Методы расчета каркасных зданий из монолитного железобетона на прогрессирующее обрушение на примере 17-этажного жилого дома

Варианты моделирования "прогрессирующего" обрушения. Расчет с удалением одной колонны и последующий подбор арматуры и с учетом физической нелинейности с использованием шагово-итерационного метода. Оценка реальной живучести здания при аварийной ситуации.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 30.07.2017
Размер файла 867,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методы расчета каркасных зданий из монолитного железобетона на прогрессирующее обрушение на примере 17-этажного жилого дома

А.В. Радченков, В.Н. Аксенов

Донской государственный технический университет, Ростов-на-Дону

Аннотация

В статье рассмотрен пример расчета конструкций многоэтажного монолитно-каркасного жилого дома на «прогрессирующее» обрушение. Предложено два варианта моделирования «прогрессирующего» обрушения: линейный расчет с удалением одной колонны и последующий подбор арматуры и расчет с учетом физической нелинейности с использованием шагово-итерационного метода. Результаты, полученные в процессе расчетов, свидетельствуют о том, что предложенная методика прочностного расчета конструкций, учитывающая физическую нелинейность материалов, позволяет оценить реальную живучести здания при аварийной ситуации и получить более экономный расход материалов по сравнению с «традиционным» линейным расчетом.

Ключевые слова: прогрессирующее обрушение, жизненный цикл, компьютерное моделирование, конструктивные элементы, нелинейный расчет, устойчивость, физическая и геометрическая нелинейность, шаговый метод.

Введение

прогрессирующий обрушение арматура здание

Строительный опыт человечества постоянно сопровождается авариями. Собственно, всё современное строительство, теория и практика проектирования опираются на анализ последствий аварий. Борьба с аварийностью составляет главную задачу создателей материальных ценностей во все времена. Причинами аварий могут быть как «системные» ошибки при проектировании, строительстве или эксплуатации здания, так и аварийные воздействия природного или техногенного характера (землетрясения, просадки основания, карсты, террористические акты и т.п.). Однако возможны ситуации, когда в результате малого воздействия, например, взрыва или удара, разрушающего одну колонну или фрагмент несущей стены, расчетная схема каркаса изменяется, что приводит к обрушению всего здания. Парадоксально, но иногда, такое локальное повреждение опаснее равномерной перегрузки всей несущей системы.

В последнее время стало очевидным противоречие между стремлением повысить безопасность строительной продукции - зданий и сооружений различного назначения, и сохранить экономические показатели, достигнутые ранее при строительстве таких объектов. Опыт показал, что строительство на основе действующих ГОСТов и сводов правил является надежным и безопасным в рамках противодействия полученным на основе вероятностной обработки и узаконенным величинам нормативных и расчетных нагрузок (ГОСТ 27.002-2015).

Тот же опыт, включая мировой, продемонстрировал в ряде случаев неспособность многих несущих конструкций противодействовать аварийным воздействиям [1, 2], что в течение последних десятилетий сопровождается громкими, а также не очень широко известными авариями.

Цель и задачи исследования

Целью работы является оценка напряженно-деформированного состояния несущих конструкций многоэтажного монолитно-каркасного жилого дома при выходе из строя одной из колонн первого этажа с учетом влияния «прогрессирующего» обрушения (СТО 36554501-014-2008) [3]. Живучесть здания при этом должна быть обеспечена за счет армирования основных несущих конструкций каркаса.

Для достижения поставленной цели были определены следующие задачи:

1) Произвести расчет модели здания на расчетные нагрузки в условия нормальной эксплуатации, с целью определения необходимого армирования и прогибов элементов конструкции;

2) Выполнить линейный расчет модели здания в условиях аварийной ситуации, определить необходимое армирование элементов конструкции, препятствующее развитию «прогрессирующего» обрушения;

3) Выполнить расчет модели здания шаговым методом в нелинейной постановке при аварийной ситуации с учетом физической и геометрической нелинейности, определить необходимое армирование элементов конструкции, препятствующее развитию «прогрессирующего» обрушения;

4) Произвести анализ особенностей работы конструкций аварийного здания при внезапном удалении одной из колонн первого этажа;

5) Произвести качественную и количественную оценку изменения армирования и вертикальных прогибов элементов каркаса при выходе из строя одной из колонн первого этажа.

