Биологическая безопасность продуктов питания

Безопасность пищевых продуктов. Ветеринарно-санитарный мониторинг получения экологически чистой продукции. Меры токсичности веществ. Трансгенные продукты. Загрязнение продовольственного сырья ксенобиотиками биологического и химического происхождения.

Рубрика Кулинария и продукты питания
Вид учебное пособие
Язык русский
Дата добавления 27.01.2011
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В США, Канаде, Австралии и Новой Зеландии маркировка данной продукции не носит обязательный характер. Во всех странах ЕС принято жесткое требование маркировать генетически модифицированные продукты.

Директивой Европейского парламента и Совета № 1829/2003 с апреля 2004 г. вводится 0,9 % пороговый уровень для маркировки таких пищевых продуктов. Поэтому, учитывая социальную значимость маркировки пищевых продуктов, полученных из ГМИ, как право потребителя на полную информацию о технологии получения пищевых продуктов, а также с целью гармонизации требований по маркировке таких продуктов, в России с 1 июня 2004 г. введены в действие дополнения и изменения в СанПиН 2.3.2.1078-01, которые устанавливают также 0,9 % пороговый уровень для маркировки пищевых продуктов, полученных их ГМИ, и включают в перечень продуктов, подлежащих этикетированию, продукцию, полученную с использованием генетически модифицированных микроорганизмов, а также не содержащую ДНК и белок.

При этом пищевые продукты, полученные из ГМИ и не содержащие дезоксирибонуклииновую кислоту (ДНК) и белок, в дополнительном этикетировании не нуждаются в случае полной эквивалентности пищевой ценности продукта традиционному аналогу.

Юридическим и физическим лицам, осуществляющим закупку, поставку, производство и реализацию пищевых продуктов, полученных из генетически модифицированных источников, рекомендовано наносить на потребительскую упаковку пищевых продуктов соответствующую информацию. Ответственность за маркировку «генной пищи» несет, в первую очередь, сам производитель, а также оптовые компании, занимающиеся крупными поставками, в том числе продуктового импорта.

Однако до сих пор, по данным Госсанэпиднадзора, немаркированными остаются 38 % всех продуктов, содержащих ГМ-составляющую. Та же маркировка, которая применяется на сегодня (информация закодирована в трудночитаемых буквосочетаниях, как, например, «АКВЕХ Р», написанных мелким шрифтом в общем перечне компонентов) не отвечает потребностям покупателей.

Следует отметить, что маркировка пищевых продуктов, полученных из ГМИ, преследует цели информирования населения об использовании технологии получения пищевых продуктов. Население имеет право знать, какие продукты оно употребляет. В противном случае замалчивание объективной информации порождает совершенно неожиданную проблему. На Западе появилась новая болезнь - трансгенофобия, когда люди, не зная, что им предлагают в пищу, начинают подозревать наличие «чужих» фрагментов ДНК в любой еде, испытывая по этому поводу панический страх.

В связи с этим ЦГСЭН должны контролировать наличие специальной маркировки на пищевой продукции, если она получена с использованием ГМИ и, в случае ее отсутствия, принимать меры административного наказания к владельцам таких продуктов (предупреждение, административный штраф). Однако производство и оборот продуктов, полученных из ГМИ, на которые в установленном порядке оформлены санитарно-эпидемиологические заключения, не должны запрещаться.

При осуществлении Госсанэпиднадзора необходимо также проводить экспертизу технической документации, рецептур пищевых продуктов и исследование на количественное содержание в них ГМИ, которое выполняется лабораторным методом.

3. ЗАГРЯЗНЕНИЕ ПРОДОВОЛЬСТВЕННОГО СЫРЬЯ И ПРОДУКТОВ ПИТАНИЯ КСЕНОБИОТИКАМИ БИОЛОГИЧЕСКОГО И ХИМИЧЕСКОГО ПРОИСХОЖДЕНИЯ

3.1 Загрязнение сырья и продуктов питания из окружающей среды

Загрязнение продовольственного сырья и пищевых продуктов чужеродными веществами, или ксенобиотиками, напрямую зависит от степени загрязнения окружающей среды.

Химические ксенобиотики поступают из окружающей среды, в которую они попадают в основном от промышленных предприятий, автотранспорта, при использовании пестицидов и химикатов в сельскохозяйственном производстве, при применении полимерных и иных материалов, из которых изготавливается посуда, упаковочные и другие изделия, контактирующие с пищевыми продуктами. За последние 100 лет в биосферу было внесено огромное число химических веществ, большинство из которых не встречались в экосистемах. И в силу этого либо крайне медленно окисляются и метаболизируются, либо недоступны деятельности редуцентов. Около 4 млн химических веществ признаны потенциально опасными для окружающей среды особенно вследствие их длительного потенцирования свыше 180 000 - обладают выраженным токсическим и мутагенным эффектами. В настоящее время в мире производится и используется не менее 40 тыс. особо опасных для человека химических веществ. При этом следует отметить, что с начала 90-х годов, несмотря на заметное снижение объемов производства в России, экологическая ситуация в стране ухудшилась. Около 300 ареалов территории страны характеризуются сложной экологической обстановкой и почти в 200 городах, где проживает 64,5 млн человек, средняя концентрация загрязняющих веществ в атмосферном воздухе по-прежнему превышает ПДК вредных химических веществ и пыли. В среднем по России валовые выбросы наиболее вредных для здоровья веществ составляют около 1 кг/сутки на человека. При этом в стране насчитывается около 100 тысяч производств, выделяющих вредные вещества в окружающую среду. Все это не может не сказаться на уровне загрязнения пищевых продуктов различными ксенобиотиками.

Ксенобиотики, попадая в окружающую среду в результате антропогенной деятельности человека, способны накапливаться в почвах, водоемах, с атмосферными и водными потоками распространяться на тысячи километров. Передвигаясь по пищевым цепям, ксенобиотики попадают в организм человека и вызывают серьезные нарушения здоровья - от острых отравлений с летальным исходом до заболеваний, проявляющихся порой только через годы (рис. 3.1).

ОКРУЖАЮЩАЯ СРЕДА

Воздух

Почва

Вода

г W

Щ у

/

Животные

Растения

Водные организмы

щ

W

ЧЕЛОВЕК

Рис. 3.1. Схема поступления ксенобиотиков из окружающей среды в организм человека по пищевым цепям

3.2 Биологические ксенобиотики

3.2.1 Микробиологические показатели безопасности пищевой продукции

Эпидемиологическая безопасность пищевых продуктов как животного, так и растительного происхождения определяется, прежде всего, по микробиологическим показателям.

Загрязнение продуктов питания микроорганизмами происходит в процессе их переработки и транспортировки. Источниками микроорганизмов могут быть оборудование, обслуживающий персонал, воздух, вода и вспомогательные материалы. Некоторые виды микроорганизмов вызывают ухудшение качества и снижают стойкость продуктов при хранении. Однако наиболее существенна другая опасность - нанесение ущерба здоровью человека.

