Химический состав молока

Назначение молока в природе как полноценного продукта питания и сырьевого материала. Основные меры предупреждения жиров от порчи. Питательность, физические и биохимические методы переработки молока. Механизм и кинетика тепловой коагуляции казеина.

Рубрика Кулинария и продукты питания
Вид курс лекций
Язык русский
Дата добавления 15.01.2012
Размер файла 245,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Химический состав молока

Введение

Химия и физика как наука начала свой отсчет в прошлом веке, в тот период она начинала с изучения химического состава молока. В нашей стране этим вопросом занимались Ильенко (1819-1877), затем Калантар (1859-1937). Химия молока (биохимия) как наука была создана в советское время пр. Иниховым и Зайковским, которые работали в Вологодском молочном комбинате, затем в Московском комбинате мясной и молочной промышленности (МГУБТ). Ими в 20-30-ые годы были написаны первые учебники по биохимии молока (Химия молока, Анализ молока: Химия и физика молока молока и молочной продукции. Большой вклад в развитие науки о молоке внесли великие русские ученые -- Павлов и Мечников.

Значительный вклад в развитие биохимии молока внес проф. Паращук (1873-1850 г.г.); развитию биохимии способствовали работы Белоусова, Брио, Граникова, Давидова, Диланяна, Дьяченко, Казанского, Климовского, Коваленко, Овчинникова, Чеботарева и др.

В настоящее время ведут исследования коллективы в области химии и физики молока ВНИМИ, НИИ Углич и ученые других высших учебных заведений.

Предмет «Химия и физика молока» базируется на достижениях смежных наук, таких как органическая химия, физическая и коллоидная химия, физиология, биохимия питания. Эта наука изучает химический состав молока, физико-химические свойства молока: плотность, кислотность, теплофизические, оптические и др. А также системы молока, в которых находятся составные части: эта фаза истинного раствора, коллоидная фаза, фаза эмульсии. Особая роль отводится изучению изменений молока и его составных частей в процессе обработки и переработки. Это энергетическое воздействие, механические нагрузки, температурные воздействия, биохимические превращения. Без этих знаний невозможно вести технологические процессы производства молока и молочных продуктов, т. к. любые изменения традиционных способов производства могут так повлиять на составные части молока, что, в свою очередь, отразится на качестве молочных продуктов.

При использовании высокопроизводительного оборудования очень важно сохранить свойства молока и его составные части. Вот почему технологи молочной промышленности должны обладать обширными знаниями о химических, биохимических и физических свойствах составных частей молока.

МОЛОКО -- полноценный и полезный продукт питания. Оно содержит все необходимые для жизни питательные вещества, нужные для построения организма. Естественное назначение молока в природе заключается в обеспечении питанием молодого организма после рождения. Состав молока различных млекопитающихся в целом определяется теми условиями окружающей среды, в которых происходит рост молодого организма. Это особенно четко проявляется в содержании белка и жира, чем больше их в молоке матери, тем быстрее растет ее дитя.

Так, грудной ребенок удваивает массу примерно за 180 дней, теленок -- за 50 дней, а щенок -- уже за 9 дней. Содержание белка в женском молоке, по сравнению с молоком различных животных, самое низкое -- 1,6%, в коровьем -- 3,4%, а в молоке собаки -- 7,3% белка. Молочный жир служит прежде всего для удовлетворения потребности организма в энергии. В районах с холодным климатом потребность организма в энергии выше, чем в зонах с умеренным климатом. Вот почему молоко самки оленя северного отличается более высоким содержанием жира -- 19,7%. Молоко пережило многие цивилизации, прежде чем стало продуктом питания и имеет свое назначение:

-- в качестве продукта питания для населения,

-- средство для вскармливания молодняка и корма в животноводстве,

-- сырье для производства пищевых продуктов,

-- источник получения отдельных компонентов молока, которые, в свою очередь, служат сырьем для фармакологии и других отраслей промышленности.

Все возрастающее значение молока как полноценного продукта питания и как сырьевого материала привело к увеличению спроса на него. В результате этого производство молока стало одной из важнейших отраслей сельхозпроизводства. В настоящее время молоко составляет значительную долю в сельскохозяйственном валовом продукте нашей страны.

Питательность 1 л молока составляет 685 ккал. Калорийность зависит, главным образом, от содержания жира, белка. Благодаря содержанию в молоке важнейших питательных веществ, главным образом белка, углеводов, витаминов, минеральных веществ, оно является и защитным фактором. В целях охраны здоровья на предприятиях, где существуют вредные условия труда, работники получают молоко.

Молочный белок является важным защитным фактором, т. к. он в силу своей алефотерной природы связывает пары кислот и щелочей, а также нейтрализует ядовитые тяжелые металлы (следы) и др. вредные для здоровья вещества. Благодаря содержанию в молоке кальция, фосфора, витаминов предотвращается развитие авитаминозов. Кроме питания человека молоко идет на кормление сельскохозяйственных животных: телят, свиней, птиц.

С помощью физических и биохимических методов из сырого молока получают молочные продукты, которые представляют собой частично обогащенные продукты питания, благодаря чему эти продукты характеризуются повышенной калорийность на каждые 100 г. Переработка молока ведет к изменению его пищевой ценности и вкусовых качеств, поэтому необходимо учитывать свойства каждого отдельного компонента молока. Сырьем для промышленности служат такие составные части молока как казеин и лактоза. Определение веществу молока можно дать с различных точек зрения, учитывая прежде всего цель применения. Если считать молоко продуктом питания, то на первый план выдвигаются законодательные, гигиенические и экономические требования, так что можно дать определение сырому молоку.

«Сырое молоко -- это полученный в результате регулярного, полного выдаивания вымени у одной или более коров от одного или нескольких доений чистый и затем охлажденный продукт, из которого ничто не удалено и к которому ничего не добавлено».

Знания о количестве составных частей молока с течением времени постоянно расширялись. Это можно объяснить целенаправленностью научных исследований и применением современных методов анализа, которые позволяют, не применяя способа обогащения, обнаружить и количественно определить даже те составные части молока, которые присутствуют в нем в виде следов. В настоящее время известно свыше 200 различных компонентов молока.

Составные части молока -- это все те компоненты, которые выделяются из вымени при доении.

Химизация сельского хозяйства, лечение заболеваний крупного рогатого скота, а также заболеваний вымени с помощью химиотерапевтических средств привели к увеличению содержания в молоке посторонних веществ, которые попадают в него различными путями.