Расчет на прогрессирующее обрушение в программном комплексе ЛИРА-САПР в нелинейной постановке

Основные особенности расчета строительных конструкций на прогрессирующие обрушение в программных комплексах описаны в работах [4, 5]. Основная идея заключаются в реализации нескольких стадий расчета. На первой стадии выполняется линейный расчет. На втором этапе в линейной схеме исключаются из работы («разрушаются») отдельные несущие элементы: обычно колонны, или фрагменты несущих стен. Рассматривается несколько вариантов расположения удаляемых конструкций. По результатам этих расчетов назначается армирование для расчета модели в нелинейной постановке. На третьем этапе производится расчет здания с учетом физической и геометрической нелинейности, с учетом коэффициента, учитывающий динамику процесса. Расчет проводят с пошаговой корректировкой армирования элементов конструкции до состояния разрушения конструкции. Критериями разрушения конструкций могут служить геометрическая изменяемость системы на n-ом шаге; лавинообразный рост деформаций и перемещений системы. При этом в программном комплексе ЛИРА-САПР выдается сообщение «разрушение конструкции» и дальнейший процесс расчета прекращается.

Описание объекта исследования и метода

В качестве объекта исследования был выбран реальный объект: 17-этажный жилой дом с подземной автостоянкой и встроенными офисными помещениями в г. Ростов-на-Дону (рис. 1).

В плане здание имеет прямоугольную форму с габаритными размерами в осях 24,6х25,4 м- надземная часть и 51,52х46,2 м- подземная часть. Сетка колонн прямоугольная с шагом колонн вдоль цифровых осей 6000 мм, 3520 мм, 6600 мм, 2050 мм, и 5700 мм, вдоль буквенных - 5700 мм, 6000 мм, 6300 мм, 3500 мм, 6600 мм, 5600 мм.

В подвале размещаются парковочные места, первый этаж - офисные помещения, 2…17 этажи - жилые помещения. Высота подвального этажа составляет 4,15 м,1-17 этажей -3,0 м.

Здание выполнено по каркасной схеме из монолитного железобетона.

В качестве фундамента здания принят плитный ростверк.

Рис. 1. Пространственная схема здания и типового этажа.

Плиты перекрытий приняты монолитными толщиной 200 мм на типовом этаже, 250 мм на отм. 0,000 и 350 мм - плита покрытия подземной автостоянки. Колонны, расположенные в надземной части здания, приняты переменного по высоте сечения: 600х600 мм на 1…5 этажах, 550х550 мм на шестом этаже, 500х500 мм на 7…11 этажах; 450х450 мм на двенадцатом этаже, 400х400 мм - тринадцатый этаж и выше. Колонны, расположенные в подземной части здания, приняты квадратного сечения, 650х650 мм и круглые, диаметром 460 мм. В подвале устроены монолитные наружные стены толщиной 300 мм. Монолитные стены лифтовой шахты и лестничных клеток приняты толщиной 200 мм. Лестницы в здании запроектированы монолитными и учтены в расчетной схеме. Минимальная толщина лестничных маршей принята 160 мм.

Материал несущих конструкции каркаса: бетона класса В25, армированный стержневой арматурной сталью класса А500 в качестве рабочей арматуры и класса А240 - в качестве поперечной.

Для оценки устойчивости здания против «прогрессирующего» обрушения рассматривались три варианта возможного разрушения колонн первого этажа: угловая, крайняя и внутренняя (рис. 2).

При реализации расчетов на «прогрессирующее» обрушение, были приняты во внимание следующие условия [6, 7]:

1) Устойчивость к «прогрессирующему» обрушению проверяется линейным и нелинейным расчетом на особое (аварийное) сочетание нормативных нагрузок и воздействий, включающее нормативные постоянные и длительные нагрузки;

2) Коэффициенты надежности по нагрузкам следует принимать равными единице;

3) За расчетные характеристики материалов принимаются их нормативные значения;

4) Возможность работы арматуры за пределом упругости;

5) Минимальная площадь продольной арматуры в железобетонных перекрытиях и покрытиях должна быть не менее 0,25% от площади бетона;

6) Выполнение расчета многоэтажного здания а линейной постановке с коэффициентом динамичности по нагрузке Kdv=2;

7) Выполнение расчета многоэтажного здания в нелинейной постановке с коэффициентом динамичности по нагрузке Kdv=1,27 [5, 8, 9].

Рис. 2. Шаговый метод расчета модели здания для трех вариантов разрушения колонны первого этажа в системе ПК ЛИРА-САПР.

Результаты расчета

По результатам выполненных расчетов получено, что в нелинейной схеме значения максимальных прогибов перекрытий достигают 226 мм для варианта с разрушением угловой колонны (рис. 3, а). При разрушении крайней колонны деформации перекрытий 193 мм (рис. 3, б), а при разрушении внутренней колонны - 100 мм (рис. 3, в). При решении задачи в линейной постановке деформации составили 89, 60 и 47 мм соответственно.