Всемирная организация здравоохранения (ВОЗ) разработала следующий перечень пищевых продуктов по степени загрязнения микроорганизмами и частоте случаев пищевых отравлений.

Категория 1 - пищевые продукты или их компоненты, которые наиболее часто служат прямым источником пищевых отравлений.

Категория 2 - пищевые продукты или их компоненты, являющиеся источником пищевых отравлений человека при нарушении технологии производства, хранения и транспортировки.

Категория 3 - пищевые продукты или их компоненты, которые могут быть причиной пищевых отравлений при несоблюдении санитарных требований при переработке.

Категория 4 - пищевые продукты или их компоненты, в редких случаях являющиеся причиной пищевых отравлений.

Категория 5 - пищевые продукты или их компоненты, подвергающиеся термической обработке, обеспечивающей их безопасность.

Категория 6 - пищевые добавки, загрязняющие основной продукт.

С учетом приведенной классификации обязателен микробиологический контроль продовольственного сырья и пищевых продуктов.

Содержание в пищевых продуктах белков, углеводов, витаминов и других питательных веществ благоприятствует размножению различных микроорганизмов. В молочно-кислых и полученных путем брожения пищевых продуктах находятся в большом количестве микробы, которые придают им вкусовые качества и определенную консистенцию (специфическая микрофлора). Кроме того, в продуктах могут содержаться микроорганизмы или их споры, попавшие из внешней среды (неспецифическая микрофлора).

Размножение некоторых микроорганизмов приводит к непригодности пищевых продуктов к употреблению; 25 % производимых в мире продуктов не доходит до потребителя в связи с порчей их в большинстве случаев микробами. В отдельных случаях пищевые продукты могут быть обсеменены сальмонеллами, шигеллами, стафилококками, клостридиями ботулизма, E.coli, B.cereus, Cl.perfringens и другими бактериями, приводящими к возникновению у людей различных заболеваний.

Наличие в пищевых продуктах некоторых микроорганизмов или их метаболитов может вызвать заболевания человека, которые подразделяются на две общие формы: пищевые отравления и пищевые инфекции. Пищевые отравления и пищевые инфекции являются наиболее серьезными и часто встречаемыми опасностями, связанными с питанием.

К пищевым инфекциям относятся заболевания, при которых пищевой продукт является лишь передатчиком патогенных микроорганизмов; в продукте они обычно не размножаются, но могут долго сохраняться. Пищевые инфекции вызывают вирусы, энтеропатогенные кишечные палочки, энтерококки, патогенные галофилы и т.д. К пищевым инфекциям относятся: дизентерия, вызываемая бактериями рода шигелла (Shigella); брюшной тиф и паратиф, вызываемые бактериями рода сальмонелла (Salmonella typhi и Salmonella paratyphi A,B,C); бруцеллез, возбудитель - бактерии рода бруцелла (Brucella). На территории России циркулируют туберкулез, возбудитель - микобактерии туберкулеза (Mycobacterium tuberculosis) и сибирская язва, возбудитель - бактерии семейства бацилл (Bacillaceae anthracis). Возбудители данных заболеваний являются патогенными микроорганизмами.

Дизентерия, брюшной тиф и паратиф относятся к кишечным инфекциям, возбудители которых входят в состав семейства Enterobacteria ceae, которое также включает условно-патогенные бактерии рода Escherichia (основной представитель - кишечная палочка E.coli). Общие свойства представителей данного семейства: локализация бактерий в кишечнике человека и животных, выделение во внешнюю среду с фекалиями. Морфологические свойства: палочки длинной 0,5...2 мкм, грамотрицательные, некоторые виды имеют капсулы, не образуют спор, подвижны. Все бактерии этого семейства - факультативные анаэробы. Биохимические свойства различны. Наибольшей биохимической активностью обладают наименее патогенные виды семейства, т. е. кишечные палочки. Все представители семейства отличаются сахаролитиче-скими свойствами. Возбудители кишечных инфекций содержат в основном эндотоксины, которые по своей химической природе и структуре отличаются строгой специфичностью, но по физиологическому действию эндотоксины одинаковы: вызывают повышение температуры, изменение сахара в крови (гипергликемию), оказывают энтеротропное и нейротропное действие. Во время течения инфекции наблюдается поражение тонкого или толстого кишечника, сопровождающееся лихорадкой, общей слабостью, бредовым состоянием, повышенной температурой. Многие после выздоровления продолжают выделять возбудителей в окружающую среду. Однако бактерии во внешней среде длительно не сохраняются. Они довольно чувствительны к препаратам хлора, который используется как дезинфицирующее средство. Общим для всех кишечных инфекций является отсутствие эффективных средств специфической профилактики, сложность организации необходимого комплекса противоэпидемических мероприятий.

Пищевые отравления (пищевые интоксикации) - это заболевания различной природы, возникающие при употреблении пищи, содержащей болезнетворные микроорганизмы, развивающиеся в продуктах. Пищевые интоксикации (токсикозы) могут возникать и при отсутствии в пище клеток микробов, но при наличии микробных токсинов. Токсикозы по своей природе бывают бактериальные и грибные. Примерами пищевой интоксикации являются стафилококковое отравление, ботулизм и септическая ангина.

В отличие от кишечных инфекций, пищевые отравления не передаются от больного человека к здоровому. Эти заболевания могут возникать в виде массовых вспышек, охватывая значительное число людей, а также групповых и отдельных случаев. Для пищевых отравлений характерны внезапное начало, короткое течение. Возникновение отравлений нередко связано с потреблением какого-то одного пищевого продукта, содержащего вредное начало. Клинические проявления отравлений чаще носят характер расстройств желудочно-кишечного тракта. Однако в ряде случаев эти симптомы отсутствуют (при ботулизме и др.). Наиболее чувствительны к пищевым отравлениям дети, лица пожилого возраста и больные желудочно-кишечными заболеваниями. У них отравление нередко протекает в более тяжелой форме.

Пищевые отравления вызывают бактерии рода сальмонелла, некоторые условно-патогенные бактерии (E.coli, Proteus), Cl.perfringens, B.cereus, кокковые микроорганизмы (стафилококки, стрептококки), анаэробные микроорганизмы (Cl. botulinum), а также токсигенные грибы. Пищевые токсикозы грибной природы (микотоксикозы), как правило, возникают от употребления в пищу зараженных грибами продуктов растительного происхождения. Однако литературные данные последних лет указывают на возможность пищевых микотоксикозов при употреблении мясных продуктов.