2. Химический состав молока

Молочный жир, лактоза, казеины, лактоглобулин и -лактоальбумин являются специфическими компонентами молока. Они синтезируются в молочной железе и встречаются только в молоке. Остальные компоненты можно найти и в других биологических соединениях.

С технической и экономической точек зрения молоко можно разделить на воду, сухое вещество и сухой обезжиренный остаток.

Наибольший удельный вес в молоке занимает вода (более 85%, на остальные компоненты, входящие в состав сухих веществ или сухих остатков, приходится 11-14%). Содержание так называемого сухого обезжиренного остатка молока (СОМО) составляет 8-9%. Его определяют по ГОСТ 3626-73 методом высушивания навески молока при 102 + 2 до постоянной массы. Его можно найти расчетным путем -- сложением содержания СОМО и количества жира в молоке. Для этого содержание СОМО определяют по формуле, используя показатели жирности и плотности молока.

Сухой остаток включает все питательные вещества молока. Он определяет выход готовой продукции при производстве молочных продуктов.

Содержание сухого вещества и отдельных его компонентов непостоянно в течение периода лактации. Количество жира подвержено самым большим колебаниям, затем идет белки. Содержание лактозы и солей, наоборот, почти не изменяется в течение всего периода лактации. Диапазон колебаний находится в тесной связи с величиной частиц отдельных составных частей.

Эту зависимость сформулировал Вигнер в законе, названном его именем: «Содержание различных составных частей сухого вещества молока колеблется тем меньше, чем в более тонком распределении они присутствуют в молоке».

Естественные изменения содержания основных составных частей -- жира и белка представляют экономический технологический интерес. Оплата молока в зависимости от жирности, вследствие колебаний этого показателя, требует постоянного контроля за содержанием жира. Колебания затрудняют соблюдение постоянного соотношения между определенными составными частями в готовом продукте: например, в сгущенном молоке между жиром и сухим обезжиренным остатком. Фальсификацию молока водой можно точно установить лишь по содержанию лактозы и ионов путем определения точки его замерзания.

Жир занимает особое экономическое положение и служит основой оплаты молока, т. к. он подвержен резким колебаниям (до 4% -- диапазон), затем идут белки, лактоза изменяется незначительно. Эти колебания зависят от породы скота, стадии лактации, возраста, состояния здоровья животного, рациона кормления, условий доения и содержания, мышечной нагрузки животных.

Изменения в составе молока после доения можно объяснить микробиологическим и технологическим воздействием. Однако различные показатели могут быть получены и при разных методах анализа. Например, при определении содержания жира бутирометрическим методом показатели жирности на 0,05% выше, чем при использовании гравиометрического метода. Из показателя, характеризующего содержание лактозы, зачастую не ясно, какая форма лактозы учитывается при этом -- моногидратная или безводная, что ведет к различиям между показателями ее содержания, достигающими 0,24% на каждые 100 г молока.

Поэтому количественные данные о содержании сухого вещества и составных частей молока требуют более точного определения при их использования с целью сравнения.

Вода 87 г

Сухой остаток 13 г

Белки

Липиды

Углеводы

Казеин - 2,6 г

Жир - 3,6 г

Лактоза - 4,8 г

Сыв. бел. - 0,65 г

Фосфор - 0,03 г

Глюкоза - 0,05 мг

-лактоальб. - 0,12 г

стерин - 0,01 г

Галактоза-0,08 мг

Альбумин сыв.крови -0,03 г

иммуноглобулин - 0,05 г

протеозо-пейтоны -0,15

Минеральные вещества

Ферменты

Vit

Макр.,мг

Мик., МГК

Дегидрогенады

А - 0,025 мг

Са - 122

Fe - 70

Нg - 0,3

Ксантиноксидаза

Д - 0,05 мкг

Р - 92

Сu - 12

Cd - 1

Пероксидаза

Е - 0,09 мг

K - 148

Z - 400

Pb - 5

Каталоза

С - 1,5 мг

N a - 50

- 4

A s - 4

Литаза

В6 - 0,005 мг

Mg - 13

Al - 30

Ni - 2

Фосфаты

В12 - 0,40 мкг

Cl - 110

Mn - 6

Se - 4

Амилаза

В3 - 0,38 мг

Mo - 5

- 18

Лизоцим

Ниацин - 0,1 мг

Co-0,08

Si- - 200

Sn - 15

Протеины

Рибофлавин-0,15мг

Cr - 2

Br - 15

Тиамин - 0,04 мкг

B-18

Фолацин - 5 мкг

Биотин - 3,2 мкг

Гормоны

Постоянные хим.в-ва

Пигменты

Пролактин

Антибиотики

-каротин - 0,015 г

Окситоцин

Пестициды

Ксантофил-слезы

Кортикостероиды

Андрогены

Детергенты

Эстрогены

Дезинфектаны

Прогестерон

Афлатоксины и др.

Тироксин и др.

3. Факторы, влияющие на состав и свойства молока

1. Порода коров

2. Стадия лактации

3. Здоровье коров

4. Режим кормления

5. Другие факторы.

Выход и качество молочных продуктов, определяемые составом молока, структурой и свойствами его компонентов, находятся в большой зависимости от зоотехнических факторов. В некоторых случаях изменение состава и свойств сырого молока под влиянием физиологического состояния животных кормов и др. факторов настолько значительны, что оно становится не пригодным к переработке на молочные продукты.

Порода и возраст животных. Отдельные породы крупного рогатого скота оцениваются по надоям молока и его составу. Это результат многолетней практики разведения крупного рогатого скота, что позволило вывести породы коров с наибольшей молочной продуктивностью. От породы и возраста животного зависит молочная продуктивность, состав, физико-химические и технические свойства молока. Основные породы в нашей стране: черно-пестрая, красная горбатовская, холмогорская и др. (разд. табл. № 26 Горбатов, стр. 137). (Самостоятельно провести анализ).

Колебания в составе молока коров одной и той же породы объясняются наследственными факторами, а также различными условиями содержания. Так как по наследству передается только способность к образованию определенного количества молока с примерно постоянным составом (молочная продуктивность), то условия содержания коров имеют большое значение для ее реализации.

Стадия лактации. Процесс образования и выделения молока из молочной железы, называемой лактацией, у коров в среднем составляет 305 дней, т. е. около 10 мес. В нем различают три периода (стадии): молозивный (продолжительностью 5-10 дней после отела), период выделения нормального молока (285-217 дней) и период отделения стародойного молока (7-15 дней перед окончанием лактации). Молозиво и стародойное молоко в результате резкого изменения физиологического состояния животных сопровождается образованием секрета, состав и свойства которого значительно отличаются от нормального молока.