На рис. 4 приведены схемы развития трещин и образования пластических шарниров в плите перекрытия над разрушенной колонной при различных вариантах прогрессирующего обрушения. При расчете был принят коэффициент динамичности 1,27 [5, 8, 9].

а) разрушение угловой колонны б) разрушение крайней колонны

в) разрушение средней колонны

Рис.3. Вертикальные деформации в нелинейном расчете, мм

а) разрушение угловой колонны б) разрушение крайней колонны

в) разрушение средней колонны

Рис.4. Трещинообразование в плите перекрытия на отм. +2,950.

Для анализа результатов армирования конструкций здания, полученные по расчету данные были сведены в табл. 1.

Таблица № 1

Расход арматуры по вариантам расчета.

Вариант расчета

Линейный, без разрушения

С учетом разрушения 1 колонны

Линейный

Нелинейный

Элементы конструкции

Плиты

Колонны

Плиты

Колонны

Плиты

Колонны

Расход арматуры в (т)

322,13

28,74

807,04

181,11

530,72

36,25

Расход арматуры в (%)

100

100

250,53

630,17

164,75

126,13

Заключение

На основании полученных сравнительных результатов расчетов были сделаны следующие выводы:

1) Нелинейный расчет [1], реализованный в программном комплексе ЛИРА-САПР, позволяет выполнять расчет на прочность и устойчивость каркаса при «прогрессирующем» обрушении, обеспечивая при этом меньший расход строительных материалов чем при линейном расчете;

2) Предложенная методика прочностного расчета конструкций на «прогрессирующее» разрушение, учитывающая физическую и геометрическую нелинейность, позволяет оценить реальную живучесть здания при аварийной ситуации и устойчивости к «прогрессирующему» обрушению;

3) Шагово-интерационые методы решения нелинейных задач в случаях моделирования процесса разрушения являются наиболее приемлемыми;

4) Армирование колон и плит перекрытий, полученное по результатам линейного и нелинейного расчетов, предотвращает развитие «прогрессирующего» разрушения конструкции. Однако, экономия арматуры при использовании нелинейного расчета составила 57,4%;

5) Вертикальные деформации, полученные по результатам нелинейного расчета, значительно превышают значения, полученные при линейном расчете (для варианта с разрушением угловой колонны в 2,54 раза, при разрушении крайней колонны в 3,22 раза, а при разрушении внутренней колонны в 2,13 раза).

Литература

1. Starossek U. Progressive collapse of structures: Nomenclature and procedures // Structural Engineering International 2006, №16 (2). pp.113-117. URL: server.sh.tu-harburg.de/starossek/Index.htm

2. R. Shankar Nair. Progressive collapse. Basics // Modern Steel Construction. March, 2004 URL: sefindia.org/forum/files/engineering_and_ design__standard_practice_for_concrete_for_civil_works_structures_904.pdf.

3. Л.Н. Седегова. Особенности строительства гражданских зданий в сложившейся городской застройке // Инженерный вестник Дона, 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1698.

4. М. Барабаш. Методика моделирования прогрессирующего обрушения на примере реальных высотных зданий // MOKSLAS - LIETUVOS ATEITIS SCIENCE - FUTURE OF LITHUANIA 2014 6(5)/ pp.520-530.

5. В.О. Алмазов, Кхой Као Зуй. Динамика прогрессирующего разрушения монолитных многоэтажных каркасов. - М.: АСВ, 2013. - 128 с.

6. Рекомендации по защите монолитных жилых зданий от прогрессирующего обрушения. М., 2005. - 40 с.

7. Рекомендации по защите высотных зданий от прогрессирующего обрушения. М., 2006. - 34 с.

8. Б.С. Расторгуев, К.Н. Мутока. Деформирование конструкций перекрытий каркасных зданий после внезапного разрушения одной колонны // Сейсмостойкое строительство. Безопасность сооружений. 2006. № 1. С. 12-15.

9. И.Н. Тихонов, В.З. Мешков, Б.С. Расторгуев. Проектирование армирования железобетона.- М.2015.-276 с.

10. К.В. Кургин, Д.Р. Маилян. О необходимости трансформации базовой аналитической зависимости "?b-?b" бетона // Инженерный вестник Дона, 2011, №4 URL: ivdon.ru/magazine/archive/n4y2011/712.

References

1. Starossek U. Progressive collapse of structures: Nomenclature and procedures. Structural Engineering International 2006, №16 (2). pp. 113-117. URL: server.sh.tu-harburg.de/starossek/Index.htm.

2. R. Shankar Nair. Progressive collapse. Basics. Modern Steel Construction. March, 2004. URL: sefindia.org/forum/files/engineering_and_ design__standard_practice_for_concrete_for_civil_works_structures_904.pdf.

