Строительная теплофизика

Изучение параметров теплопроводности и термического сопротивления различных материалов. Защитные свойства наружных ограждений в отопительный период. Стационарная теплопередача через сложное наружное ограждение. Нестационарный тепловой режим ограждений.

Рубрика Строительство и архитектура
Вид курс лекций
Язык русский
Дата добавления 19.07.2015
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

77

CТРОИТЕЛЬНАЯ ТЕПЛОФИЗИКА

Конспект лекций для студентов специальности «Теплогазоснабжение и вентиляция»

1. Введение

1.1 Цель и задачи курса

Конспект лекций дисциплины «Строительная теплофизика» предназначен для студентов, изучающих в рамках специальности «Теплогазоснабжение и вентиляция» одноименную дисциплину. Содержание пособия соответствует программе дисциплины и в значительной мере ориентировано на курс лекций, читаемый в МГСУ.

1.2 Предмет курса

Строительная теплофизика изучает процессы передачи теплоты, переноса влаги, фильтрации воздуха применительно к строительству.

Не смотря на то, что наука относится в основном к ограждающим конструкциям здания, для специалистов по отоплению и вентиляции строительная теплофизика очень важна. Дело в том, что, во-первых, от теплотехнических качеств наружных ограждений зависят теплопотери здания, влияющих на мощность отопительных систем и расход теплоты ими за отопительный период. Во-вторых, что влажностный режим наружных ограждений влияет на их теплозащиту, а, следовательно, на мощность систем, обеспечивающих заданный микроклимат здания. В-третьих, что коэффициенты теплообмена на внутренней поверхности наружных ограждений играют роль не только в оценке общего приведенного сопротивления теплопередаче конструкции, но и в оценке температуры на внутренней поверхности этого ограждения. В-четвертых, что «плотные» окна имеют вполне определенное сопротивление воздухопроницанию. И при «плотных» окнах в малоэтажных зданиях до 5 этажей инфильтрацией в расчете теплопотерь можно пренебречь, а в более высоких на нижних этажах она уже будет ощутимой. В-пятых, что от воздушного режима здания зависит не только наличие или отсутствие инфильтрации, но и работа систем вентиляции, особенно естественных. В-шестых, что радиационная температура внутренних поверхностей наружных и внутренних ограждений, важнейшая составляющая оценки микроклимата помещений, в основном является производной от теплозащиты здания. В-седьмых, что теплоустойчивость ограждений и помещений влияет на постоянство температуры в помещениях при переменных тепловых воздействиях на них, особенно в современных зданиях, в которых воздухообмен близок к минимальной норме наружного воздуха.

В проектировании и теплотехнической оценке наружных ограждений имеется ряд особенностей. Утепление здания - дорогостоящая и ответственная составляющая современного строительства, поэтому важно обоснованно принимать толщину утеплителя. Специфика сегодняшнего теплотехнического расчета наружных ограждений [1] связана:

- во-первых, с повысившимися требованиями к теплозащите зданий;

- во-вторых, с необходимостью учитывать роль эффективных утеплителей в ограждающих конструкциях, коэффициенты теплопроводности которых настолько малы, что требуют очень аккуратного отношения к подтверждению их величин в эксплуатационных условиях;

- в-третьих, с тем, что в ограждениях появились различные связи, сложные примыкания одного ограждения к другому, снижающие сопротивление теплопередаче ограждения. Оценка влияния различного рода теплопроводных включений на теплозащиту зданий требует опоры на специальные подробные исследования.

1.3 Здание как единая энергетическая система

Совокупность всех факторов и процессов (внешних и внутренних воздействий), влияющих на формирование теплового микроклимата помещений, называется тепловым режимом здания.

Ограждения не только защищают помещение от наружной среды, но и обмениваются с ним теплотой и влагой, пропускают воздух сквозь себя как внутрь, так и наружу. Задача поддержания заданного теплового режима помещений здания (поддержания на необходимом уровне температуры и влажности воздуха, его подвижности, радиационной температуры помещения) возлагается на инженерные системы отопления, вентиляции и кондиционирования воздуха. Однако определение тепловой мощности и режима работы этих систем невозможно без учета влияния тепловлагозащитных и теплоинерционных свойств ограждений. Поэтому система кондиционирования микроклимата помещений включает в себя все инженерные средства, обеспечивающие заданный микроклимат обслуживаемых помещений: ограждающие конструкции здания и инженерные системы отопления, вентиляции и кондиционирования воздуха. Таким образом, современное здание - сложная взаимосвязанная система тепломассообмена - единая энергетическая система.