Так, молозиво в 3-5 раз больше содержит белков, чем молокао; в 1,5 раза больше жира и минеральных веществ, фосфолипидов -- в 3-5 раз, каротина -- в 3,5-4 раза, больше витаминов, макро- и микроэлементов, ферментов (особенно каталазы, пероксидазы), гормонов, лизоцима, лактоферрина, лейкоцитов и пр. Лактозы меньше. Кислотность 40Т, плотность 1.037--1,055 г/м3, вязкость 2510-3 Пас. Оно имеет интенсивный желтый цвет, солоноватый вкус, специфический запах, густую, вязкую консистенцию.

Стародойное молоко характеризуется повышенным количеством лейкоцитов, жира, белков, ферментов (липазы), минеральных веществ и уменьшенным содержанием лактозы. Кислот. 14-16Т, а иногда 9-12Т, вкус горьковато-солоноватый из-за повышенного количества свободных жирных кислот, образующихся при гидролизе жира и хлоридов.

Молозиво и стародойное молоко не пригодно для промышленной переработки, т. к. оно имеет измененный состав; медленно свертывается сычужным ферментом и является плохой средой для развития молочнокислых бактерий. Продукты из них быстро портятся и имеют неприятный вкус.

Состояние здоровья коров. Болезни ведут к снижению молочной продуктивности животного за счет изменения состава и свойств молока. Наиболее заметные изменения в составе молока вызываются инфицированием вымени, в результате нарушается секреция молока. Мастит -- воспаление тканей вымени. Маститы могут быть с ярко выраженными клиническими признаками и скрытые (субклинические). Последние более распространены. Возбудитель проникает в паренхиму, а оттуда в альвеолы. Способность молокообразующих клеток к синтезу казеина, лактозы и жира снижается. Для поддержания осмотического давления ионы крови в большом количестве переходят в молоко.

Частично пораженная ткань становится проницаемой для сывороточных белков. Мастит сказывается на составе молока -- снижается общее количество сухих веществ, изменяется количественное соотношение между составными частями молока. Это выражается в снижении содержания жира, лактозы и казеина, а также в повышении содержания сывороточных белков, хлорида и соматических клеток. Меняется жирнокислотный состав триглицеридов молочного жира (повышается содержание высокомолекулярных жирных кислот и понижается количество низкомолекулярных жирных кислот, уменьшаются размеры мицеллорного казеина с одновременным повышением в молоке содержания фракции казеина.

Диапазон изменений зависит от степени заболевания. С ростом интенсивности инфекции состав секрета вымени приближается к составу крови. Оно имеет горьковато-солоноватый вкус. Кислотность понижается до 12Т, pH повышается до 6,83-7,19, плотность снижается до 1,024-1,025 г/см3. Электропроводность повышается, а вязкость понижается.

Сборное молоко, поступающее на молокозаводы, часто имеет примесь анормального молока до 6-15% и более, т. е. в 1 мл такого молока содержится более 500 тыс. соматических клеток. А молоко по содержанию соматических клеток различают: в 1 мл

до 500 тыс.

от 500 тыс. до 1 млн.

1 млн.

Молоко с повышенным количеством соматических клеток имеет высокую бактериальную обсеменность и, как правило, содержит стафилококки, обладающие повышенной биологической активностью. Следует иметь в виду, что примесь анормального молока может исказить результаты редуктазной пробы (т. е. при этом завышается сортность контролируемого молока), вследствие замедления процесса восстановления метиленового голубого.

Анормальное молоко менее термоустойчиво, плохо свертывается сычужным ферментом, в нем плохо развиваются производственные молочнокислые бактерии. Наиболее чувствительна к примеси анормального молока болгарская палочка, ацидофильная палочка, диацетиллактис, менее чувств. St. lactis и особенно нечувств. St. термофильный. Сгустки из такого молока имеют повышенную вязкость, меньшую плотность и хуже отделяют сыворотку. Сырное тесто из такого молока -- слабое, дряблое, медленно созревает, и сыры получаются с пороками вкуса, консистенции и рисунка. Качество масла, творога и кефира при использовании молока с 20-25% маститного снижается, изменяется вкус, запах, консистенция. Поэтому необходимо тщательно контролировать молока на мастит, для чего существует много методов: определение хлор-сахарного числа (у здоровых оно не 1,5-2, у больных выше -- 6-15); повышается активность каталазы и электропроводность молока. Для подсчета соматических клеток используют микроскоп, счетчики разного рода, подсчет клеток по изменению вязкости молока при добавлении к нему ПАВ (проба с мастопримом -- ГОСТ 23453-79).

Режим кормления. Кормление должно быть полноценным по белку и жиру, минеральным веществам и витаминам, которое влияет на продуктивность, состав и свойства молока. Некоторые виды корма изменяют вкус и запах молока (это полынь, сорняки, чеснок полевой) -- эти привкусы и обуславливают пороки молока. Или зимой и весной причиной их может быть скармливание животным силоса, кормовой свеклы, капусты, зеленой ржи и пр. Многие летучие соединения кормов: эфиры, спирты, альдегиды и петоны, обладающие специфическим вкусом и запахом, легко и быстро выделяются в рубце жвачных вместе со жвачкой, затем отрыгиваются коровой, попадают в легкие, затем в кровь и молочную железу. И появляются в молоке через 20-30 мин. после дачи корма. Некоторые соединения содержатся в кормах в связанной форме, высвобождаются только при пищеварении и поэтому медленнее (в течение 1-3 ч) всасываются в кровь и поступают в молоко. Например, диметилсульфид образуется из метилцистина, содержится в капусте, турнепсе. Триметиламин (рыбный привкус) -- из бетаина, содержится в сахарной свекле, пшенице, ячмене. Интенсивность кормовых привкусов через 2,5-4 часа после кормления уменьшается, т. к. кровь реадсорбирует пахучие вещества из молока. Коровий (хлебный привкус) обусловлен повышением в молоке концентрации кетоновых телацетона, ацетоуксусной и -оксимасляной кислот.

Поэтому рационы кормления должны быть правильно составлены, исключая некачественные корма, а также нормировать скармливание животным концентрированных, сочных и др. видов кормов. Так, скармливание большого количества льняных и подсолнечников жмыхов повышает в жире ненасыщенность жирных кислот (С18), масло вырабатывается из такого молока низкого качества, не стойко в хранении. При увеличении скармливания углеводистых кормов (свеклы, картофеля) в жире повышается количество жирных кислот (С1112), масло приобретает твердую и крошливую консистенцию. Если корма обеднены Са (барда, кислый жом, пивные дрожжи, силос, жмыхи и пр.), то может образовываться сычужно-вялое молоко, малопригодное к выработке сыра, и сыр из такого молока имеет ломкую, несвязную, крошливую консистенцию. Таким образом, необходимо достаточно добросовестно относиться качеству кормов.

