Экспериментально-теоретические методы диагностики и оценки параметров качества железобетонных балок
Разработка аналитических зависимостей, связывающих площадь продольной арматуры с параметрами трещиностойкости и прочности. Способ определения начального модуля упругости бетона с использованием различных статических и динамических параметров балок.
Рубрика | Строительство и архитектура |
Вид | автореферат |
Язык | русский |
Дата добавления | 14.07.2018 |
Размер файла | 316,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Введение
Актуальность работы. Проблема контроля качества строительных конструкций всегда имела актуальное значение, поскольку качество является фактором безопасности и надежности как отдельной конструкции, так и всего здания или сооружения в целом. Существующая система выборочного разрушающего контроля железобетонных конструкций балочного типа, регламентируемая ГОСТ 8829-94, когда из партии однотипных конструкций выбираются несколько и испытываются методом статического нагружения до разрушения, является трудоёмкой, ненадежной и экономически невыгодной. Поэтому разработка новых неразрушающих методов диагностики и контроля параметров, характеризующих качество изготовления конструкции и ее работоспособность в здании или сооружении, весьма актуальна.
Особое значение эта проблема приобрела в настоящее время, поскольку большое количество зданий и сооружений реконструируются для новых технологических нужд. При проведении обследования железобетонных конструкций таких зданий и сооружений зачастую отсутствует какая-либо информация о физико-механических свойствах использованного бетона, армировании и другие сведения, необходимые для проверки прочности, жесткости и трещиностойкости конструкций под новые технологические нагрузки. Применение разрушающих методов в этом случае становится невозможным.
Среди методов неразрушающего контроля качества особое место занимают вибрационные (резонансные) методы. Современный уровень теоретических знаний в области вибрационных технологий и экспериментальной механики достаточно высок, что позволяет эффективно использовать их в машиностроении. Однако в строительной отрасли эти технологии мало используются. В частности, отсутствует стандарт и какие-либо другие государственные нормативные документы на применение вибрационных методов для контроля физико-механических параметров и оценки качества готовых строительных конструкций.
Необходимо также отметить ухудшение организации контроля качества железобетонных конструкций на заводах ЖБИ в настоящее время. На многих предприятиях сократилась численность служб ОТК, не соблюдается полная технологическая схема пооперационного контроля, снизились масштабы и роль государственного контроля. Основными причинами сложившейся ситуации являются относительно низкая заинтересованность научных кругов в развитии неразрушающих методов диагностики и контроля качества строительных конструкций; отсутствие надежного и удобного в эксплуатации приборного комплекса и средств контроля для проведения динамических испытаний; либеральная законодательная база по ответственности производителей за низкое качество конструкций, и, как следствие, отсутствие у производственников мотивации в повышении качества выпускаемых строительных конструкций.
Целью диссертационного исследования является развитие теоретических и методологических основ диагностики и контроля параметров качества железобетонных конструкций балочного типа с использованием способов их статического и динамического нагружения.
Для реализации этой цели необходимо решить следующие задачи:
1) исследовать теоретически и экспериментально возможности применения метода статического и вибрационного нагружения железобетонных балок для их диагностики и контроля параметров качества с помощью интегральных физических характеристик - максимального прогиба от действия равномерно распределенной нагрузки и основной (или первой резонансной) частотой колебаний;
2) на основе теоретических и экспериментальных данных построить аналитические зависимости, связывающие площадь (или диаметр) продольной арматуры, начальный модуль упругости бетона железобетонных балок:
- с их максимальным прогибом от действия равномерно распределенной нагрузки;
- с основной частотой поперечных и продольных колебаний в ненагруженном состоянии и логарифмическим декрементом затухания колебаний;
- с параметрами трещиностойкости и прочности;
3) разработать статический и динамические способы определения площади продольной арматуры и начального модуля упругости бетона с использованием различных статических и динамических параметров балок, а также методики для их практической реализации;
4) провести серию экспериментов на натурных железобетонных балках с переменными значениями площади продольной арматуры и начального модуля упругости бетона с целью проверки теоретических результатов и апробации предложенных способов контроля и методик их практической реализации.
Объектом исследования являются железобетонные балки без предварительного напряжения продольной арматуры с переменными площадью сечения арматуры и начальным модулем упругости бетона, а предметом исследования - статические и динамические методы диагностики и контроля отдельных параметров, характеризующих качество железобетонных балок.
Методы исследования. В работе использовались классические методы теории железобетонных конструкций, экспериментальные методы исследования балок - статический (разрушающий) и вибрационный (неразрушающий). Обработка экспериментальных результатов осуществлялась с помощью методов математической статистики. Обработка виброграмм осуществлялась с помощью ЭВМ.