Заражение пищевых продуктов микроорганизмами и их токсинами происходит различными путями. Так, продукты могут заражаться вследствие санитарных и технологических нарушений производства, транспортировки, хранения и реализации продуктов. Продукты животного происхождения (мясо, яйца, рыба) могут быть поражены еще при жизни животного (в случаях инфекционных заболеваний или бактерионосительства у животных). Однако при употреблении зараженных микробами пищевых продуктов не всегда возникают пищевые отравления. Продукт становится причиной заболевания только при массовом размножении в нем микроорганизмов или значительном накоплении токсинов. Этим объясняется наибольшее количество пищевых отравлений в теплый период года, когда создаются оптимальные условия для развития микроорганизмов.

Способность микроорганизмов (вирусов, хламидий, микоплазм, риккетсий, грибков) вызывать заболевания людей, животных, растений обусловлена их патогенностью. Патогенность - потенциальная способность микроорганизмов при соответствующих условиях оказывать болезнетворное воздействие на макроорганизмы, вызывая патологические изменения в органах и тканях с нарушением их физиологических функций.

По степени патогенности микроорганизмы подразделяют на 3 группы: сапрофиты, условно-патогенные и патогенные. Однако подобное разделение относительно, т. к. не учитывает особенностей макроорганизма и условий окружающей среды. Так, например, некоторые сапрофиты - легионеллы, сарцины, лактобактерии при определенных условиях (иммунодефицит, нарушение барьерных защитных механизмов) могут вызывать инфекцию. С другой стороны, даже высокопатогенные микроорганизмы (возбудитель чумы, брюшного тифа и др.), попадая в иммунный организм, не вызывают инфекций. Большая группа микроорганизмов относится к условно-патогенным. Как правило, это микроорганизмы, обитающие на наружных покровах (коже, слизистых оболочках) и способные вызывать инфекции лишь при снижении резистентности макроорганизма (в результате переутомления организма, его перегревания, охлаждения, интоксикации). К патогенным относятся микроорганизмы, которые, как правило, вызывают инфекционный процесс. Есть микроорганизмы, патогенные только для человека (менингококк), для человека и животных (сальмонеллы, иерсинии, хламидии и др.) или только для животных.

Патогенные свойства микроорганизмов в значительной степени обусловлены различными токсическими субстанциями, образуемыми микроорганизмами, прежде всего экзо- и эндотоксинами.

Экзотоксины легко переходят из микробной клетки в окружающую среду. Они поражают определенные органы и ткани, с характерными внешними признаками, то есть обладают специфичностью действия.

Экзотоксины, образующиеся и выделяющиеся микробами в процессе жизнедеятельности, обычно имеют белковую природу и обладают специфичностью действия, в значительной степени определяющей физиологию и морфологию инфекционного процесса, а при развитии инфекционной болезни -ее клиническую картину. Они очень ядовиты. Например, 0,005 мл жидкого столбнячного токсина или 0,0000001 мл ботулинического токсина убивает морскую свинку. От момента введения экзотоксина в организм животного до начала заболевания проходит период, который колеблется от нескольких часов до нескольких суток. Экзотоксины малоустойчивы к действию света, кислорода и температуры (разрушаются при 60...80 °С в течение 10...60 мин). Под действием некоторых химических веществ они теряют свою токсичность. Способностью к образованию экзотоксинов обладают возбудители ботулизма, столбняка, дифтерии, холерный вибрион, некоторые шигеллы и др. В настоящее время известно более 50 видов экзотоксинов.

Эндотоксины не выделяются из микробной клетки во время ее жизнедеятельности; они высвобождаются только после ее гибели. Эндотоксины не обладают строгой специфичностью действия и в организме вызывают общие признаки отравления.

Выделение эндотоксинов, которые представляют собой липополисаха-риды клеточной мембраны, свойственно грамотрицательным микроорганизмам (сальмонеллы, шигеллы, менингококк, возбудители брюшного тифа, па-ратифов и др.). Они освобождаются при разрушении микробной клетки, проявляют свое токсическое действие, взаимодействуя со специфическими рецепторами клеточной мембраны клеток макроорганизма, и оказывают разностороннее и малоспецифическое воздействие на макроорганизм. Эндотоксины менее токсичны, поражают организм в больших дозах; скрытый период у них обычно исчисляется часами. Они термоустойчивы: некоторые эндотоксины выдерживают кипячение при 120 °С в течение 30 мин, под влиянием формалина и температуры частично обезвреживаются.

Гигиенические нормативы включают контроль за 4 группами микроорганизмов.

1. Санитарно-показательные:

количество мезофильных аэробных и факультативно анаэробных микроорганизмов, МАФАМ (в колониеобразующих единицах - КОЕ/г);

бактерии группы кишечных палочек, БГКП (коли-формы);

бактерии семейства Еnterobacteriaceae;

энтерококки.

Условно-патогенные микроорганизмы: Е.соН, S. aureus, бактерии рода Рк^ш, В. сегеш, сульфитредуцирующие клостридии, парагемолитический вибрион (Vibrio parahaemolyticus).

Патогенные микроорганизмы, в т. ч. сальмонеллы, листерии (Listeria monocytogenes), бактерии рода иерсений (Yersinia).

4. Микроорганизмы порчи - в основном это дрожжи и плесневые грибы, мо-лочно-кислые микроорганизмы.

Для большинства групп микроорганизмов нормируется масса продукта, в которой не допускаются группы кишечных палочек, большинство условно-патогенных микроорганизмов, а также патогенные микроорганизмы, в т.ч. сальмонеллы. В других случаях норматив отражает количество колониеобра-зующих единиц в 1 г (мл) продукта (КОЕ/г, мл).

В продуктах массового потребления, для которых отсутствуют микробиологические нормативы, патогенные микроорганизмы, в т. ч. сальмонеллы и Listeria monocytogenes, не допускаются в 25 г продукта. Во всех видах доброкачественной рыбной продукции не должно быть более 10 КОЕ/г параге-молитического вибриона. Контроль содержания этого микроорганизма проводится при эпидемиологическом неблагополучии в регионе. При эпидемиологическом неблагополучии проводится и контроль содержания в готовых продуктах (салаты и смеси из сырых овощей) бактерий рода Yersinia (не допускаются в 25 г продукта).

При получении неудовлетворительных результатов анализа, хотя бы по одному из микробиологических показателей, проводят повторный анализ удвоенного объема выборки, взятого из той же партии. Результаты повторного анализа распространяются на всю партию.

В продовольственном сырье и пищевых продуктах не допускается наличие возбудителей паразитарных заболеваний (гельминты, их яйца и личиночные формы). В мясе и мясных продуктах не допускается наличие возбудителей: финны (цистицеркоиды), личинки трихинелл и эхинококков, цисты сар-коцист и токсоплазм. В рыбе, ракообразных, моллюсках, земноводных, пресмыкающихся и продуктах их переработки не допускается наличие живых личинок паразитов, опасных для здоровья человека.