Время года. Сезонным колебаниям подвергаются жир, белок, в меньшей степени лактоза, хлориды. Жир и белок уменьшаются весной, в начале лета; осенью и зимой -- повышаются. Лактоза снижается к концу года при одновременном повышении хлоридов. Но при этом надо учитывать все выше перечисленные факторы.

Влияние доения. Состав молока меняется в процессе доения, и в течение дня, т.е. между доениями. Первые порции менее жирные, в конце -- более жирные. Это объясняется затвердеванием крупных жировых шариков в секреторных клетках альвеол при повышении давления в вымени.

При более длительном интервале удой молока увеличивается, а жирность его снижается. В утреннем молоке содержание жира ниже, чем в вечернем, т. к. оно получено после длительного интервала между доениями. Самое низкое содержание жира в молоке, полученном ночью (с 21 часа до 3 часов).

4. Коллоидная система молока

В коллоидно-дисперсном состоянии в молоке находятся сывороточные белки, казеин, большая часть фосфатов кальция. Это самая чувствительная фаза.

Растворы белков относят к истинным растворам, их считают однофазными гомогенными системами. Однако, свертывание макромолекул глобулярных белков в водном растворе в компактные глобулы можно считать частным случаем перехода гомогенного истинного раствора в двухфазный коллоидный раствор. Поэтому частицы белков молока можно рассматривать как коллоидные частицы, а их устойчивые обратимые водные растворы -- как гидрофильные коллоидные растворы.

По свойствам и внутренней структуре коллоидные системы делят на необратимые (лиофобные) и обратимые (лиофильные).

Лиофобные (или гидрофобные, если дисперсионной средой является вода) коллоидные системы не обладают агрегативной и термодинамической устойчивостью, их частицы не связывают воду, стабилизируются за счет возникновения двойного электрического слоя на границе раздела фаз. Системы теряют свою устойчивость при добавлении малых количеств электролита.

Лиофильные (или гидрофильные) коллоидные системы обладают агрегативной и термодинамической активностью, их дисперсная фаза связывает значительные количества воды и образует вокруг частиц развитую сольватную (гидратную) оболочку, от нее и заряда на поверхности частиц зависит стабильность системы. Гидрофильные коллоидные системы коагулируют при добавлении большого количества электролита. Размеры коллоидных частиц молока составляют в(нм): -лактоглобулина 25-50; - лактоальбумина --15-20; мицелл казеина -- 40-300; фосфата кальция -- 10-20. Частицы сывороточных белков молока представлены отдельными макромолекулами, а также их димерами и полимерами.

Макромолекулы белков свернуты в компактные глобулы, имеющие отрицательный заряд и очень прочные гидратные оболочки. Они обладают большой устойчивостью в молоке, не коагулируют при достижении изоэлектрической точки, хотя при понижении РН образует ассоциаты из нескольких мономеров. Выделить белки можно путем уменьшения их растворимости -- введением в молочную сыворотку большего количества электролита, т. е. высаливанием. Высаливание сульфатом аммония и магния лежит в основе фракционирования сывороточных белков молока.

При нагревании молока до высоких температур сывороточные белки денатурируют, затем агрегируют и частично коагулируют.

Казеин в молоке содержится в виде мономеров (так называемый растворимый казеин) и в форме полимеров (субмицеллерный и мицеллерный казеин). Мицеллы казеина обладают свойствами гидрофильного золя, который при определенных условиях может перейти в гель. Только под действием сычужного фермента золь казеина переходит в гель необратимо, т. е. казеин проявляет свойства, присущие гидрофобным коллоидам.

Коллоидный фосфат кальция малорастворим в воде и в молоке образует типичную неустойчивую коллоидную систему с гидрофобной дисперсной фазой. Его растворимость повышается под влиянием казеина, вместе с которым он входит в состав мицелл. Таким образом, мицеллы казеина представляют собой коллоидную фазу смешанного состава, обладающую свойствами гидрофильного и гидрофобного золя. Нахождение казеина и фосфата кальция в молоке в виде сложных мицелл имеет большое значение для новорожденного. Так, под действием химозина в его желудке мицеллерный белок легко образует сгусток, который подвергается дальнейшему воздействию пепсина. Кроме того, в составе растворимых мицелл казеина транспортируются очень важные для молодого организма соли кальция.

Структура мицелл казеина. Известно несколько моделей структур казеина. Сейчас получила свое признание модель пористой структуры мицелл. Мицеллы казеина имеют почти сферическую форму, средний диаметр от 70 до 100 нм с колебаниями от 40 до 300 нм, молекулярная масса 6108 (с колебаниями от 26107 до 5109). Мицеллы казеина состоят из нескольких сотен субмицелл диаметром 10-15 нм и молекулярной массой 250.000-300.000. В состав субмицелл и мицелл не входит -казеин, он находится в свободном состоянии. Субмицеллы представляют собой агрегат из 10-12 субединиц -- основных фракций казеина ( ), соединенных между собой гидрофобными, электростатическими и водородными связями и кальциевыми мостиками. Соотношения между фракциями ( ) могут быть различными (3:2:1; 2:2:1), и т. д., но с уменьшением размера субмицелл и мицелл увеличивается относительное содержание в них казеина. Полипентидные цепи фракций казеина свертываются в субмицелле таким образом, что большинство гидрофобных групп составляют основное ядро, а гидрофильные располагаются на поверхности субмицелл. Гидрофильная часть (оболочка) содержит отрицательно заряженные кислотные группы глютаминовой, аспарагиновой и фосфорной кислот. Усиливают гидрофильные свойства субмицелл и мицелл, ориентированные наружу гликомакропептиды -казеина, которые располагаются на поверхности субмицелл. Известно, что пептитдная часть гликомакропептидов содержит большое количество оксиаминокислот (серина и треонина), глютаминовой и аспарагиновой кислот, а углеводная -- свободные карбоксильные группы сиаловой кислоты.

Соединения субмицелл в устойчивые мицеллы происходит с помощью коллоидного фосфата кальция, и возможно за счет цитрата кальция и гидрофобных взаимодействий. Схематично это представлено:

Точный состав коллоидного фосфата кальция и механизм его взаимодействия с казеином до конца не изучен, но выяснено, что удаление его из молока вызывает нарушение структуру мицеллы, что сопровождается увеличением в молоке свободных -- казеинов, которые чувствительны к ионам кальция.