Научная новизна диссертационной работы заключается в следующем:
- получены аналитические зависимости для определения площади арматуры и начального модуля упругости бетона по величине максимального прогиба балок при их статическом нагружении равномерно распределенной нагрузкой, а также по основной (или первой резонансной) частоте поперечных и продольных колебаний в ненагруженном состоянии;
- разработаны способ определения площади (диаметра) продольной арматуры и способ определения начального модуля упругости бетона с использованием метода статического нагружения конструкций и 2 способа определения указанных параметров с использованием вибрационного метода;
- разработаны методики практической реализации предложенных способов диагностики;
- при проведении экспериментальных исследований выявлены новые физические эффекты, характеризующие взаимосвязь контролируемых параметров железобетонных балок с различными характерными стадиями поведения конструкций в процессе деформирования.
Практическая ценность полученных результатов заключается в следующем:
- разработанные способы диагностики и контроля отдельных физико-механических и геометрических параметров железобетонных балок и методики их практической реализации могут быть использованы как при выходном контроле качества готовых конструкций на предприятиях строительной индустрии, так и при диагностике конструкций, находящихся в условиях эксплуатации при обследовании и реконструкции зданий и сооружений; на два из них поданы заявки на выдачу патента;
- полученные теоретические и экспериментальные результаты используются в учебном процессе ОрелГАУ при изучении студентами строительных специальностей курса дисциплины «Обследование зданий и сооружений», а также при проведении научно-исследовательских работ студентами и аспирантами вуза.
Достоверность теоретических положений и практических результатов, полученных в работе, подтверждается использованием классических методов теории сооружений и теории железобетонных конструкций, сопоставлением теоретических и экспериментальных данных, а также сопоставлением с результатами экспериментальных исследований других ученых.
На защиту выносятся:
- математические модели, связывающие площадь продольной арматуры, начальный модуль упругости бетона с жесткостью упругих железобетонных балок при использовании статического метода испытаний, а также математические модели, связывающие указанные параметры с основной (или первой резонансной) частотой колебаний при использовании вибрационного метода испытаний в режиме возбуждения поперечных и продольных колебаний;
- способы определения площади (диаметра) продольной арматуры и начального модуля упругости бетона с использованием метода статического нагружения конструкций и вибрационного метода, а также методики их практической реализации;
- результаты экспериментальных исследований двух серий железобетонных балок (20 штук), выполненных в опалубке типовой перемычки 2ПБ-26-4 с различными процентами армирования и начальными модулями упругости бетона.
- новые эмпирические функциональные связи площади (диаметра) продольной арматуры и начального модуля упругости бетона с параметрами прочности и трещиностойкости железобетонных балок.
Апробация работы. Материалы и основные результаты, изложенные в диссертации докладывались и обсуждались на: V-й Международной научно-практической конференции «Задачи архитектурно-строительного комплекса в повышении качества жизни и устойчивого развития сельских территорий» (21-23 апреля 2009 года, г. Орел); III-й Международной выставке-интернет-конференции, памяти профессора В.Г. Васильева «Энергообеспечение и строительство» (18-20 ноября 2009 года, г. Орел); Молодежной научно-практической конференции «Инновационные технико-технологические решения для строительной отрасли, ЖКХ и сельскохозяйственного производства» (17-18 марта 2010 года, г. Орел); VII-й Международной научно-практической конференции «Строительство и архитектура XXI века: Перспектива развития и инновации» (23-24 ноября 2010 года, г. Орел); Международных академических чтениях РААСН «Безопасность строительного фонда России. Проблемы и решения» (23-25 сентября 2010 года, г. Курск); II-й Молодежной научно-практической конференции «Инновационные технико-технологические решения для строительной отрасли, ЖКХ и сельскохозяйственного производства» (13 апреля 2011 года, г. Орел).
Научная работа, написанная по теме диссертации, является победителем регионального конкурса «Лучшая научно-исследовательская работа молодых ученых - 2011».
Публикации. По теме диссертационной работы опубликовано 10 печатных работ, подано две заявки на выдачу патента на изобретение.
1. Аналитический обзор литературы по методам неразрушающих испытаний, используемых при производстве и эксплуатации строительных конструкций
арматура статический трещиностойкость
Акцент делается на проблему развития и применения вибрационных методов для диагностики и контроля качества железобетонных конструкций.