Санитарно-гигиеническая оценка пищевых продуктов и продовольственного сырья животного происхождения проводится после ветеринарно-санитарной экспертизы (при обязательном наличии документов, выданных органами Госветслужбы), которая проводится государственной ветеринарной службой в соответствии с действующими «Правилами ветеринарного осмотра убойных животных и ветеринарно-санитарной экспертизы мяса и мясных продуктов», утвержденных 27.12.83 г. с дополнениями от 17.06.88 г.

продукт безопасность трансгенный ксенобиотик токсичность

3.2.2 Санитарно-показательные микроорганизмы

Прямое и быстрое определение патогенных микроорганизмов в объектах внешней среды осуществлять трудно. Поэтому вместо прямого определения применяют косвенную санитарную оценку объектов внешней среды при помощи качественного и количественного определений санитарно-показательных микроорганизмов.

Санитарно-показательные микроорганизмы - это такие микроорганизмы, которые постоянно находятся в естественных полостях человеческого или животного организма и не обитают во внешней среде.

Присутствие санитарно-показательных микроорганизмов в различных объектах внешней среды свидетельствует о загрязнении их выделениями человека или животных. Чем больше санитарно-показательных организмов во внешней среде, тем более вероятно присутствие также и специфических возбудителей инфекционных заболеваний.

Мезофильные аэробные и факультативно анаэробные микроорганизмы (МАФАМ) - это микроорганизмы, оптимальная температура роста которых 25...40 °С в условиях доступа кислорода или в его отсутствии. Показателем санитарно-гигиенического состояния продукта является общая обсеменен-ность МАФАМ, то есть общая численность микроорганизмов. Во всем мире идут поиски новых индикаторных микроорганизмов. В настоящее время в качестве тест-бактерий предлагается использовать энтерококки, являющиеся показателем фекального загрязнения, стрептококки - для косвенной индикации возбудителей воздушно-капельных инфекций и энтеровирусы.

Бактерии группы кишечных палочек (БГКП) делят на 4 подгруппы: бактерии Escherichia coli commune, Escherichia coli citrovorum, E. coli aerogenes и E. paracoli. Наиболее часто встречаются E. coli commune и E. paracoli. БГКП очень изменчивы и, попадая во внешнюю среду, они утрачивают многие характерные признаки. Поэтому к санитарно-показательным микроорганизмам относят все разновидности кишечной палочки.

Обнаружение кишечной палочки в исследуемом продукте выявляет нарушение технологического режима его получения. Поскольку бактерии E. coli легко погибают даже при щадящих режимах обработки, то присутствие их в консервированном продукте указывает на явные нарушения режима консервирования, следовательно, нельзя гарантировать, что в продукте не содержатся другие, более опасные бактерии.

3.2.3 Условно-патогенные микроорганизмы

Определенную роль в возникновении пищевых заболеваний людей могут играть некоторые бактерии, объединяемые названием условно-патогенные. К ним относят группы кишечной палочки E.coli (рис.3.2), которые чаще являются виновниками пищевых заболеваний. Эти бактерии довольно широко распространены во внешней среде, встречаются или постоянно обитают в кишечнике животных и человека. Морфологически представляют собой палочки с закругленными концами или овальной формы, длиной 1.4 мкм и 0,5.0,6 мкм в ширину.

За исключением некоторых, являются подвижными, грамотрицательны, спор и капсул не образуют, аэробы, хорошо растут на обычных питательных средах.

Название «кишечная палочка» носит собирательный характер, так как включает в себя большое количество разновидностей, отличающихся друг от друга культуральными, биохимическими, серологическими и патогенными свойствами. В эту группу входят подгруппы В. colicommune, colicitrovorum, aerogenes и paracoli. Название «эшерихия» эта группа получила в честь немецкого ученого Эшериха, который в числе первых в 1885 г. выделил кишечную палочку. Среди всей этой группы бактерий встречаются патогенные, условно-патогенные и даже полезные для человека. Полезная роль кишечной палочки сводится к ее участию в синтезе витаминов комплекса В и К, а также в антагонистическом действии на сибиреязвенные и дизентерийные палочки, стафилококки и др. Биохимически кишечные палочки весьма активны. Все они расщепляют лактозу, глюкозу, маннит, мальтозу, декстрозу, галактозу и ксилозу; разжижают желатин, редуцируют нитраты в нитриты, подавляющее большинство образует индол, но они не разлагают инозита и не образуют сероводород.

Все условно-патогенные бактерии обладают относительно высокой устойчивостью. На различных объектах внешней среды сохраняются от 10 дней до 6 месяцев, устойчивы к высоким концентрациям поваренной соли и к высыханию, не погибают при минусовых температурах, жизнеспособны в сырой колодезной и водопроводной воде и т. д. Быстро погибают эти бактерии при температуре 68 °С и выше.

Патогенность. К настоящему времени систематизировано около 100 патогенных серотипов кишечной палочки, вызывающих заболевания у человека, животных, в том числе и птиц. Из представителей группы кишечной палочки наиболее патогенной считают подгруппу A. aerogenes. Эти бактерии часто вызывают колибактериоз у телят и детей, тяжелые маститы у коров, острое воспаление легких и мочеполовых путей у человека и животных. Кроме заболевания, некоторые виды бактерий кишечной палочки вызывают порчу молока и молочных продуктов.

Длительное время считали, что эти условно-патогенные бактерии у людей не вызывают пищевых заболеваний. Такое утверждение обосновывали тем, что кишечная палочка постоянно обитает в желудочно-кишечном тракте человека,. На основании многочисленных исследований и наблюдений в последние десятилетия эпидемиологическая роль условно-патогенных бактерий, особенно кишечной палочки, в возникновении пищевых токсикоинфек-ций у людей полностью доказана. Доказано и то, что далеко не все штаммы кишечной палочки способны вызвать у человека пищевое заболевание, а ток-сикоинфекцию вызывают только те, которые приобрели и имеют известную степень патогенности. Одно из условий возникновения токсикоинфек-ций данной этиологии - массивная обсемененность этими бактериями пищевых продуктов.

Инкубационный период при токсикоинфекциях колибактериоидной этиологии у людей составляет от 8 часов до одних суток. Клинически проявляется схваткообразными болями в области живота, тошнотой и жидким многократным стулом. Температура тела чаще нормальная и редко повышается до 38...39 °С, выздоровление наступает через 1...3 дня. Непременным условием возникновения и развития заболевания является попадание в организм человека с пищевыми продуктами живых бактерий.