Пористая структура мицелл позволяет проникать внутрь их Н2О, ферментам. Мицеллерный казеин, сильно гидратирован -- содержит 2-3,7 г и более воды на 1 г белка, и поэтому вода не только окружает мицеллу казеина в виде гидратной оболочки, но и заполняет большую часть ее объема, т. е. иммобилизуется мицеллой.

В свежем молоке мицеллы казеина устойчивы, не коагулируют при механической обработке (очистке, сепарировании, гомогенизации), и нагревании молока до высоких температур. Снижение их устойчивости и коагуляции наблюдается лишь при понижении РН молока, повышении концентрации ионов кальция, внесении сычужного фермента. А устойчивость и коагуляция коллоидных растворов зависит от соотношения молекулярных сил, притяжения и электростатических сил отталкивает между коллоидными частицами. В свежем молоке последние силы превалируют над силами молекул притяжения, и коллоидная система находится в устойчивом состоянии. И для того, чтобы вызвать соединение и коагуляцию мицелл казеина, необходимо снизить отрицательный заряд, т. е. перевести мицеллы в изоэлектрическое состояние, или близкое к нему, и разрушить гидратные оболочки.

В практике коагуляцию казеина осуществляют снижая РН молока и добавляя кислоты (кислотная коагуляция), внося хлорид кальция (термокальциевая коагуляция), сычужный фермент (сычужная коагуляция). Коагуляция -- это хлопьеобразование, оно происходит в результате дестабилизации коллоидных частиц в изоэлектрической точке, когда снижается количество поверхностных зарядов и снижается потенциал отталкивания, и гидратная оболочка ослабевает.

Кислотная коагуляция -- образуется при осаждении белков молока молочной кислотой или другими органическими и неорганическими кислотами. Кислота снижает отрицательный заряд казеиновых мицелл, т. к. Н-ионы подавляют диссоциацию карбоксильных групп казеина, и гидроксильных групп. Н3РО4 и при этом группы СОО -- переходят в СООН, а РО3-2 в РО3Н2, в результате достигается равенство положительных и отрицательных зарядов при РН 4.6-4.7. При кислотной коагуляции помимо снижения отрицательных зарядов казеина нарушает структуру ККФК, от него отщепляются фосфаты кальция и структурообразующий кальций, и их переход в раствор дополнительно стабилизирует казеиновые мицеллы.

ККФК + С3О6О3 казеино + Са3(РО4)2 + (С3Н5О3)2Са.

Структурообразующий кальций:

R - СН2 - О

казеин

Состав коллоидного фосфата кальция, присутствующий в частицах казеина и характер его связи до сих пор неизвестны. Это могут быть гидрофосфат или фосфат кальция, их смесь, а также кальций фосфатцитратный комплекс и др. Фосфор коллоидного фосфата кальция в отличие от фосфора органического, входящего в состав казеина, называют неорганическим. Фосфат кальция, по-видимому, может взаимодействовать с серинофосфатными группами казеина соединяя его молекулы между собой наподобие кальциевых мостиков:

Добавление кислоты снижает РН, тем самым разрушается коллоидная система -- такое явление может носить желательное, также нежелательное явление: при производстве кислотного творога и технического казеина, нежелательное явление -- самопроизвольное скисание сырого и питьевого молока.

Сычужная коагуляция -- носит необратимый характер и включает две стадии: ферментативную и коагуляционную. На первой стадии под действием основного компонента сычужного фермента -- химозина -- происходит разрыв пептидной связи фенилаланин (105) и метионин (106) в полипептидных цепях -казеина КФК. В результате протеолиза, молекулы -казеина распадаются на гидрофобный пара -казеин и гидрофильный гликомакропептид. Схематично это выглядит так:

Гликомакролептиды имеют высокий отрицательный заряд и обладают сильными гидрофильными свойствами. При их отщеплении частично разрушается гидратная оболочка, силы электростатического отталкивания между частицами уменьшаются и дисперсная система теряет устойчивость.

На второй стадии дестабилизированные мицеллы казеина (параказеина), собираются в агрегаты и образуется сгусток, т. е. происходит гелеобразование. Сычужная свертываемость -- желательное явление, свертывание молока протеидами микробного происхождения -- нежелательное явление.

Кальциевая коагуляция связана со снижением отрицательного заряда казеина под влиянием положительно заряженных ионов двухвалентного кальция (вводят СаСl2). Ее применяют в промышленности для осаждения молочных белков из обезжиренного молока. Коагуляцию хлоридом кальция обычно проводят при высокой температуре (до 85оС), поэтому она носит название термокальциевая коагуляция.

Повышенная температура вызывает денатурацию сывороточных белков, которые коагулируют вместе с казеином. Белковый продукт, полученный на основе комплексного осаждения казеина и сывороточных белков, называется молочным белком, или копреципитатом. Его используют для обогащения некоторых пищевых продуктов. Степень использования белков при кальциевой коагуляции при температуре 90-85оС -- 96-97%; при сычужной коагуляции -- 85,6% (не осаждается казеин и лишь небольшая часть денатурированных сывороточных белков).

5. Фаза эмульсии

Молоко представляет собой эмульсию жировых шариков в молочной плазме. Плазма -- молочная жидкость, свободная от жира, в ней присутствуют все остальные части молока в неизменном виде. Эмульсия представляет собой тонкодисперсную систему из двух нерастворяющихся одна в другой жидкостей, причем одна из жидкостей в тончайшем распределении, находится в другой. Свежевыдоеное молоко -- двухфазная эмульсия. При длительном охлаждении часть жира в жировых шариках выкристаллизовывается и образуется трех- и многофазная эмульсия.

Вследствие различной величины жировых шариков в молоке оно образует полидисперсную эмульсию. Средний диаметр жировых шариков равен 2 -- 2,5 мкм с колебаниями от 0,1 до 10 мкм и более. Размер их и количество в молоке непостоянны и зависят от всех зоотехнических факторов. Размеры жировых шариков имеют и практическое значение при переходе жира в продукт при производстве сливок, масла, сыра, творога.

Физическая стабильность шариков жира в молоке и молочных продуктах, зависит в основном от состава и свойств их оболочек. Оболочка жирового шарика состоит из двух слоев различного состава -- внутреннего тонкого, который плотно прилегает к кристаллическому слою высокоплавких триглицеридов жировой глобулы и внешнего рыхлого (диффузного), который легко десорбирует при технологической обработке молока. Схематично это можно представить так:

Основной компонент внутреннего слоя -- лецитин, в незначительном количестве содержатся кефалин, сфингомиелин. Фосфолипиды, вследствие полярного строения молекул является хорошими эмульгаторами. молекула которых состоит из двух частей -- липофильной -- она обладает химическим сродством с жиром и гидрофильной -- которая присоединяет гидратную воду.

