Метод сокращения сроков строительства производственного предприятия путем использования новых сборно-монолитных конструкций

Характеристика актуальных проблем сокращения сроков строительства промышленных зданий путем использования готовых сборных конструкций. Изучение основных преимуществ армплит с последующим натяжением арматуры по сравнению с фундаментами других типов.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 12.01.2018
Размер файла 20,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Метод сокращения сроков строительства производственного предприятия путем использования новых сборно-монолитных конструкций

А.В.Шилов, К.С.Петров, А.А.Бобин

Донской государственный технический университет

Аннотация. Рассматриваются актуальные проблемы сокращение сроков строительства путем использования готовых сборных конструкций. Предлагаемый метод подтверждается расчетами, доказывающими его надежность и реализуемость. При разработке метода учтена современная экономическая составляющая проектирования и строительства промышленных комплексов.

Ключевые слова: организация строительства; сборные конструкции, промышленное строительство

Актуальная проблема сокращения сроков строительства современных промышленных предприятий стоит достаточно остро. Современные производственные линии не отличаются тем размахом, что был при СССР, и, по большому счету, являются маломощным производством. А значит для окупаемости они должны вступать в производственный процесс как можно быстрее. Поэтому важно выдерживать темп строительства и в короткие сроки вводить очереди в эксплуатацию.

Сократить сроки строительного производства позволяет применение метода быстрого возведения готового фундамента из сборных конструкций

При сооружении кирпичного завода в районе Зимовники Ростовской области производительностью 680 т /год применен метод строительства, в совокупности с устройством в сухом котловане свайного основания, на которое были полностью смонтированные крупные блоки завода [1].

Основным требованием заказчика было условие максимального сокращения сроков строительства этого предприятия. Поэтому решено привезти на строительную площадку предварительно собранные крупные блоки завода [2,3].

Буксировка осуществлялась трейлерами одно колонной в течение четырех суток.

По условиям монтажа в работа высокоточного оборудования завода требовалось, чтобы последующие неравномерные осадки основания не превышали нескольких миллиметров. С другом стороны, деформации, вызываемые во всех железобетонных сооружениях башенного типа, например в административных или жилых зданиях, где колонны служат основным вертикальным несущим элементом, возможно парировать. Толщина фундамента обычно составляет 30,5-- 61 см при пролетах от 5,5 до 10,7 м. Вблизи колонн иногда предусматривают утолщение плиты [4-7].

При армировании преднапряженных фундаментов обычно применяют отпущенные семипроволочные пряди диаметром 13 мм с временным сопротивлением 1862 МПа (18 900 кгс/см2); от сцепления с бетоном их предохраняет смазка и сплошная пластмассовая груба. Это обеспечивает возможность натяжения арматуры в окружающем ее бетоне после его твердения и предохраняет ее от коррозии. Кроме того, укладывают определенное количество конструктивной арматуры из низкоуглеродистой стали с временным сопротивлением 414 000 кПа (4200 кгс/см2), а также металлические анкерные плиты и опорные стержни из стали с временным сопротивлением 276 000 кПа (2800 кгс/см2).

Прочность на сжатие бетона, приготовленного на заполнителе из твердых горных пород, обычно принимается равной 27 600 кПа (280 кгс/см2). Такой бетон является типичным как для фундаментов, так и для всех надземных конструкций в большинстве железобетонных сооружений с последующим натяжением арматуры [8,9].

Основными преимуществами армплит с последующим натяжением арматуры по сравнению с фундаментами других типов являются следующие:

1) возможность применения на грунтах с низкой несущей способностью, так как фундаментная плит; лучше передает нагрузку на всю поверхность грунта под зданием. Поэтому давление на грунт может быть уменьшено до допускаемого давления, что обеспечивает максимальную надежность;

2) высокая скорость строительства. Это объясняется тем, что фундаментные плиты с последующим натяжением арматуры исключают необходимость устройства свайных ростверков, ранд-балок и требуют минимального объема земляных работ. Благодаря этим особенностям такие фундаменты возводят значительно быстрее фундаментов глубокого заложения, например свайных. При армировании фундаментных плит в двух направлениях укладка арматурных элементов ускоряется путем применения групповой системы их размещения. При такой системе размещения (в отличие от обычной схемы распределения арматуры по всему пролету) пряди, идущие в одном направлении, укладывают по всей длине группами вблизи колонн, а перпендикулярные к ним пряди распределяют равномерно в пределах пролета. Такой метод укладки туры исключает необходимость многократного переплетения пересекающихся арматурных элементов и значительно облегчает выполнение работ. Благодаря резкому сокращению объема земляных работ фундаментные плиты отвердевают быстрее, чем уширенные к подошве фундаменты, особенно если последние имеют большой размер и требуют большого объема обратной засыпки грунта;