Эпидемиология и профилактика. Фактором передачи инфекционного начала может оказаться мясо убитых животных. Особая роль отводится мясным полуфабрикатам и готовым пищевым продуктам, при производстве и хранении которых был нарушен санитарно-гигиенический режим. Нарушение санитарного режима производства создает условия их экзогенного обсеменения кишечной палочкой, а при недостаточной тепловой обработке в процессе производства и хранении продуктов при температуре выше 10 °С эти бактерии очень быстро растут и размножаются. Для профилактики необходимо принимать меры к защите пищевых продуктов от обсеменения этими бактериями, проводить их тщательную тепловую обработку и хранить при низких плюсовых температурах (4.5 °С). Рост и размножение кишечной палочки в мясе и мясных продуктах не изменяют их органолептических признаков.

3.2.4 Патогенные микроорганизмы

Из всех агентов, вызывающих пищевые отравления у людей, 70 % приходится на патогенные бактерии. Особую опасность представляют сальмонеллы, стрептококки, стафилококки, которые, размножаясь и накапливаясь в пищевых продуктах, не приводят к изменению их органолептических свойств.

Патогенные микроорганизмы попадают в воздух, почву, на различные предметы, пищевые продукты и остаются жизнеспособными некоторое время.

Сальмонеллы. Пищевые отравления, как правило, вызывают бактерии паратифозной группы Salmonella. Бактерии названы по имени известного американского ученого Салмона, внесшего большой вклад в их изучение.

Сальмонеллез продолжает быть основной формой заболеваний в мире, связанных с употреблением пищевых продуктов. Так, в США он составил 71 % пищевых отравлений, в Великобритании - 80 %. В США сальмонелле-зом ежегодно болеют от 400 тыс. до 4 млн человек. Экономические потери составляют от 973 до 1400 млн долл. В Дании в последние годы отмечается резкое увеличение заболеваний сальмонеллезом (до 1 000 заболеваний в год). В Германии сальмонеллез занимает третье место среди пищевых заболеваний, причем 87 % случаев связаны с употреблением продуктов питания, и обходятся в 130 млн марок ежегодно. В России сальмонеллез занимает среди отравлений второе место. В 1996...1998 гг. было зарегистрировано 35 вспышек заболевания с числом пострадавших 6,2 тыс. человек.

Сальмонеллы представляют собой один из 12 родов большого семейства бактерий Enterobacteria сеае. К настоящему времени систематизировано более 2 000 серотипов сальмонелл. Они встречаются (обитают) в кишечном канале животных и человека, а также во внешней среде. Морфологически представляют собой палочки с закругленными концами, иногда овальной формы, длина их 2...4 и ширина 0,5 мкм. Все они, за небольшим исключением (S. pullorum, S. gallinarum), подвижны, грамотрицательны, спор и капсул не образуют. Являются аэробами или факультативными анаэробами. Оптимальная реакция среды для роста слабощелочная (рН 7,2.7,5), а температура роста 37 °С. Правда, сальмонеллы хорошо растут и при комнатной температуре, и даже не исключается их рост при низких плюсовых температурах (5.8 °С).

Сальмонеллы довольно устойчивы. Они длительное время могут жить в пыли, высушенном навозе, в почве, воде и животных кормах, сохраняя вирулентность. Установлено, что при биотермическом обеззараживании навоза сальмонеллы инактивируются только в течение 3 недель. Для полного обеззараживания мяса, обсемененного сальмонеллами, необходимо внутри кусков температуру довести до 80 °С и поддерживать ее на этом уровне не менее 10 мин. В мороженом мясе сальмонеллы сохраняют жизнеспособность в течение 2.3 лет. В соленом мясе они сохраняют жизнеспособность 5-6 месяцев, а при содержании в продукте 6.. .7 % NaCI даже могут размножаться.

Сальмонеллы обладают свойством продуцировать эндотоксины. Последние термостабильны, представляют собой глюцидолипидо-полипептидные комплексы, обладающие высокой токсичностью.

Патогенность бактерий рода сальмонелла для людей. Патогенность сальмонелл проявляется одновременным действием на организм человека живых микробов и токсинов. Попав с мясом и другими пищевыми продуктами в желудочно-кишечный тракт, токсические вещества повреждают слизистую оболочку кишечника. Это способствует быстрому проникновению сальмонеллезных бактерий в кровь и развитию бактериемии. При разрушении бактерий в организме освобождается эндотоксин, который в значительной мере обусловливает клиническую картину токсикоинфекции.

Вспышки и случаи токсикоинфекции характеризуются общностью признаков: внезапностью их появления, массовостью и одновременным заболеванием употреблявших одинаковую пищу людей, территориальной ограниченностью и отсутствием эпидемиологического хвоста, то есть отсутствием выделения больных в последующие дни, хотя последнее возможно. Тем не менее, существует многообразие форм клинического их проявления. Накопленные в медицинской практике данные о пищевых токсикоинфекциях саль-монеллезной этиологии позволяют с известной условностью утверждать, что заболевание может иметь гастроэнтеритическую, тифо- или холероподоб-ную, гриппоподобную, септическую и нозопаразитическую формы клинического проявления. Инкубационный период в среднем 12...24 ч, но иногда затягивается до 2.3 суток.

Гастроэнтеритическая форма проявляется повышением температуры тела, ознобом, тошнотой, рвотой, жидким стулом, иногда с примесью крови и слизи, болью в животе, повышенной жаждой и головными болями. Особенно тяжело, с явлениями неудержимой рвоты и даже поражением нервной системы, протекает заболевание при попадании с пищевыми продуктами в организм человека S. typhimurium.

Тифоподобная форма может начинаться с обычного гастроэнтерита и после кажущегося временного выздоровления через несколько дней проявляется признаками, характерными для обычного брюшного тифа.

Гриппоподобная форма, довольно часто встречающаяся при заболевании людей, характеризуется болями в суставах и мышцах, ринитом, конъюнктивитом, катаром верхних дыхательных путей и возможными расстройствами желудочно-кишечного тракта.

Септическая форма протекает в виде септицемии или септикопиемии. При этой форме наблюдаются обусловленные сальмонеллами местные септические процессы с локализацией очагов во внутренних органах и тканях: эндокардиты, перикардиты, пневмонии, холециститы, остеомиелиты, артриты и абсцессы и т. д.

Нозопаразитическая форма представляет собой вторичное заболевание, наслаивающееся на какой-либо первичный патологический процесс и возникающее в результате эндогенного (из кишечника у бактерионосителей сальмонелл) или экзогенного проникновения сальмонелл в организм, ослабленный первичным заболеванием. Клиническая картина и патогенез этой формы сальмонеллезной токсикоинфекции у человека еще недостаточно изучены.

Смертность при сальмонеллезных токсикоинфекциях в среднем составляет 1.2 %, но в зависимости от тяжести вспышек, возрастного состава людей (заболевание среди детей) и других обстоятельств может доходить до 5 %. По мнению ряда ученых, более правильно называть данное заболевание пищевым сальмонеллезом.