Белковые компоненты оболочки по растворимости в воде (разбавленных солевых растворах) делятся на две фракции: одна плохо растворима в воде, содержит 14% азота, содержит меньше лезина, валина, лейцина, глютаминовой и аспарагиновой кислот, больше аргинина по сравнению с молоком. Она включает значительное количество гликопротеидов, содержащих гексозы, гексозамины и сиаловую кислоту. В другую водорастворимую белковую фракцию входят гликопротеид с высоким содержанием углеводов и разнообразные ферменты: ксантиноксидазу, фосфатазу, холинэстеразу, глюкоза-6 фосфотазу и др. Большая их часть идентична ферментам клеточных мембран. В оболочке шариков жира обнаружены, кроме белков и липидов, обнаружены минеральные вещества: Cu, Fe, Mo, n, Ca, Mg, Se, Na, K. С оболочкой связано от 5 до 25% нативной меди молока и 28-29% нативного Fe (содерание Cu в 1 г оболочки составляет 5-25 мкг, Fe -- 70-150 мкг.). Fe и Mo являются компонентами ксантиноксидазы, Cu входит в состав специфиического (богатого CU) белка оболочки, а остальные минеральные элементы в виде катионов плазмы молока связываются с отрицательно заряженными группами белков оболочек шариков жира.

Таким образом, внешний слой оболочки жирового шарика состоит из фосфолепидов, оболочечного белка и гидратной воды.

Состав и структура оболочек шариков жира после охлаждения, хранения и обработки молока отличаются от состава и структуры нативных оболочек. Так, в процессе охлаждения и хранения сырого молока на внутренней мембране адсорбируются иммуноглобулины, и липаза, которую называют мембранной, в отличие от плазменной); а при механической и тепловой обработке еще казеин и денатурированный -лактоглобулин. Коренным образом изменяется состав оболочки в процессе гомогенизации молока и сливок.

Факторы устойчивости жировой эмульсии молока -- она достаточно устойчива. Все выше перечисленные воздействия незначительно изменяют состав, физико-химические свойства оболочек жировых шариков, не нарушая при этом стабильности жировой эмульсии.

При технологической обработке молока в первую очередь изменяется внешний слой оболочки, имея неровную, шероховатую, рыхлую поверхность и довольно большую толщину после перемешивания, встряхивания и хранения. Оболочки шариков жира становятся более гладкими и тонкими. Это объясняется десорбцией липопротеидных мицелл из оболочек в плазму. Одновременно с десорбцией мицелл происходит сорбция белков и др. компонентов плазмы молока на поверхности мембраны шариков жира. Вот эти два явления десорбции -- сорбции вызывают изменение состава и поверхностных свойств оболочек, что приводит к снижению прочности и частичному разрыву.

В процессе тепловой обработки молока уже происходит частичная денатурация мембранных белков, что способствует дальнейшему снижению стабильности оболочек шариков жира. Они могут быть разрушены довольно быстро и в результате специального механического воздействия: например, при производстве масла, при действии концентрированных кислот и щелочей, амилового спирта.

Стабильность жировой эмульсии в первую очередь объясняется возникновением на поверхности капелек жира электрического заряда за счет содержания на поверхности оболочки жирового шарика полярных групп -- фосфолипидов, СООН, NH2, СООН -- группы маловой кислоты белковых и углеводных компонентов. Значит на поверхности создается суммарный отрицательный заряд (изоэлектрического тока -- рН 4,5). К отрицательно заряженным группам присоединяется катион кальция, магния и др. В результате образуется второй электрический слой, силы отталкивания которого превышают силы притяжения. И поэтому не происходит расслоения эмульсии, кроме того дополнительно стабилизирует жировую эмульсию гидратная оболочка, которая образуется вокруг полярных групп мембранных компонентов.

Вторым фактором устойчивости жировой эмульсии является создание на границе раздела фаз структурно-механического барьера за счет того, что оболочки жировых шариков обладают повышенной вязкостью, механической прочностью и упругостью, которые препятствуют слиянию шариков. Этот фактор наиболее сильный фактор стабилизации концентрированных эмульсий, например, высокожирные сливки. Следовательно, для обеспечения устойчивости жировой эмульсии молока и сливок в процессе выработки молочных продуктов необходимо стремиться сохранить неповрежденными оболочки шариков жира и не снижать степень их гидратации. Для этой цели надо сократить до минимума механические воздействия на дисперсную фазу молока при транспортивке, хранении и обработке, избегать его вспенивания, правильно проводить тепловую обработку, т. к. длительная выдержка при высоких температурах может вызвать значительную денатурацию структурных белков оболочки и нарушение ее целостности. А также для стабилизации жировой эмульсии необходимо широко применять дополнительное диспергирование жира путем гомогенизации.

При выработке одних молочных продуктов перед инженером-технологом стоит задача предотвратить агрегирование и коалесценцию шариков жира, то при получении масла наоборот стоит задача разрушить (деэмульгировать) стабильную жировую эмульсию и выделить из нее дисперсную фазу.

Коалесценция -- это когда слои дисперсионной среды или адсорбционные слои и частицы сливаются в новые более крупные образования, причем это приводит к заметному разделению фаз.

Агрегация диспергированных частиц с образованием более крупных частиц, которые под действием силы тяжести выпадают в осадок, приводит к флокуляции или коагуляции.

Схема строения двойного электрического слоя вокруг коллоидной частицы

1 -- коллоидная частица.

2 -- двойной электрический слой.

3 -- его адсорбционная часть.

4 -- диффузная часть.

6. Меры предупреждения жиров от порчи

Характеристика природных и синтетических антиокислителей. Механизм их воздействия

Предохранение жиров от порчи имеет важное биологическое и экономическое значение. В первую очередь необходимо по возможности исключить соприкосновение жира с О2 воздухе, светом, теплом. Сохранение жиров в герметической таре значительно удлиняет индукционный период. например, рекомендуется пищевые жиры сохранять в вакууме, в атмосфере инертного газа при минусовой температуре. В жирах не должно быть примесей, катализирующих металлов и бактерий. Для предупреждения окислительного разрушения жиров к ним добавляют антиокислители. Этот процесс называется стабилизацией жиров. Сущность действия окислителей заключается в том, что они более активно вступают в реакцию со свободными радикалами и тем самым обрывают цепную реакцию, приводящую к порче жиров. По характеру участия в ингибировании цепной реакции различают два типа антиокислителей: одни препятствуют образованию свободных радикалов, другие способствуют разрушению уже образовавшихся гидроперекисей. Существует также группа веществ, которые не обладая прямым антиокислительным действием, усиливают действия антиокислителей, т. е. являются их синергистами.