Проведенный анализ известных неразрушающих методов контроля качества показывает, что большинство из них позволяют определять физико-механические и прочностные характеристики железобетонных конструкций лишь в локальных местах с относительно невысокой точностью. Они также непригодны для интегральной оценки прочности, жесткости, трещиностойкости конструкций и величины предварительного напряжения арматуры. Дискретные физические методы диагностики основаны на корреляционной зависимости между прочностью бетона и каким-либо косвенным параметром материала, что является существенным недостатком. Кроме того, неоднородность материалов железобетонных конструкций также снижает точность определения интересующих характеристик. Существующие методы контроля диаметра рабочей арматуры, основанные на измерении магнитных и индукционных характеристик арматуры в бетоне, очень неточны. Появление новых методов контроля этого параметра совместно с известными повысят информативность проводимых испытаний и достоверность получаемых результатов.
Интегральные вибрационные методы позволяют преодолеть некоторые из указанных выше недостатков. По динамическим параметрам конструкции (форма, амплитуда и частота колебаний, логарифмический декремент затухания колебаний), можно с достаточно высокой степенью достоверности определить жесткость, прочность, трещиностойкость, величину предварительного напряжения арматуры в железобетонной балке.
Впервые для определения предельных состояний вибрационный метод был использован в ЛенЗНИИЭП и Оргтехстрое Главзапстроя Министерства строительства СССР в 1963 году, где усилиями ученых Н.А. Крылова, К.А. Глуховского, А.М. Полищука и др. были разработаны необходимые стенды и средства измерения, а также методика для массового контроля готовых конструкций. Сущность этого метода заключается в определении начальной жесткости поперечного сечения подвергшихся испытанию конструкций по периодам их свободных колебаний и сравнении ее с жесткостью, полученной предварительным расчетом. Недостатками этого метода являются невозможность оценить пригодность испытываемых изделий по трещиностойкости и определить значение величины предварительного напряжения арматуры в них.
Дальнейшее заметное развитие вибрационный метод получил в ТбилЗНИИЭП. Научным коллективом во главе с Э.А. Сехниашвили была разработана методика контроля, сущность которой заключается в сравнении параметров колебаний контролируемых конструкций с соответствующими параметрами однотипных эталонных изделий, изготовленных при строгом соблюдении всех технологических операций. Данный метод позволяет определять интегральные характеристики конструкций, однако отличается большой трудоемкостью, вызванной необходимостью изготовления множества эталонных изделий с разными величинами предварительного напряжения арматуры, что является существенным недостатком.
Большая работа в области развития методов неразрушающего контроля качества железобетонных конструкций велась в прежние годы и ведётся в настоящее время в ведущих научно-исследовательских институтах и вузах нашей страны: НИИЖБ (Клевцов В.А., Бердичевский Г.И., Коревицкая М.Г.), МИСИ (Лужин О.В., Злочевский А.Б., Волохов В.А., Почтовик Г.Я.), ТбилЗНИИЭП (Сехниашвили Э.А., Саркисов Ю.С., Туркия Б.Ш.), ФГБОУ ВПО «Северо-Кавказский гостехуниверситет» (Г.В. Слюсарев).
За последние годы большой вклад в развитие вибрационного метода контроля качества строительных конструкций внес творческий коллектив под руководством В.И. Коробко в составе А.В. Туркова, А.А. Павленко, В.И. Полякова, А.П. Юрова, Д.И. Красильникова и др. Ими разработан метод интегральной экспресс-оценки параметров качества строительных конструкций, который позволяет определять интегральные характеристики готовых изделий не косвенно (по графикам), а по расчетным формулам. Ими опубликован целый ряд научных статей, учебной и методической литературы, получены многочисленные авторские свидетельства и патенты на изобретения по разработанным способам и методам контроля качества готовых строительных конструкций по их динамическим характеристикам, усовершенствованы конструкции испытательных стендов с целью повышения точности определения экспериментальных параметров.
Однако, несмотря на большое разнообразие подходов к диагностике строительных конструкций и контролю их качества с помощью статического и динамического методов, остаются недостаточно исследованными зависимости динамических характеристик железобетонных конструкций балочного типа (частот свободных продольных и поперечных колебаний и логарифмического декремента затухания колебаний, прочности и трещиностойкости) от диаметра продольной арматуры и от класса бетона.
2. Аналитические зависимости, связывающие площадь продольной арматуры и начальный модуль упругости бетона с максимальным прогибом балок от действия статически приложенной равномерно распределенной нагрузки
(1)
(2)
Здесь использованы общеизвестные в теории железобетонных конструкций обозначения. Используя эти зависимости как математические модели, предлагается статический способ определения площади арматуры и начального модуля упругости бетона по максимальному прогибу балок.