3) возможность регулировать величину прогибов и снижение неравномерных осадок;

4) снижение в несущих конструкциях изгибающих моментов, связанных с реологическими процессами: нарушить непрерывность напрягаемых арматурных элементов и сделать конструкцию неэкономичной;

5) наличие прочного основания; для грунтов с высокой несущей способностью более целесообразны уширенные к подошве фундаменты. Согласно правилу, основанному на практическом опыте, вопрос о применении преднапряженных фундаментных плит следует рассматривать лишь в том случае, если полная площадь подошвы уширенных книзу фундаментов превышает 50% всей площади основания;

6) малая высота сооружения. С учетом собственной массы надземных конструкций, величины временных нагрузок и шага колонн применение фундаментных плит целесообразно в зданиях высотой не менее четырех этажей.

Существует большое число параметров, которые могут изменяться в широких пределах и должны быть учтены при разработке определенного решения. Например, нагрузка от собственной массы каркаса со стальными балками или прутковыми прогонами на единицу площади перекрытия может быть 1,44--1,92 кПа (150--200 кгс/м2) меньше, чем нагрузка от массы железобетонного каркаса[10]. Точно также сильнодеформируемые грунты с высокой склонностью к неравномерным осадкам могут создать для инженера серьезные трудности даже при относительно малых нагрузках на колонны и исключить возможность применения уширенных к подошве фундаментов.

Таким образом, реализация предлагаемого метода позволяет получить быструю и надежную конструкцию, защищенную от деформаций и ввести здание в строй в кратчайший срок.

строительство здание промышленный арматура

Литература

1. Хуранов В.Х., Бжахов М.И., Джанкулаев А.Я., Лихов З.Р. Новое конструктивное решение железобетонной балки равного сопротивления // Научно-технический вестник Поволжья. 2014. № 6. - С. 365-367.

2. Маилян Д.Р., Маилян Р.Л., Осипов М.В. Железобетонные балки с предварительным напряжением на отдельных участках // Бетон и железобетон. 2002. № 2. - С. 18-20.

3. Филимонов Н.Н., Трифонов И.А. Работа смешанной арматуры изгибаемого элемента в стадии разрушения // Известия ВУЗов. Строительство и архитектура. - Новосибирск: 1979. №7. - С.32-35.

4. Лихов З.Р. К расчету железобетонных изгибаемых элементов с комбинированным преднапряжением с учетом полных диаграмм деформирования материалов // Сборник докладов Международной конференции “Строительство - 2003”. - Ростов-на-Дону: РГСУ. - 2003. - С.12-17.

5. Маилян Д.Р., Ахмад Михуб, Польской П.П. Вопросы исследования изгибаемых железобетонных элементов, усиленных различными видами композитных материалов // Инженерный вестник Дона, 2013, №2 - URL: ivdon.ru/magazine/archive/n2y2013/1674.

6. Маилян Д.Р., Маилян Р.Л., Хуранов В.Х. Способы изготовления железобетонных конструкций с переменным преднапряжением по длине элемента // Известия высших учебных заведений. Строительство. 2004. № 5. - С. 4-11.

7. Маилян Д.Р., Мурадян В.А. К методике расчета железобетонных внецентренно сжатых колон // Инженерный вестник Дона, 2012, №4 -URL: ivdon.ru/magazine/archive/n4p2y2012/1333.

8. Dilger W.H., Suru K.M. Steel stresses in partially prestressed concrete members.// Journal of Prestressed Concrete Institute. - 1986. - Vol/ 31/ - №3. - pр. 88-112.

9. Lars S. Resistance analysis of reinforced concrete structures: Phaidon Press, 2012. -- 416 р.

10. Jodidio P. Architecture in the Netherlands New York: PiXezm, 2006. -- 310 р.

References

1. Huranov V.H., Bzhahov M.I., Dzhankulaev A.Ja., Lihov Z.R. Nauchno-tehnicheskij vestnik Povolzh'ja. 2014. № 6. pp. 365-367.