К антиокислителям и их синергистам предъявляют следующие требования:

1) не должны обладать вредными для организма человека свойствами;

2) не должны изменять органолептических качеств жира;

3) должны предохранять жир от окисления в течение длительного времени.

Следует иметь в виду, что простое добавление антиоксидантов в жиры не всегда предупреждает их от окисления. Антиоксиданты эффективны только тогда, когда их применяют с соблюдением следующих требований:

1) жиры, подвергаемые стабилизации, должны быть свежими, без признаков прогоркания;

2) не следует смешивать жиры, имеющих признаки прогоркания, со свежими жирами, в состав которых они входят, поскольку это приводит к ускорению окисления.

Повышенное содержание воды, температуры, свободный доступ кислорода, света снижают эффективность антиоксидантов.

Природные антиокислители -- фосфолипиды, топоферолы, каратиноиды.

Синтетические -- бутилокситолуол -- белый или бледно желтый кристаллический порошок без запаха, не растворим в воде, но хорошо растворяется в жирах и растворителях жиров.

Бутилоксианизол -- воскообразные кристаллы кремневого или розового цвета с феноловым запахом. Растворим в жирах, этаноле, эфире, бензоле. Устойчив к действию температур, поэтому его можно вносить в продукты, подвергающиеся тепловой обработке. Эти два антиокислителя по составу и свойствам близки между собой, и поэтому совместное их применение усиливает стабилизирующее действие. Стабилизаторы -- лейцин, аргинин, цистеин увеличивают сохраняемость молочного жира. В литературе имеются сообщения об антиокислительном эффекте элеутерокка кислого. К синергистам относятся: фосфорная, фосфолипиды аминокислоты, аскорбиновая, лимонная кислоты.

Работы, связанные с изучением, применением и разработкой антиоксидантов, носят огромное народно-хозяйственное значение, т. к. это удлиняет сроки хранения, сохраняет качество жиров.

7. Химические свойства молока

Свойства молока. Свежее натуральное молоко, полученное от здоровых животных, характеризуется определенный физико-химическими и органолептическими свойствами, которые могут резко различаться в начале и конце лактационного периода, под влиянием болезней животных, некоторых видов кормов, при хранении молока в неохлажденном виде и при его фальсификации. Поэтому по физико-химическим и органолептическим свойствам молока можно оценить натуральность и качество заготовляемого сырья, т. е. его пригодность к промышленной переработке.

Все компоненты молока по разному влияют на физико-химические свойства его. Например, от массовой доли белка, дисперсности и гидратационных свойств белков в большей степени зависит вязкость и поверхностное натяжение молока, но почти не зависят величины электропроводности и осмотического давления. Почти все компоненты молока влияют на его плотность и кислотность, минеральные вещества молока значительно влияют на его кислотность, электропроводность, осмотическое давление и температуру замерзания, но не влияют на вязкость и т. д.

Кислотность -- титруемая (общая) и активная.

Общая (титруемая) кислотность -- выражается в градусах Тернера и определяется титрованием 0,1 н раствором щелочи 100 мл молока в присутствии индикатора фенолфталеина до нейтральной реакции. Кислотность является критерием оценки качества заготовляемого молока по ГОСТ 13264-88 «Молоко коровье» требования при закупках.

Кислотность свежевыдоенного молока составляет 16-18оТ. Она обусловливается кислыми солями -- дегидрофасфатами и дегидроцитратами (около 9-13оТ), белками -- казеином и сывороточными белками (4-6оТ), углекислотой, кислотами (молочной, лимонной, аскорбиновой, свободными жирными и др. компонентами молока (1-3оТ).

При хранении сырого молока титруемая кислотность повышается по мере развития в нем микроорганизмов, которые сбраживают молочный сахар с образованием молочной кислоты. Повышение кислотности вызывает нежелательные изменения свойств молока, например, снижение устойчивости белков к нагреванию. Поэтому молоко с кислотностью 21оТ принимают как несортовое, а молоко с кислотностью выше 22оТ не подлежит сдаче на молочные заводы.

Кислотность молока зависит от породы животных, от кормовых рационов, возраста, физиологического состояния и т. д. Особенно сильно изменяется кислотность в течение лактационного периода и при заболеваниях животных.

В первые дни после отела кислотность повышена за счет большого содержания белков, солей, через 40-60 дней она достигает физиологической нормы. И перед концом лактации коров имеет пониженную кислотность.

Отклонение естественной кислотности молока от физиологической нормы оказывает влияние на технологические свойства молока. Так, молоко с пониженной кислотностью нецелесообразно перерабатывать в сыры, т. к. оно медленно свертывается сычужным ферментом, а образующийся сгусток плохо обрабатывается.

рН (активная кислотность) -- это концентрация водородных ионов. Она выражается отрицательными логарифмом концентрации ионов водорода, обозначается рН. Чем выше концентрация ионов Н2, тем ниже значение рН. Для нормального свежего молока рН составляет 6,47--6,67. Такая кислотность благоприятна для устойчивости коллоидной системы молока и развития бактерий. При повышенной активности кислотности развитие микроорганизма замедляется, а при значительность снижении рН прекращается.

Активная кислотность изменяется медленно, чем титруемая, что объясняется буферными свойствами молока. Молоко содержит несколько буферов (белковый, фосфатный, цитратный). Они обеспечивают постоянство рН. Белковый буфер состоит из белков молока (казеина) и натриевой или калиевых солей, которые могут вступать в реакции как с кислотами, так и со щелочами, таким образом нейтрализуя их. В случае добавления или накопления в молоке кислоты ионы Н2 кислоты связываются солью казеина.

При этом образуется свободный белок, обладающий свойствами слабой кислоты.

