Съедобные водоросли

Народы Тихоокеанского побережья с давних пор употребляют в пищу морские и океанские водоросли. Жители Гавайских островов из 115 видов водорослей, обитающих в местных океанских пространствах, используют в питании 60 видов. В Китае также высоко ценят съедобные водоросли. Особенно ценятся сине-зеленые водоросли Nostoc pruniforme, по внешнему виду напоминающие сливу и по вкусовым качествам причисленные к китайским лакомствам. В кулинарных справочниках Японии встречается более 300 рецептур, в состав которых входят водоросли. На Дальнем Востоке весьма интенсивно используют водоросли в пищевых целях и плантации не успевают восстанавливаться естественным путем. В связи с этим все чаще водоросли культивируют искусственно, в подводных садах. Выращивание аквакультур -- процветающая отрасль биотехнологии. Водоросли используют также в виде сырья для промышленности.

В последнее время внимание специалистов, занимающихся вопросами питания, привлекает сине-зеленая водоросль спирулина (Spirulina platensis и Spirulina maxima), растущая в Африке (оз. Чад} и в Мексике (оз. Тескоко). Для местных жителей спирулина является одним из основных продуктов питания, так как содержит много белка, витамины А, С, D и особенно много витаминов группы В. Биомасса спирулины приравнивается к лучшим стандартам пищевого белка, установленным ФАО. Спи-рулину можно успешно культивировать в открытых прудах или в замкнутых системах из полиэтиленовых труб и получать высокие урожаи (примерно 20 г биомассы в пересчете на СВ с 1 м3 в сут).

6. Уксусная кислота

Уксус в виде прокисшего вина был известен за 7 тыс. лет до н.э., но только в 1868 г. Луи Пастер установил физиологическую природу уксуснокислого брожения, вызываемого уксуснокислыми бактериями Acetobacter oxidans, A. aceti, A. xylinum и др.

Чтобы уксуснокислое брожение протекало нормально, сахар, содержащийся в сбраживаемом субстрате, должен быть превращен в этиловый спирт, поэтому уксуснокислому брожению предшествует спиртовое. В производстве уксуса спиртовое брожение лучше всего осуществляют селекционированные штаммы винных дрожжей (например, Saccharomyces ellipsoideus), которые помимо этанола синтезируют побочные продукты метаболизма, улучшающие вкус и аромат уксуса. Уксус, полученный микробиологическим путем (пищевая уксусная кислота, столовый уксус), как и вино, различается по сортам в зависимости от характера сбраживаемого субстрата. Известен яблочный, виноградный, грушевый и другие сорта уксуса. Уксус, полученный при брожении, имеет приятные аромат и вкус, которые обусловливают побочные продукты брожения: сложные эфиры (этилацетат и др.), высшие спирты, органические кислоты.

Установлено, что продуцент уксусной кислоты из рода Acetobacter, развиваясь на поверхности среды, образует слизистую пленку, которая состоит из целлюлозы (90%) и клеток бактерий (J. D. Fontana, 1989). Если эту пленку снять, высушить и соответственно обработать, можно получить достаточно прочные биофильмы медицинского назначения. Если ожоговые раны покрыть такими биофильмами, они заживают в течение 7--8 сут.

Ферментацию сахарозных сред реализуют в две стадии. На первой стадии при помощи дрожжевой инвертазы получают инвертный сахар, на второй с помощью Acetobacter xylinum -уксусную кислоту. Вторая стадия длится 60 ч, за это время углеводы (их содержится 6%) сбраживаются, рН снижается до 2, и на поверхности жидкой фазы формируется целевой, продукт -- биофильм.

7. Лимонная кислота

В природе это вещество встречается довольно часто, главным образом в незрелых плодах цитрусовых, ананасов, груш, инжира, брусники, клюквы и др.

Для получения лимонной кислоты путем микробного синтеза в лабораторных условиях использовали микромицеты (Aspergillus clavatus, Penicillium luteum, P. citricum, Mucor piriformis, Ustina vulgaris и др.), но для промышленного биосинтеза наиболее подходящим оказался Aspergillus niger. Впоследствии из него было селекционировано множество производственных штаммов для биосинтеза лимонной кислоты из сахарозы.

Многие органические вещества сбраживаются микромицетами и могут быть трансформированы в лимонную кислоту, но максимальный выход получается при биосинтезе из сахарозы или фруктозы. В последнее время успешно завершены эксперименты по биосинтезу лимонной кислоты дрожжами (Candida lipolytica и др.) из парафинов и низших спиртов (этанола) с высоким выходом (80--140%). Лимонную кислоту широко используют в кулинарии и в пищевой промышленности для приготовления безалкогольных напитков, мармелада, вафель, пастилы и др. Лимонная кислота включена в рецептуры некоторых сортов колбас и сыра, ее применяют в виноделии, для рафинирования растительных масел, для производства сгущенного молока. С помощью лимонной кислоты сохраняются естественные вкус и аромат при длительном хранении в замороженном состоянии мяса и рыбы.