Эпидемиология пищевых сальмонеллезов. По данным отечественных и зарубежных авторов, ведущая роль в возникновении пищевых сальмонеллезов принадлежит мясу и мясным продуктам. Особенно опасно в этом отношении мясо и субпродукты (печень, почки и др.) от вынужденно убитых животных. Прижизненное обсеменение мышечной ткани и органов сальмонеллами происходит в результате заболевания животных первичными и вторичными сальмонеллезами. К числу опасных пищевых продуктов с точки зрения возникновения пищевых сальмонеллезов относят фарши, студни, зельцы, низкосортные (отдельная, столовая, ливерная, кровяная и др.) колбасы, мясные и печеночные паштеты. При измельчении мяса в фарш нарушается гистологическая структура мышечной ткани, а вытекающий мясной сок способствует рассеиванию сальмонелл по всей массе фарша и их быстрому размножению. То же самое относится и к паштетам. Студни и зельцы содержат много желатина, а низкосортные колбасы - значительное количество соединительной ткани (рН 7,2...7,3). В этих условиях сальмонеллы также развиваются очень быстро. Нередко сальмонеллоносителями являются водоплавающие птицы, а следовательно, их яйца и мясо могут быть источником пищевых сальмонеллезов. Реже токсикоинфекции возможны при употреблении в пищу молока и молочных продуктов, рыбы, мороженого, кондитерских изделий (кремовых пирожных и тортов), майонезов, салатов и т. д.

Следует учитывать и экзогенное обсеменение сальмонеллами мяса и готовых пищевых продуктов. Источниками экзогенного обсеменения могут быть различные объекты внешней среды: вода и лед, тара, ножи, столы, производственное оборудование, с помощью которых проводят первичную обработку и переработку продуктов; не исключается также участие биологических агентов в заражении продуктов сальмонеллами (мышевидные грызуны, мухи). Не исключен контактный путь заражения сальмонеллами по схеме «животное (бактериовыделитель) - человек». Определенную роль в этом играют комнатные животные (собаки, кошки), а также свиньи, домашняя птица и даже голуби. Контактный фактор передачи по схеме «человек - человек» -явление редкое и чаще случается у детей.

Профилактика пищевых сальмонеллезов. По линии ветеринарной службы профилактика может быть обеспечена проведением следующих основных мероприятий.

В животноводческих хозяйствах и специализированных комплексах необходимо соблюдать санитарно-гигиенические правила и нормы содержания и кормления животных, проводить оздоровительные мероприятия, включая профилактику и борьбу с первичными и вторичными сальмонеллезами, не допускать внутрифермерского и подворного убоя скота и птицы, исследовать на степень бактериального обсеменения корма животного происхождения (мясокостная, рыбная мука и пр.), контролировать режим доения коров и первичной обработки молока и т. д.

На мясоперерабатывающих предприятиях и убойных пунктах не допускать к убою утомленных животных, больных необходимо убивать на мясо на санитарной бойне, правильно организовывать предубойный осмотр скота и птицы, послеубойную экспертизу туш и органов и лабораторное исследование продуктов. Важным условием является выполнение санитарных требований при технологических процессах по убою скота и птицы, первичной обработке туш и органов, переработке мяса и других пищевых продуктов, а также соблюдение температурного режима при транспортировке и хранении их, так как при температуре выше 4 °С сальмонеллы могут развиваться. Надо иметь в виду, что зараженное сальмонеллами мясо органолептических признаков несвежести не имеет, так как бактерии не протеолитичны, а сахароли-тичны. Токсикоинфекции у людей могут возникать от употребления внешне совершенно свежего мяса.

На рынках необходимо проводить тщательный послеубойный ветеринарный осмотр туш и органов, ветсанэкспертизу всех продуктов животного и растительного происхождения и контролировать торговлю ими, иметь холодильники для хранения направляемых на бактериологическое исследование продуктов, а также установки для стерилизации мяса, подлежащего обеззараживанию.

Защита пищевых продуктов от загрязнения патогенными микроорганизмами. Борьба c массовым размножением бактерий в пищевых продуктах превратилась в целое направление деятельности.

Пища портится под действием бактерий, грибов и собственных вызывающих автолиз («самопереваривание») ферментов, если не инактивировать их нагреванием или другими способами. Поскольку главная причина порчи, все-таки бактерии, разработка систем эффективного хранения продовольствия требует знания пределов выносливости этих микроорганизмов.

Исходя из закономерностей распространения и возникновения пищевых заболеваний, предупреждение их на предприятиях пищевой промышленности сводится к трем основным группам мероприятий:

предупреждению загрязнения пищевых продуктов патогенными микроорганизмами;

созданию условий, ограничивающих жизнедеятельность возбудителей пищевых отравлений;

обеспечению условий, губительно действующих на возбудителя пищевых заболеваний.

Одна из наиболее распространенных технологий - пастеризация молока, убивающая бактерии, которые вызывают, например, туберкулез и бруцеллез. Молоко выдерживают при 61.63 °С в течение 30 мин или при 72.73 °С всего 15 с. Это не ухудшает вкуса продукта, но инактивирует болезнетворные бактерии. Пастеризовать можно также вино, пиво и фруктовые соки.

Давно известна польза хранения пищевых продуктов на холоде. Низкие температуры не убивают бактерий, но не дают им расти и размножаться. Правда, при замораживании, например, до -25 °С численность бактерий через несколько месяцев снижается, однако большое количество этих микроорганизмов все же выживает. При температуре чуть ниже нуля бактерии продолжают размножаться, но очень медленно. Их жизнеспособные культуры можно хранить почти бесконечно долго после лиофилизации (замораживания - высушивания) в среде, содержащей белок, например в сыворотке крови.

К другим известным методам хранения пищевых продуктов относятся высушивание (вяление и копчение), добавка больших количеств соли или сахара, что физиологически эквивалентно обезвоживанию, и маринование, т. е. помещение в концентрированный раствор кислоты. При кислотности среды, соответствующей pH 4 и ниже, жизнедеятельность бактерий обычно сильно тормозится или прекращается.

Практика показала, что строгое выполнение комплекса ветеринарно-санитарных и санитарно-гигиенических мероприятий на всех этапах обработки пищевых продуктов - с момента их получения до реализации - обеспечивает защиту пищевых продуктов от загрязнения патогенными микроорганизмами, а широкое использование холода при хранении и тепловая обработка продуктов создают условия, ограничивающие развитие микроорганизмов, или вызывают их гибель.

3.2.5 Микотоксины

В ряду так называемых приоритетных загрязнителей одно из ведущих мест принадлежит токсическим метаболитам плесневых грибов - микотоксинам (от греческого mykos - гриб и toxicon - яд).

Плесневые токсинобразующие грибы, имеющие огромное видовое разнообразие, практически повсеместно поражают сельскохозяйственные растения при вегетации и могут развиваться на агропродукции при хранении. Попадая в организм животных с кормами, многие микотоксины накапливаются в мышечных тканях и тем самым загрязняют продукцию животноводства. Более того, микотоксины, как правило, сохраняются в продуктах после технологической обработки и консервирования

В настоящее время известно более 250 видов различных микроскопических грибов, продуцирующих около 500 токсических метаболитов, отличающихся не только высокой токсичностью, но и мутагенными, тератогенными и канцерогенными свойствами.