Диссоциация СООН -- слабая, РН молока изменяется незначительно, а титруемая кислотность повышается. Также ведет себя фосфатный буфер

Na2HPO4+HCl=NaH2PO4+NaCl

Если бы в молоке не было буферных систем, вряд ли мы смогли бы вырабатывать кисломолочные продукты и сыры. Дело в том, что молочнокислые закваски могут лишь развиваться при определенном рН. Низкие величины рН действуют на них губительно. Следовательно молочная кислота, образующаяся при сбраживании молочного сахара должна каким-то образом нейтрализоваться. И здесь на помощь приходят буферные системы. Но они действуют до тех пор, пока не утратят буферных свойств своих. Изменение рН молока при добавлении к нему кислоты или щелочи произойдет в том случае, если будет превышена буферная емкость систем молока. Под буферной емкостью молока понимают количество кислоты или щелочи, которое необходимо добавить к 100 мм молока, чтобы изменить величину рН на единицу.

Вследствие буферных свойств молока рН кефира, выработанного термостатным способом в конце сквашивания при титруемой кислотности 75-80о составляет лишь 4,85-4,75, а рН сгустка в процессе производства творога жирного при кислотности 58-60оТ -- %.15-5,05. При таком рН возможны развитие молочнокислых стрептококков и накопление ароматических веществ. Аналогично при выработке твердых сыров рН сырной массы после прессования при высокой титруемой кислотности. Имеем величину, равную 5,2-5,6, что объясняется большим содержанием в ней белков, буферная способность которых при протеолизе увеличивается.

Окислительно-восстановительный потенциал

Е является количественной мерой окисляющей или восстанавливающей способности молока. Е. нормального свежего молока равен 0,25--0,3 В (250--350 мВ). Молоко содержит ряд химических соединений, способных отдавать или присоединять электроны (атомы Н2): аскорбиновую кислоту (токоферолы), цистеин, рибофлавин, молочную кислоту, коферменты окислительно-восстановительных ферментов (дегидрогиназ, оксидаз) О2, металлы и пр. окислительно-восстановительные условия в молоке зависят от концентрации ионов Н2 и поэтому их выражают условным показателем. rH2, который вычисляют по уравнению

rH2 = Е/0,03 + 2 pH (при 20оС). Если в свежем молоке Е=0,3 В, а рН=6,6, то rH2=23,2. Значит свежее молоко -- это среда со слабыми восстановительными свойствами. В нейтральной среде rH2=28. Если rH228, то среда обладает окислительной способностью, ниже 28 -- восстановительной способностью.

Усиление восстановительных свойств молока, т. е. падение окислительно-восстановительного потенциала и rH2 вызывают тепловая обработка, развитие микроорганизмов и т. д. Так, молочнокислые бактерии при развитии в молоке понижают величину Е до -60 120 мВ, а в твердых сырах до -150 170 мВ и ниже. Развитие в сыром молоке многочисленных микроорганизмов вызывает резкое снижение окислительно-восстановительный потенциал на изменение величины которого основана редуктазная проба. При определенном значении Е индикаторы (мителеновый голубой или резазурин), внесенные в молоко, восстанавливаются, обесцвечиваясь или изменяя окраску. Чем больше бактерий содержится в сыром молоке, тем быстрее падает окислительно-восстановительный потенциал и восстанавливаются добавленные реактивы.

Повышению окислительно-восстановительного потенциала, т. е. усилению окислительных свойств молока, способствуют металлы (Сu, Fe) и аэрация (перемешивание). От величины окислительно-восстановительного потенциала зависят интенсивность протекания в молочных продуктах (сыры, кисломолочные продукты) биохимических процессов, (протеолиз, распад АК, лактозы, липидов) и накопление ароматических веществ (диацетила).

Возникновение пороков в молоке и молочных продуктах таких пороков вкуса, как окисленный, металлический и салистый привкусы, обусловлены повышением окислительно-восстановительного потенциала среды.

Значение рН в молочной промышленности

От величины рН зависят многие производственные показатели:

-- коллоидное состояние белков молока и сл-но стабильность полидисперсной системы молока;


Подобные документы

  • Значение молока как продукта питания. Химический состав и свойства молока. Теплофизические и оптические свойства, химический состав и пищевая ценность кисломолочных продуктов. Сливочное масло как продукт питания. Влияние молока на здоровье человека.

    реферат [319,6 K], добавлен 07.02.2013

  • Молоко как полноценный продукт питания. Пищевая ценность молока и его химический состав. Биохимические процессы, протекающие в молоке при производстве молочных продуктов. Факторы качества и обработка молока, которую проводят сразу после выдаивания.

    презентация [2,8 M], добавлен 14.06.2019

  • Биохимические изменения составных частей молока при тепловой обработке. Продукты молочнокислого и спиртового брожения. Физико-химические процессы, протекающие при выработке сгущенного стерилизованного молока. Определение жира в сыре. Хрящевая ткань.

    контрольная работа [181,0 K], добавлен 04.06.2014

  • Пищевая ценность и роль молока в питании человека. Химический состав данного продукта, способы обработки и оценка их влияния на состав. Органолептические, химические, бактерицидные свойства молока. Критерии определения качественных характеристик.

    курсовая работа [43,4 K], добавлен 11.03.2014

  • Химический состав молока и технологическая схема его производства. Требования стандартов, предъявляемых к показателям качества и безопасности продукта. Условия и сроки хранения молока. Ветеринарно-эпизоотическое состояние хозяйства СПК "Подовинное".

    курсовая работа [100,7 K], добавлен 14.06.2015

  • Ассортимент питьевого молока, реализуемого в Махачкале. Химический состав и микробиологическая характеристика пастеризованного молока. Сравнительный анализ молока, выпускаемого республиканскими предприятиями и реализуемого частными предпринимателями.

    дипломная работа [113,7 K], добавлен 23.01.2012

  • Технология производства и товароведная характеристика молока: классификация, химический состав и пищевая ценность, условия хранения и транспортирования. Экспертиза молока и молочных товаров: нормативные документы, методы определения показателей качества.

    курсовая работа [216,2 K], добавлен 13.01.2014

  • Биохимические процессы, происходящие при обработке молока. Пастеризация сливок, посолка сыра. Физико-химические и биохимические показатели масла при его выработке и хранении. Концентраты сывороточных белков. Техника определения влаги в сухом молоке.

    контрольная работа [658,2 K], добавлен 04.06.2014

  • Составные части сухого остатка в молоке. Влияние бактериальных заквасок, технологического режима на процессы брожения лактозы и коагуляции казеина. Структурно механические свойства масла. Молочно-белковые концентраты. Определение кислотности молока.

    контрольная работа [90,6 K], добавлен 04.06.2014

  • Основные биохимические процессы, протекающие при выработке кисломолочных продуктов. Характеристика процессов молочнокислого и спиртового брожения молочного сахара, протеолиза, коагуляции казеина и гелеобразования. Биотехнология в переработке молока.

    реферат [28,1 K], добавлен 10.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.