При умеренном употреблении лимонная кислота стимулирует деятельность поджелудочной железы, возбуждает аппетит, способствует усвоению пищи.

Натриевые соли лимонной кислоты стимулируют вспенивание и механическую устойчивость пен, поэтому лимонную кислоту ценят кулинары, ее также применяют для изготовления шампуней и моющих средств. Последнее имеет важное экологическое значение, так как лимонная кислота и ее соли легко поддаются микробиологической деградации при очистке канализационных вод.

8. Молочная кислота

Эта кислота всегда присутствует в кислом молоке и в виде побочного продукта при получении уксусной и лимонной кислот.

Молочнокислые бактерии трансформируют в молочную кислоту самые разные углеводы, поэтому для промышленного получения этой кислоты используют глюкозу, мальтозу, сахарозу, лактозу, осахаренный крахмал и пр. После выбора субстрата подыскивают подходящий продуцент. Для сбраживания глюкозы или мальтозы обычно применяют штаммы Lactobacillus delb-rueckii, L. leichmannii или L. bulgaricus. Для сбраживания ocaхаренного крахмала используют смесь молочнокислых бактерий L, delbrueckii или с L. bulgaricus, или со Streptococcus lactis. При сбраживании мальтозы выход молочной кислоты выше при использовании L. bulgaricus или L. casei.

Молочную кислоту используют в пищевой промышленности (для приготовления кондитерских изделий, безалкогольных напитков), в производстве витаминов, в медицинской промышленности, в производстве пластмасс и в других отраслях народного хозяйства.

1. Размещено на www.allbest.ru


Подобные документы

  • Характеристика и ассортимент соков и сокосодержащих напитков. Новые направления в производстве компотов. Разработка технологической схемы производства концентрированного яблочного сока. Транспортировка, условия хранения и технология его производства.

    курсовая работа [77,7 K], добавлен 26.12.2013

  • Принципы производства алкогольных напитков. Классификация сортов и типов пива. Технология производства сидра. Основные стадии получения уксуса. Классификация вина в зависимости от качества и сроков выдержки. Получение напитков путем спиртового брожения.

    лекция [36,5 K], добавлен 10.04.2010

  • Понятие и область применения биотехнологии - науки, изучающей методы получения полезных веществ. Биотехнологическая схема производства продуктов микробного синтеза - глютаминовой кислоты, триптофана. БАДы как источник биологически активных веществ.

    презентация [1,7 M], добавлен 06.02.2016

  • Понятие о микробиологических показателях безопасности пищевых продуктов. Микрофлора продуктов, воды, почвы и тела человека. Cроки и условия хранения сырья, готовых блюд и кондитерских изделий. Санитарный контроль на предприятиях общественного питания.

    контрольная работа [329,1 K], добавлен 14.05.2014

  • Диетические свойства кисломолочных продуктов. Биохимические и микробиологические основы их производства резервуарным способом. Бактериальные закваски и препараты, используемые в технологическом процессе. Технология кисломолочных напитков и сметаны.

    презентация [2,6 M], добавлен 06.04.2016

  • Нормативно-законодательная база безопасности пищевой продукции в России. Принципы системы НАССР. Биологические и микробиологические, химические и физически опасные факторы. Факторы риска при производстве пищевых продуктов. Технология производства кефира.

    реферат [604,6 K], добавлен 13.07.2011

  • Значение кисломолочных продуктов для здорового образа жизни. Особенности их получения из молока. Приготовление бактериальных заквасок. Технология производства ряда кисломолочных напитков, сметаны, творога. Компоненты рецептуры, условия хранения продуктов.

    контрольная работа [42,7 K], добавлен 17.05.2010

  • Методологические принципы проектирования функциональных продуктов питания. Создание продуктов питания с заданными функциональными свойствами. Производственная программа предприятия общественного питания. Организация производства кулинарной продукции.

    учебное пособие [426,4 K], добавлен 26.05.2013

  • Исследование истории возникновения и органолептических показателей кисломолочных напитков. Технологическая схема производства кисломолочных напитков резервуарным способом с охлаждением в потоке. Пороки кисломолочных напитков и меры их предупреждения.

    курсовая работа [386,4 K], добавлен 10.01.2015

  • Потребительские свойства пищевых функциональных продуктов. Маркетинговые исследования потребительских мотиваций и анализ сегмента рынка пищевых продуктов. Обоснование выбора ингредиентов для производства пюреобразных супов функционального назначения.

    дипломная работа [1,8 M], добавлен 03.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.