В основу вибрационного метода определения рассматриваемых параметров железобетонных балок положена фундаментальная закономерность, установленная В.И. Коробко, которая функционально связывает максимальный прогиб w0 упругих балок, находящихся под действием равномерно распределенной нагрузки q, c их основной (или первой резонансной) частотой колебаний щ. Эта закономерность формулируется следующим образом: произведение максимального прогиба упругой однопролетной балки постоянного сечения с произвольными граничными условиями, нагруженной равномерно распределенной нагрузкой q, на квадрат ее основной (или первой резонансной) частоты колебаний щ с точностью до размерного множителя q/m есть величина постоянная, равная ? 1,279 ? 4/р:
w0щ2 ? 4/р?q/m, (3)
где m - погонная масса балки. Подставляя в аналитические зависимости статического метода (1) и (2) вместо максимального прогиба основную (или первую резонансную) частоту колебаний, выраженную из закономерности (3), получим аналитические зависимости:
(4)
, (5)
которые связывают площадь арматуры и начальный модуль упругости бетона с основной частотой колебаний балок.
С целью изучения влияния площади арматуры и начального модуля упругости бетона на прочностные и динамические параметры железобетонных балок и сопоставления в дальнейшем теоретических результатов с экспериментальными был проведен расчет экспериментальных балок, выполненных в опалубке типовой перемычки 2ПБ-26-4 с различными коэффициентами армирования и различными классами бетона по прочности.
В строительной механике известны соотношения, связывающие основную частоту поперечных колебаний с основной частотой продольных колебаний. В диссертационной работе А.П. Юрова при проведении аналитической обработки результатов эксперимента показано, что частоту продольных колебаний шарнирно опертой по концам железобетонной балки щпр следует определять как для балки с жестко защемленными концами. Используя эти рекомендации, получены соотношения:
(6)
(7)
в которых искомые параметры железобетонных балок определяются по основной частоте продольных колебаний.
Математические модели (1), (2), (4)…(7) можно применять для упругой стадии работы железобетонных балок.
В исследованиях Э.А. Сехниашвили были построены аналитические зависимости, связывающие исследуемые нами параметры с логарифмическим декрементом затухания колебаний д, поскольку он функционально связан с частотами колебаний балок.
Используя полученные математические модели, разработаны два способа определения начального модуля упругости бетона и площади поперечного сечения продольной арматуры с использованием метода статического нагружения конструкций и два способа определения указанных параметров с использованием вибрационного метода. Суть этих способов заключается в экспериментальном определении максимального прогиба контролируемых балок при их статическом нагружении и частот свободных поперечных (или продольных) колебаний в ненагруженном состоянии. Используя известные геометрические и физические параметры железобетонных балок, по формулам (1), (2), (4)…(7) можно определить площадь продольной арматуры при известном начальном модуле упругости бетона и начальный модуль упругости бетона при известной площади продольной арматуры.
Динамические способы определения класса бетона и диаметра продольной арматуры выгодно отличаются от способа статического нагружения меньшей трудоемкостью, потому что отпадает необходимость загружения конструкции равномерно распределенной нагрузкой.
3. Результаты экспериментальных исследований 20-ти железобетонных балок без предварительного напряжения продольной арматуры
Были изготовлены 2 партии железобетонных балок в опалубке типовых перемычек типа 2ПБ-26-4: одна партия изготовлена с одинаковым армированием, но с разными начальными модулями упругости бетона, другая партия - с одинаковым начальным модулем упругости бетона, но с разными диаметрами продольной арматуры. Условные обозначения экспериментальных балок и соответствующие им величины класса бетона и диаметра арматуры приведены в таблице 1.
Таблица 1 - Условные обозначения железобетонных балок с указанием диаметра арматуры и класса бетона
Б-1 |
Б-2 |
Б-3 |
Б-4 |
Б-5 |
Б-6 |
Б-7 |
Б-8 |
Б-9 |
Б-10 |
|
B15 ds = 8 |
B15 ds = 10 |
B15 ds = 14 |
B15 ds = 16 |
B15 ds = 18 |
B7,5 ds = 12 |
B15 ds = 12 |
B20 ds = 12 |
B22,5 ds = 12 |
B30 ds = 12 |
Целью экспериментальных исследований является проверка опытным путем полученных математических моделей, разработка методик реализации предложенных новых способов определения начального модуля упругости бетона и площади продольной арматуры, анализ выявленных физических эффектов и взаимосвязей контролируемых в работе параметров железобетонных балок с показателями прочности и трещиностойкости.