Среди микотоксинов своими токсическими свойствами и широким распространением выделяются афлатоксины, охратоксины, трихотеценовые микотоксины, зеараленон и патулин, хотя потенциально опасными для человека являются и многие другие микотоксины. Некоторые сведения об основных микотоксинах представлены в табл.

Невозможность полного предотвращения поражения сельскохояйственной продукции микроскопическими грибами - продуцентами микотоксинов - заставляет отвести главную роль в профилактике микотоксикозов человека системе контроля за загрязнением пищевых продуктов микотоксинами, а также установлению безопасных их концентраций (табл. 3.2).

К настоящему времени достигнуты серьезные успехи в установлении химической структуры микотоксинов, изучении их физико-химических свойств, разработке методов анализа и изучении их распространенности.

Микотоксины образуются из первичных метаболитов в результате изменения каких-либо физиологических факторов, как, например, содержание питательных веществ, соотношение микроэлементов и других факторов роста. Токсины микроскопических грибов образуются в цепи последовательных ферментных реакций из относительно небольшого числа химически простых промежуточных продуктов основного метаболизма, таких как ацетат, малонат и аминокислоты. Наиболее важными этапами биосинтеза микотоксинов являются реакции конденсации, окислительно-восстановительные, алкилирование и галогенизация, которые приводят к образованию весьма различных по структуре предшественников микотоксинов.

Известно 5 основных путей биосинтеза микотоксинов:

поликетидный, характерный для афлатоксинов, охратоксинов, патулина и др.;

терпеноидный - для трихотеценовых микотоксинов;

через цикл трикарбоновых кислот - для рубратотоксинов;

аминокислотный - исходными соединениями являются аминокислоты -эргоалкалоиды, циклопиазоновая кислота и др.;

смешанный (сочетание двух и более основных путей) - для производных циклопиазоновой кислоты.

Таблица 3.2

ПДК микотоксинов в пищевых продуктов

Вид продукта

ПДК, мг/кг

Афлатоксин

В!

Афлатоксин

Патулин

Зеараленон

Т-2 токсин

Зерно, мука, крупы

0,05

Не

нормируется

Не

нормируется

1,0

0,1

Молоко и молочные продукты

Не

допускается

0,0005

0,0005

Не

нормируется

Не

нормируется

Мясо и мясопродукты

0,005

Не

нормируется

Не

нормируется

Не

нормируется

Не

нормируется

Орехи,

масличные, жиры, масла

0,005

0,005

0,005

1,0

1,0

Кофе, чай, какао, кондитерские изделия

0,005

0,005

0,005

Не

нормируется

Не

нормируется

Фруктовые и овощные соки и пюре

0,005

0,005

0,05

0,05

0,05

Белковые изоляты

0,005

0,005

Не

нормируется

1,0

1,0

Продукты детского питания

Не допускается

Поликетидный путь является основным для биосинтеза большой группы микотоксинов. Микотоксины, синтезирующиеся этим путем, в зависимости от числа С2-единиц, включенных в молекулу, подразделяются на тетраке-тиды (патулин), пентакетиды (охратоксин А), гексакетиды, гептакетиды, ок-такетиды, монокетиды (зеараленон) и декакетиды (афлатоксины).

Терпеноидный путь биосинтеза характерен для большой группы трихо-теценовых токсинов. Предполагают, что биосинтез трихотеценового ядра идентичен для всех видов Trichothecium и Fusarium. Однако синтез отдельных трихотеценовых микотоксинов обусловлен различиями в процессе гид-роксилирования, катализируемом ферментными системами, генетически отличающимися у отдельных видов грибов.

Изучение биогенеза микотоксинов - процесс исключительно сложный и трудоемкий. Несмотря на это, изучение закономерностей биосинтеза помимо теоретического имеет большое практическое значение, поскольку служит главным условием изыскания способов предотвращения токсинобразования микроскопическими грибами.

Плесневые грибы поражают продукты как растительного, так и животного происхождения на любом этапе их получения, транспортирования и хранения, в производственных и домашних условиях. Несвоевременная уборка урожая или недостаточная сушка его до хранения, хранение и транспортирование продуктов при недостаточной их защите от увлажнения приводят к размножению микромицетов и образованию в пищевых продуктах токсических веществ. Микотоксины могут попадать в организм человека также с мясом и молоком животных, которым скармливали корма, загрязненные плесневыми грибами.

Размножаясь на пищевых продуктах, многие плесневые грибы не только загрязняют их токсинами, но и ухудшают органолептические свойства этих продуктов, снижают пищевую ценность, приводят к порче, делают их непригодными для технологической переработки. Использование в животноводстве кормов, пораженных грибами, ведет к гибели или заболеванию скота и птицы.

Ежегодный ущерб в мире от развития плесневых грибов на сельскохозяйственных продуктах и промышленном сырье превышает 30 млрд долл.

Учитывая широкое распространение в мире микотоксинов, в России осуществляется мониторинг импортных продуктов на загрязненность мико-токсинами. Содержание микотоксинов регламентируется ПДК (табл. 3.2).

Афлатоксины

Термин «афлатоксины» относится к группе близких соединений, продуцируемых микроскопическими грибами Aspergillus flavus и A. parasiticus.

Основными метаболитами этих микрогрибов являются два соединения, которые испускают голубое (англ. - blue) свечение при ультрафиолетовом облучении - афлатоксины В1 и В2, и два соединения, которые при облучении испускают зеленое (англ. -green) свечение - афлатоксины G1 и G2.

Известно также более 10 соединений, являющихся производными или метаболитами основной группы, в том числе афлатоксины М1 и др.

По своей химической структуре афлатоксины являются фурокумаринами. Химическое название афлатоксина В1 в соответствии с современной номенклатурой - (GaR-cis) (2,3,6а,9а) тетра-гидро-4- метоксициклопента [с] фуро [3121:4,5] фуро [2,3-h] [1] бензопи-ран-1,11 -дион.

Афлатоксин М1, гид-роксилированное производное афлатоксина В1, сначала был обнаружен в молоке коров, получавших корм, загрязненный афлатоксином В1, и поэтому получил название «молочный токсин» с буквенным индексом «М».