2. Mailjan D.R., Mailjan R.L., Osipov M.V. Beton i zhelezobeton. 2002. № 2. P. 18-20.

3. Filimonov N.N., Trifonov I.A. Izvestija VUZov. Stroitel'stvo i arhitektura. Novosibirsk: 1979. №7. pp.32-35.

4. Lihov Z.R. Sbornik dokladov Mezhdunarodnoj konferencii “Stroitel'stvo - 2003”. Rostov-na-Donu: RGSU. 2003. pp.12-17.

5. Mailjan D.R., Ahmad Mihub, Pol'skoj P.P. Inћenernyj vestnik Dona (Rus), 2013, №2. URL: ivdon.ru/magazine/archive/n2y2013/1674.

6. Mailjan D.R., Mailjan R.L., Huranov V.H. Izvestija vysshih uchebnyh zavedenij. Stroitel'stvo. 2004. № 5. pp. 4-11.

7. Mailjan D.R., Muradjan V.A. Inћenernyj vestnik Dona (Rus), 2012, №4. URL: ivdon.ru/magazine/archive/n4p2y2012/1333.

8. Dilger W.H., Suru K.M. Journal of Prestressed Concrete Institute. 1986. Vol/ 31/ №3. PP. 88-112.

9. Lars S. Resistance analysis of reinforced concrete structures: Phaidon Press, 2012. 416 p.

10. Jodidio P. Architecture in the Netherlands New York: PiXezm, 2006. 310 p.

Размещено на Allbest.ru


Подобные документы

  • Статистика основных потерь удорожания во время строительства и несовершенство проектных решений. Базовая классификация видов, форм и методов осуществления инжиниринга. Организация работ с целью значительного сокращения сроков строительства и затрат.

    реферат [2,9 M], добавлен 14.01.2011

  • Основные положения технологии возведения монолитных и сборно-монолитных зданий на основе требований строительных норм и правил. Выбор технических средств для монтажа сборных элементов, опалубки и бетонирования конструкций. Укладка бетонных смесей.

    курсовая работа [3,4 M], добавлен 09.01.2022

  • Порядок усиления конструкций покрытий одноэтажных промышленных зданий. Этапы проведения опалубочных работ. Исправление дефектов конструкций зданий индустриального строительства. Окраска поверхностей водными, масляными и синтетическими составами.

    контрольная работа [2,4 M], добавлен 21.06.2009

  • Применение металлических конструкций для строительства зданий и инженерных сооружений. Выбор основных несущих конструкций для возведения прокатного цеха: Расчет поперечной рамы, сочетания, ступенчатой колонны, стропильной фермы и подкрановой балки.

    курсовая работа [703,6 K], добавлен 07.06.2011

  • Виды капитального строительства на предприятиях лесопромышленного комплекса. Сущность проектирования промышленного здания: привязка типовых проектов к конкретным условиям места строительства. Расчет ограждающих конструкций по теплотехническим требованиям.

    курсовая работа [585,7 K], добавлен 14.12.2012

  • Условия осуществления строительства двенадцатиэтажного жилого каркасного здания в г. Смоленск. Подготовка сборных железобетонных конструкций, монолитных свайных и ростверкных фундаментов, многопустотных плит-перекрытий, навесных стеновых панелей.

    курсовая работа [5,2 M], добавлен 19.11.2009

  • Технология производства изделий для жилых, гражданских и промышленных зданий, а также для инженерных сооружений. Способы производства и контроль качества железобетонных монолитных и сборных конструкций. Транспортирование и складирование изделий.

    контрольная работа [38,0 K], добавлен 16.10.2011

  • Разработка локальной сметы на сооружение земляного полотна, на подготовительные работы, на устройство дорожной одежды, на искусственные сооружения и на обустройство дороги. Расчет экономической эффективности проекта от сокращения сроков строительства.

    курсовая работа [409,1 K], добавлен 11.09.2014

  • Архитектурно-строительный план. Конструктивные решения производственного корпуса. Отопление и вентиляция. Характеристика основных конструкций каркаса здания. Организация строительного производства завода. Локальная смета на общестроительные работы.

    дипломная работа [5,0 M], добавлен 07.08.2010

  • Анализ объемно-планировочных и конструктивных решений возводимых зданий. Сводный сметный расчёт стоимости строительства. Рассмотрение методов сокращения трудоёмкости и стоимости строительно-монтажных работ. Изучение основ охраны окружающей среды.

    курсовая работа [1,8 M], добавлен 30.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.