Эксперимент проводился на лабораторной базе Архитектурно-строи-тельного института ФГБОУ ВПО «Госуниверситет - УНПК» с использованием испытательного стенда, оснащенного стандартным набором оборудования, приборов и средств измерений. Функциональная схема стенда представлена на рисунке 1.
Рисунок 1 - Функциональная схема испытательного стенда при возбуждении поперечных колебаний балки: 1 - контролируемая балка; 2, 3 - подвижная и неподвижная шарнирные опоры; 4 - ударное устройство - возбудитель собственных поперечных колебаний; 5 - виброанализатор спектра колебаний «Вибран-2.0»; 6 - силовые опоры
При проведении испытаний выполнялись следующие технологические операции: установка контролируемой конструкции на опорах; закрепление на ней приборов и устройств, необходимых для возбуждения и регистрации колебаний и измерения прогибов; возбуждение собственных колебаний с помощью механического удара и определение основной частоты колебаний конструкции в ненагруженном состоянии; нагружение конструкции равномерно распределенной нагрузкой ступенями и измерение максимального прогиба; измерение частот продольных и поперечных колебаний на каждой ступени нагружения.
При обработке результатов измерений применялись методы математической статистики. Анализ статистических данных показал, что относительная погрешность измерений прогиба и основной частоты колебаний достаточно мала и сопоставима с погрешностью измерений используемых приборов.
По полученным в ходе эксперимента данным были построены графики следующих зависимостей (рисунки 2 и 3):
- для каждой партии балок -
= 1(В), = 2(B), w0 = 3(B), qcrc = 4(B), qcr = 5(B),
= 6(ds), = 7(ds), w0 = 8(ds), qcrc = 9(ds), qcr = 10(ds);
- для каждой балки -
= 13(q), = 14(q), w0 = 15(q),
= 16(w0), = 17(w0), поп = 18(q).
Результаты анализа представленных на графике экспериментальных зависимостей убедительно показывают, что основные теоретические положения, сформулированные во второй главе, являются верными: качественное совпадение теоретических и экспериментальных результатов хорошее, количественные же оценки контролируемых параметров удовлетворяются с определенной погрешностью. Был выявлен ряд физических эффектов, которые нуждаются в пояснении.
Функциональные зависимости fпоп - w0 и fпр - w0 существенно отличаются друг от друга. Первая из них является монотонно убывающей с заметным переломом в момент появления первых нормальных трещин в средней части пролета. После этого перелома и до момента разрушения частота колебаний меняется в пределах 5 Гц. Вторая кривая на низших ступенях нагружения сначала возрастает, а затем с появлением микроразрушений в растянутой зоне резко убывает до момента появления визуально заметных нормальных трещин в середине сечения балки. Далее следует новый перелом и уже при работе балки в условиях упругопластического и пластического изгиба частота продольных колебаний меняется менее интенсивно. Такое поведение балки объясняется существенным изменением картины напряженного состояния в ее сечениях при переходе от условий упругой работы конструкции к упругопластическим. Поскольку вторая зависимость не выражается одной монотонной функцией, то следует рекомендовать её использование либо без нагружения конструкции (балка работает в упругой стадии), либо с нагружением конструкции контрольной нагрузкой, когда начинается процесс трещинообразования.
Рисунок 2 - Графические результаты экспериментальных исследований балки Б-8-1: а) графики fпоп - w0, б) графики fпр - w0, в) fпоп - q, г) графики fпр - q, д) графики д - q, (нижний - для упругой стадии работы конструкции, верхний - для упруго-пластической); е) графики w0 - q
Аналогично ведут себя кривые fпоп - q и fпр - q, повторяя те же физические эффекты, что и кривые на схемах а) и б).
Достаточно строгие и монотонные зависимости fпоп - w0 и fпоп - q свидетельствуют о том, что параметры жесткости, прочности и трещиностойкости железобетонных конструкций действительно могут контролироваться частотами поперечных колебаний в нагруженном состоянии, что было ранее подтверждено экспериментально в работах Д.И. Красильникова и В.И. Полякова при исследовании плит дорожного покрытия.
Анализ зависимости w0 - q показывает, что она разбивается на два характерных практически прямолинейных участка: участок упругой и начало упругопластической работы (при появлении первых тещин) и участок упругопластической работы (после появления первых трещин). Перелом прямолинейных участков совпадает с началом стабилизации собственной частоты продольных колебаний балки в нагруженном состоянии. И этот физический эффект, очевидно, может в дальнейшем быть использован для диагностики железобетонных конструкций.