Основные физико-химические и биологические свойства афлатоксинов представлены в табл. 3.3 и 3.4.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Таблица 3.3

Физико-химические свойства основных афлатоксинов

Афла-токсины

Молекулярная формула

Молекулярная масса

Точка плавления, °С

Поглощение в УФ, (нм)-

Флюорес-цен ция, нм (цвет)

B1

С17Н12О6

312

268...269

12400 (265):21800 (362)

425 (голубой)

B2

С17Н11О6

314

286...289

12100 (265):24000 (362)

425 (голубой)

G1

С17Н12О7

328

244...246

9600 (265):17700 (362)

450 (зеленый)

G2

С17Н14О7

330

237...240

8200 (265):17700 (362)

450 (зеленый)

M1

С17Н12°7

328

299

11600 (265):11900 (357)

425 (голубой)

Афлатоксины обладают способностью сильно флюоресцировать при воздействии длинноволнового ультрафиолетового излучения, что лежит в основе практически всех физико-химических методов их обнаружения и количественного определения. Эти соединения слабо растворимы в воде (10...20 мкг/л), нерастворимы в неполярных растворителях, но легко растворимы в растворителях средней полярности таких, как хлороформ, метанол и диметилсульфоксид. Они относительно нестабильны в химически чистом виде и чувствительны к действию воздуха и света, особенно ультрафиолетового излучения.

Несмотря на это, следует отметить, что афлатоксины практически не разрушаются в процессе обычной технологической или кулинарной обработки загрязненных пищевых продуктов. Полное разрушение афлатоксинов может быть достигнуто лишь путем их обработки аммиаком или гипохлоритом натрия.

Токсинообразование. Продуцентами афлатоксинов являются штаммы двух видов микроскопических грибов - Aspergillus flavus Link и А. parasiticus Speare. Они хорошо развиваются и образуют токсины на различных естественных субстратах (продовольственное сырье, пищевые продукты, корма) практически повсеместно.

A. flavus относится к мезофильным микроскопическим грибам и может развиваться при температуре от 6...8 °С (mm) до 40...46 °С (max). Оптимальной для образования токсинов является температура 27...30 °С. Однако в условиях производственного хранения зерна максимальное образование афла-токсинов происходит при 35...45 °С, что значительно превышает температурный оптимум, установленный в лабораторных условиях.

Другим критическим фактором, определяющим рост A. flavus и синтез афлатоксинов, является влажность субстрата и атмосферного воздуха. Максимальный синтез токсинов A.flavus происходит при влажности свыше 18 % для субстратов, богатых крахмалом, - зерна (пшеница, ячмень, рожь, овес, рис, кукуруза, сорго) и свыше 9...10 % для субстратов с высоким содержанием липидов - семена (арахис, подсолнечник, хлопчатник), копра (маслосо-держащая часть кокосовых орехов), различные виды орехов при относительной влажности воздуха 97...99 %. При относительной влажности атмосферного воздуха ниже 85 % синтез афлатоксинов прекращается.

Условия аэрации также оказывают заметное влияние на рост и токсинообразование A.flavus. Даже незначительное количество кислорода приводит к резкому усилению синтеза афлатоксинов, в то время как добавление в среду углекислого газа ингибирует их образование.

Образование афлатоксинов в значительной степени зависит от состава субстрата, на котором развивается гриб. Синтезу афлатоксинов способствуют, например, среды, содержащие в качестве источников углеводов сахарозу, глюкозу, галактозу, сорбозу, рибозу, ксилозу, мальтозу; в меньшей степени -фруктозу и крахмал; токсины не продуцируются на среде с лактозой. Присутствие дрожжевого или кукурузного экстракта вызывает выраженное усиление синтеза афлатоксинов. Наличие карбоновых кислот, таких как себациновая и пальмитиновая, приводит к максимальному образованию афлатоксинов. Уксусная, пропионовая, масляная, капроновая, энантовая, каприловая, пералгоновая, каприновая, глутаровая и линолевая кислоты подавляют образование афлатоксинов. Соотношение между насыщенными и ненасыщенными жирными кислотами существенно влияет на синтез афлатоксинов.


Подобные документы

  • Органолептические характеристики качества и безопасности продуктов: консервы, молоко, мясо, рыба, яйца, мука, хлеб. Санитарные требования к кулинарной обработке и хранению пищевых продуктов. Болезни пищевого происхождения, вызываемые микроорганизмами.

    реферат [39,6 K], добавлен 21.03.2010

  • Характеристика основных требований к безопасности пищевых продуктов: консервов, молочных, мучных, зерновых, мясных, рыбных, яичных продуктов. Санитарные и гигиенические требования к кулинарной обработке пищевых продуктов. Болезни пищевого происхождения.

    курсовая работа [193,6 K], добавлен 20.12.2010

  • Характеристика пищевой и биологической ценности основных пищевых продуктов. Биологические опасности, связанные с пищей, генно-модифицированные продукты. Уровни воздействия техногенных факторов на организм человека в процессе поглощения продуктов питания.

    контрольная работа [32,6 K], добавлен 17.06.2010

  • Организация контроля за обеспечением безопасности пищевой продукции в России. Классификация показателей качества продуктов питания, проблема их радиоактивного загрязнения. Понятие антиалиментарных факторов питания, механизм действия и виды ингибиторов.

    контрольная работа [27,9 K], добавлен 20.11.2012

  • Что такое трансгенные продукты. Методы создания трансгенных продуктов. Как трансгенные продукты отличить от натуральных. Есть или не есть трансгенные продукты. Стоит ли бояться последствий? Чем выше технология, тем выше риск.

    курсовая работа [25,2 K], добавлен 16.10.2006

  • Роль консервантов в сохранении пищевого сырья и готовых продуктов, действие антиокислителей. Использование пряностей в пищевой промышленности и кулинарии. Причины слеживания и комкования порошкообразных продуктов. Безопасность применения пищевых добавок.

    реферат [461,7 K], добавлен 01.02.2011

  • Состав и ценность для здорового рациона продуктов растительного происхождения, рекомендации по их использованию в сбалансированном питании. Пищевая и биологическая ценность продуктов животного происхождения. Характеристика консервированных продуктов.

    курсовая работа [56,9 K], добавлен 11.12.2010

  • Рассмотрение деятельности Государственной лаборатории ветеринарно-санитарной экспертизы на продовольственном рынке. Изучение порядка ветеринарно-санитарного контроля и экспертизы мясных, молочных, растительных продуктов и меда, рыбы и рыбопродуктов.

    реферат [33,1 K], добавлен 13.02.2015

  • Проблемы безопасности пищевых продуктов. Модификация, денатурализация продуктов питания. Нитраты в сырье для пищевых продуктов. Характеристика токсичных элементов в сырье и готовых продуктах. Требования к санитарному состоянию сырья и пищевых производств.

    курсовая работа [87,0 K], добавлен 17.10.2014

  • Понятие генномодифицированных организмов: объективные предпосылки создания, их опасность. Ртуть - токсичный элемент: пути попадания в продукты питания и организм, биологическое воздействие. Токсичность ксенобиотиков. Опасность избытка и недостатка жиров.

    реферат [18,9 K], добавлен 15.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.