3. L.N. Sedegova. Inћenernyj vestnik Dona (Rus), 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1698

4. M. Barabash. MOKSLAS - LIETUVOS ATEITIS SCIENCE - FUTURE OF LITHUANIA 2014 6(5). pp. 520-530.

5. V.O. Almazov, Kkhoy Kao Zuy. Dinamika progressiruyushchego razrusheniya monolitnykh mnogoetazhnykh karkasov [The dynamics of progressive collapse of monolithic multistory carcases]. M.: ASV, 2013. 128 p.

6. Rekomendatsii po zashchite monolitnykh zhilykh zdaniy ot progressiruyushchego obrusheniya [Recommendations for the protection monolithic residential buildings from the progressive collapse]. M., 2005. 40 p.

7. Rekomendatsii po zashchite vysotnykh zdaniy ot progressiruyushchego obrusheniya [Recommendations for the protection of high-rise buildings from the progressive collapse]. M., 2006. 34 p.

8. B.S. Rastorguev, K.N. Mutoka. Seysmostoykoe stroitel'stvo. Bezopasnost' sooruzheniy. 2006. № 1. pp. 12-15.

9. I.N. Tikhonov, V.Z. Meshkov, B.S. Rastorguev. Proektirovanie armirovaniya zhelezobetona [Design of concrete reinforcement]. M.2015. 276 p.

10. K.V. Kurgin, D.R. Mailyan. Inћenernyj vestnik Dona (Rus), 2011, №4 URL: ivdon.ru/magazine/archive/n4y2011/712.

Размещено на Allbest.ru


Подобные документы

  • Расчет строительных конструкций на статические и динамические воздействия. Алгоритм проектирования конструкций, защищенных от прогрессирующего обрушения. Оценка эффективности применения жестких блоков по высоте здания без дополнительных затрат.

    диссертация [6,3 M], добавлен 24.10.2010

  • Проектирование 18-ти этажного жилого дома из монолитного железобетона, жилого дома со скрытым ригелем и 2-х этажного жилого дома. Инженерно-техническое оборудование здания. Фундаменты, стены и перегородки, перекрытие и покрытие, лестницы, кровля.

    реферат [18,6 K], добавлен 21.02.2011

  • Проектирование жилого дома для проживания одной семьи из четырех человек. Технико-экономическое обоснование проекта, варианты архитектурно-строительного решения здания. Выбор метода механизации строительно-монтажных работ. Расчет стоимости материалов.

    контрольная работа [87,7 K], добавлен 06.08.2013

  • Расчет и конструирование многопустотной предварительно напряженной плиты перекрытия. Определение геометрических характеристик поперечного сечения ригеля, подбор продольной арматуры. Расчет средней колонны, монолитного перекрытия и кирпичного простенка.

    курсовая работа [2,2 M], добавлен 07.04.2014

  • Оценка места строительства. Объемно–планировочное решение жилого дома, конструктивное решение. Теплотехнический расчет ограждающих конструкций, расчет нагрузок и деформаций. Технология строительного производства. Работы основного периода строительства.

    дипломная работа [3,1 M], добавлен 17.09.2011

  • Физический износ здания. Расчет геометрических и теплоэнергетических показателей. Расчет температурно-влажностного режима и теплоэнергетических показателей утепленного здания. Конструкция утепления. Расчет монолитного участка железобетонного перекрытия.

    дипломная работа [984,4 K], добавлен 15.05.2014

  • Рассмотрение этапов теплотехнического расчета ограждающих конструкций и определения глубины заложения фундамента. Особенности проектирования 3-х этажного жилого дома в поселке Дубровское Вологодского района. Характеристика конструктивной схемы здания.

    дипломная работа [1,7 M], добавлен 09.12.2016

  • Описание номенклатуры стенового камня на основе железобетона для монолитных каркасных зданий. Характеристика материалов, используемых при его производстве. Расчет состава бетона и общего количества камней внешней стены конструкции. Фасадная штукатурка.

    контрольная работа [24,5 K], добавлен 20.12.2012

  • Разработка генерального плана и технико-экономические показатели объёмного решения для проектируемого 5-этажного 10-квартирного жилого дома. Конструктивные решения для фундамента, стен, перекрытий, лестнично-лифтового узла, отделки, балконов и крыш.

    курсовая работа [271,3 K], добавлен 18.07.2011

  • Анализ инженерно-геологических условий и порядок расчета оснований и фундаментов 7-ми этажного дома. Определение нагрузок на фундамент здания, выбор типа оснований и конструкций. Проектирование фундаментов на естественном основании, расчет их осадки.

    курсовая работа [633,1 K], добавлен 21.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.