Анализ поведения логарифмического декремента затухания колебаний показывает, что с ростом нагрузки этот параметр ведет себя нестабильно, изменяясь скачкообразно. Характерные переломы зависимости поп - q не удалось идентифицировать к каким-либо конкретным физическим проявлениям в конструкции. Такие же результаты были ранее получены в экспериментальных исследованиях Г.В. Слюсарева с предварительно напряженными плитами типа ПК. Из этого следует, что логарифмический декремент затухания колебаний не может эффективно использоваться для диагностики состояния железобетонных балок.
Результаты статических и динамических экспериментальных исследований балок серии 2ПБ-26-4, включая стандартные испытания, рекомендуемые ГОСТ 8829-94, с различными диаметрами рабочих арматур представлены на рисунке 3, результаты экспериментальных исследований балок с различными классами бетона представлены на рисунке 4.
Анализ этих результатов позволяет сделать следующие выводы:
1. Экспериментально подтверждено: начальный модуль упругости (класс) бетона, площадь (диаметр) продольной арматуры функционально связаны с основной частотой поперечных и продольных колебаний балки в ненагруженном состоянии и максимальным прогибом балки от равномерно распределенной нагрузки. Эти функциональные зависимости легли в основу разработки статического и динамического (вибрационного) способов диагностики железобетонных балок, находящихся в условиях эксплуатации.
2. Выявлены и графически построены функциональные связи между жесткостью, трещиностойкостью и прочностью железобетонной балки с их начальным модулем упругости и диаметром арматуры. Эти зависимости близки к линейным, что приводит к идее разработки теоретического аппарата для приближенного определения по эмпирическим формулам жесткости, трещиностойкости и прочности железобетонных балок по классу бетона и диаметру арматуры.
Рисунок 3 - Графические зависимости стандартных параметров качества железобетонных балок и их динамических характеристик от диаметра арматуры: а) при использовании свободных поперечных колебаний; б) при использовании свободных продольных колебаний
Рисунок 4 - Графические зависимости стандартных параметров качества железобетонных балок и их динамических характеристик от начального модуля упругости бетона: а) при использовании свободных поперечных колебаний; б) при использовании свободных продольных колебаний
3. Свободная частота продольных колебаний является более информативным динамическим критерием, позволяющим судить о начальном модуле упругости (классе) бетона, по сравнению с аналогичной частотой поперечных колебаний, потому что при изменении класса бетона от В7,5 до В30 экспериментальная частота поперечных свободных колебаний увеличивается на 20%, а продольных почти на 50%. Кроме того, поскольку основная частота свободных продольных колебаний более чем на порядок выше основной частоты поперечных колебаний, то ее определение будет осуществляться с большей точностью, что приведет к повышению точности при оценке параметров качества железобетонных конструкций.
4. Фактическая частота поперечных колебаний балки, изготовленной из бетона класса В30 значительно ниже теоретической (более чем на 16%). Это может быть вызвано наличием скрытых дефектов или отклонением конструкции от проектных характеристик.
5. При использовании статического метода наблюдается большая погрешность определения искомых характеристик по сравнению с динамическим методом.
6. С ростом диаметра арматуры экспериментальная (аппроксимирующая) прямая монотонно приближается к теоретической; при малых диаметрах арматуры отклонения оказываются достаточно высокими. С ростом диаметра арматуры это различие уменьшается, и экспериментальные данные приближаются к теоретическим. Данный физический эффект можно объяснить преобладанием упругих свойств арматуры над упругопластическими свойствами бетона при увеличении диаметра продольной арматуры.
При использовании расчетных формул для определения основной частоты колебаний и максимального прогиба балок возникает значительная погрешность, следовательно, и при определении по формулам диаметра продольной арматуры и начального модуля упругости бетона погрешность будет высока. Поэтому на основании проведенных теоретических и экспериментальных исследований нами предложены динамический и статический способы определения диаметра продольной арматуры и начального модуля упругости бетона в упругих железобетонных конструкциях балочного типа, основанные на использовании эталонных изделий.
Суть данных способов заключается в изготовлении партии из 6…8 эталонных изделий, диаметр арматуры или начальный модуль упругости бетона которых постепенно возрастает в требуемом диапазоне, и проведении их испытаний по описанной методике. По полученным результатам строят аппроксимирующую функцию «контролируемая характеристика (класс бетона, площадь арматуры) - определяемая характеристика (частота колебаний, максимальный прогиб)».
Очевидным преимуществом разработанных способов является то, что эталонные конструкции не подвергаются разрушению и пригодны к эксплуатации без ограничений.
Для определения интегральных характеристик конструкции (жесткости, трещиностойкости и прочности) следует провести комплекс испытаний до разрушения эталонных изделий с целью построения графических зависимостей, показанных на рисунках 3, 4, и далее проводить испытания серийных изделий без разрушения, определяя прочность и трещиностойкость с помощью построенных аппроксимирующих функций.
Заключение
Обобщая результаты проведенных теоретических и экспериментальных исследований можно сделать следующие выводы:
1 Разработаны математические модели, связывающие величину максимального прогиба железобетонных балок, выполненных без предварительного напряжения продольной арматуры, и основной частоты поперечных и продольных колебаний с начальным модулем упругости бетона и площадью продольной арматуры.
2 На основе этих моделей разработаны статический и динамический способы определения площади продольной арматуры и начального модуля упругости бетона, а также методики практической реализации этих способов. На оба способа поданы заявки на выдачу патента в Патентный институт РФ.
3 Проведена большая серия исследовательских экспериментов по испытанию 20 железобетонных балок длиной 2,55 м с разным начальным модулем упругости бетона и одинаковом армировании и одним и тем же начальным модулем упругости бетона и разным процентом армирования:
- результаты экспериментов подтвердили и качественно, и количественно работоспособность полученных математических моделей и позволили доработать предложенные способы за счет использования эталонных конструкций;
- эксперименты показали, что динамический способ определения площади продольной арматуры и начального модуля упругости бетона эффективнее статического за счет меньшей его трудоёмкости; эффективнее также использование продольных колебаний, поскольку точность получаемых оценок повышается за счет измерения более высокой частоты, чем при использовании поперечных колебаний;
- по результатам эксперимента построены аппроксимирующие функции, связывающие значения параметров жесткости, трещиностойкости и прочности железобетонных балок с площадью продольной арматуры и начальным модулем упругости бетона; полученные зависимости носят линейный характер и их рекомендуется использовать в практических целях для диагностики состоянии балок.
Литература
1. Абашин, Е.Г. Определение площади поперечного сечения рабочей арматуры в железобетонных балках вибрационным методом [Текст] / Е.Г. Абашин // «Строительство и реконструкция». Орел: Госуниверситет - УНПК, 2011. - № 5. - С. 3-7. (0,3 п.л.)
2. Коробко, В.И. Способы определения площади поперечного сечения продольной арматуры и модуля упругости бетона в железобетонных балках по результатам статических и динамических испытаний [Текст] / В.И. Коробко, Е.Г. Абашин // «Строительство и реконструкция». Орел: Госуниверситет - УНПК, 2010. - № 2. - С. 23-25. (0,2 п.л. / 0,1 п.л. автора).
3. Абашин, Е.Г. Оценка физико-механических характеристик сборных железобетонных конструкций вибрационными методами / Е.Г. Абашин // Задачи архитектурно-строительного комплекса в повышении качества жизни и устойчивого развития сельских территорий: материалы V международной науч.-практ. конф. (21-23 апр. 2009 г., Орел). - Орел: ОГАУ, 2009. - С. 247-250. (0,2 п.л.).
4. Абашин, Е.Г. Применение ресурсосберегающих вибрационных методов контроля качества железобетонных конструкций / Е.Г. Абашин // Энергообеспечение и строительство: материалы III международной выставки-интернет-конференции, памяти профессора В.Г. Васильева (18-19 нояб. 2009 г., Орел). - Орел: ОГАУ, 2009. - С. 231-234. (0,2 п.л.).
5. Абашин, Е.Г. Преимущества использования вибрационных методов приемочного контроля качества железобетонных конструкций / Е.Г. Абашин, С.С. Володин // Инновационные технико-технологические решения для строительной отрасли, ЖКХ и сельскохозяйственного производства: материалы молодежной науч.-практ. конф. (17-18 марта 2010 г., Орел). - Орел: ОГАУ, 2010. - С. 22-24. (0,2 п.л. / 0,1 п.л. автора).
6. Абашин, Е.Г. Способ применения коэффициента нелинейных искажений при контроле качества железобетонных конструкций вибрационным методом / Е.Г. Абашин, В.П. Павликов // Строительство и архитектура XXI века: перспективы развития и инновации: материалы VII международной науч.-практ. конф. (23-24 нояб. 2010 г., Орел). - Орел: ОГАУ, 2010. - С. 308-311. (0,3 п.л. / 0,15 п.л. автора).
7. Абашин, Е.Г. Экспериментальные исследования железобетонных перемычек (балок) типа 2ПБ26-4-п без предварительного напряжения арматуры вибрационными методами / Е.Г. Абашин, С.С. Володин // Инновационные технико-технологические решения для строительной отрасли, ЖКХ и сельскохозяйственного производства: материалы II молодежной науч.-практ. конф. (13 апр. 2011 г., Орел). - Орел: ОГАУ, 2011. - С. 14-19. (0,3 п.л. / 0,2 п.л. автора).
8. Абашин, Е.Г. Использование логарифмического декремента затухания колебаний при вибрационном контроле качества железобетонных ненапряженных конструкций балочного типа / Е.Г. Абашин // Инновационный путь развития строительства и архитектуры в агропромышленном комплексе России: материалы VIII международной науч.-практ. конф. (22-23 нояб. 2011 г., Орел). - Орел: ОГАУ, 2011. - С. 74-78. (0,3 п.л.).
9. Коробко, А.В. Способы определения площади поперечного сечения продольной арматуры и модуля упругости бетона в железобетонных балках по результатам динамических испытаний / А.В. Коробко, Е.Г. Абашин // Безопасность строительного фонда России. Проблемы и решения: материалы международных академических чтений (23-25 сент. 2010 г., Курск). - Курск, 2010. - С. 44-48. (0,3 п.л. / 0,15 п.л. автора).
10 Коробко, А.В. Определение модуля упругости бетона в железобетонных балках вибрационным методом [Текст] / А.В. Коробко, Е.Г. Абашин, А.П. Юров // Науч. изд. / Вестник отделения строительных наук. - Москва - Орел - Курск, 2011. - Вып. 15. - С. 100-103. (0,25 п.л. / 0,1 п.л. автора).
Размещено на Allbest.ru
Подобные документы
Типы балок и способы их применения. Примеры наиболее часто применяемых сечений, особенности компоновки балочных конструкций. Настилы балочных клеток. Разновидности прокатных балок. Компоновка и подбор сечения составных балок, методика расчета прочности.
реферат [2,6 M], добавлен 21.04.2010Предварительное назначение размеров железобетонных элементов подземного здания. Расчётные и нормативные характеристики арматуры и бетона. Расчет и подбор прочности рабочей арматуры полки ребристой плиты перекрытия, колонны, столбчатого фундамента.
курсовая работа [123,8 K], добавлен 01.02.2011Характеристики прочности бетона В45 и арматуры А 1000. Расчетный пролет и нагрузки. Расчет прочности плиты по сечению, наклонному к продольной оси. Определение усилий в ригеле поперечной рамы, усилий в средней колонне. Конструирование арматуры колонны.
курсовая работа [216,6 K], добавлен 19.01.2011Подбор продольной напрягаемой арматуры для двускатной двутавровой балки. Граничная относительная высота сжатой зоны бетона. Определение геометрических характеристик приведенного сечения. Расчет потерь предварительного напряжения и прочности сечений.
курсовая работа [862,5 K], добавлен 06.07.2009Назначение формы пролетного строения и его элементов. Определение внутренних усилий в плите проезжей части. Расчёт балок на прочность. Конструирование продольной и наклонной арматуры. Расчет по раскрытию нормальных трещин железобетонных элементов.
курсовая работа [576,8 K], добавлен 27.02.2015Сбор нагрузок на 1 кв.м плиты перекрытия. Определение расчетного пролета и конструктивных размеров плиты. Характеристика прочности бетона и арматуры. Расчёт прочности плиты по сечению нормальному к продольной оси элемента. Конструктивные размеры плиты.
контрольная работа [886,1 K], добавлен 25.09.2016Проектирование генплана предприятия. Ориентация производственных зданий по санитарно-техническим нормам. Проектирование формовочного и арматурного цеха, технологии производства железобетонных мостовых балок. Технико-экономические показатели проекта.
дипломная работа [1,1 M], добавлен 28.01.2010Компоновка плана перекрытия. Определение нагрузок, действующих на междуэтажное перекрытие, сбор нагрузок на панель. Характеристики арматуры и бетона. Подбор продольной рабочей арматуры из условий прочности сечения, нормального к продольной оси панели.
курсовая работа [1,3 M], добавлен 09.11.2011Контролируемые параметры для железобетонных конструкций. Прочностные характеристики бетона и их задание. Количество, диаметр, прочность арматуры. Контролируемые параметры дефектов и повреждений железобетонных конструкций. Основные методы испытания бетона.
презентация [1,4 M], добавлен 26.08.2013Осуществление контроля качества производства бетонных и железобетонных изделий отделом технического контроля лаборатории. Определение коэффициента вариации прочности бетона. Состав тяжёлого бетона. Уменьшение расхода цемента до определённых значений.
реферат [81,3 K], добавлен 18.12.2010