2. Тепловлагопередача через наружные ограждения

2.1 Основы теплопередачи в здании

Перемещение теплоты всегда происходит от более теплой среды к более холодной. Процесс переноса теплоты из одной точки пространства в другую за счет разности температуры называется теплопередачей и является собирательным, так как включает в себя три элементарных вида теплообмена: теплопроводность (кондукцию), конвекцию и излучение. Таким образом, потенциалом переноса теплоты является разность температуры.

2.1.1Теплопроводность

Теплопроводность - вид передачи теплоты между неподвижными частицами твердого, жидкого или газообразными вещества. Таким образом, теплопроводность - это теплообмен между частицами или элементами структуры материальной среды, находящимися в непосредственном соприкосновении друг с другом. При изучении теплопроводности вещество рассматривается как сплошная масса, его молекулярное строение игнорируется. В чистом виде теплопроводность встречается только в твердых телах, так как в жидких и газообразных средах практически невозможно обеспечить неподвижность вещества.

Большинство строительных материалов являются пористыми телами. В порах находится воздух, имеющий возможность двигаться, то есть переносить теплоту конвекцией. Считается, что конвективной составляющей теплопроводности строительных материалов можно пренебречь ввиду ее малости. Внутри поры между поверхностями ее стенок происходит лучистый теплообмен. Передача теплоты излучением в порах материалов определяется главным образом размером пор, потому что чем больше поры, тем больше разность температуры на ее стенках. При рассмотрении теплопроводности характеристики этого процесса относят к общей массе вещества: скелету и порам совместно.

Ограждающие конструкции здания, как правило, является плоско-параллельными стенками, теплоперенос в которых осуществляется в одном направлении. Кроме того, обычно при теплотехнических расчетах наружных ограждающих конструкций принимается, что теплопередача происходит при стационарных тепловых условиях, то есть при постоянстве во времени всех характеристик процесса: теплового потока, температуры в каждой точке, теплофизических характеристик строительных материалов. Поэтому важно рассмотреть процесс одномерной стационарной теплопроводности в однородном материале, который описывается уравнением Фурье:

,(2.1)

где

qT - поверхностная плотность теплового потока, проходящего через плоскость, перпе ндикулярную тепловому потоку, Вт/м2;

л - теплопроводность материала, Вт/мС;

t - температура, изменяющаяся вдоль оси x,оС;

Отношение , носит название градиента температуры, оС/м, и обозначается grad t. Градиент температуры направлен в сторону возрастания температуры, которое связано с поглощением теплоты и уменьшением теплового потока. Знак минус, стоящий в правой части уравнения (2.1), показывает, что увеличение теплового потока не совпадает с увеличением температуры.

Теплопроводность л является одной из основных тепловых характеристик материала.Как следует из уравнения (2.1) теплопроводность материала - это мера проводимости теплоты материалом, численно равная тепловому потоку, проходящему сквозь 1 м2 площади, перпендикулярной направлению потока, при градиенте температуры, равном 1 оС/м (рис. 1). Чем больше значение л, тем интенсивнее в таком материале процесс теплопроводности, больше тепловой поток. Поэтому теплоизоляционными материалами принято считать материалы с теплопроводностью менее 0,3 Вт/мС.

Рис.1 Направления теплового потока и градиента температуры.

_______ - изотермы; --------- - линии тока теплоты.

Изменение теплопроводности строительных материалов с изменением их плотности происходит из-за того, что практически любой строительный материал состоит из скелета - основного строительного вещества и воздуха. К.Ф.Фокин [2] для примера приводит такие данные: теплопроводность абсолютно плотного веществе (без пор) в зависимости от природы имеет теплопроводность от 0,1 Вт/моС (у пластмассы) до 14 Вт/моС (у кристаллических веществ при потоке теплоты вдоль кристаллической поверхности), в то время как воздух имеет теплопроводность около 0,026 Вт/моС. Чем выше плотность материала (меньше пористость), тем больше значение его теплопроводности. Понятно, что легкие теплоизоляционные материалы имеют сравнительно небольшую плотность.

Различия в пористости и в теплопроводности скелета приводит к различию в теплопроводности материалов, даже при одинаковой их плотности. Например, следующие материалы (табл.1) при одной и той же плотности, с0=1800 кг/м3, имеют различные значения теплопроводности [2]:

Таблица 1. Теплопроводность материалов с одинаковой плотностью 1800 кг/м3 [2].

Материал

Теплопроводность, Вт/(м оС)

Цементно-песчаный раствор

0,93

Кирпич

0,76

Асфальт

0,72

Портландцементный камень

0,46

Асбестоцемент

0,35

С уменьшением плотности материала его теплопроводность уменьшается, так как снижается влияние кондуктивной составляющей теплопроводности скелета материала, но, однако при этом возрастает влияние радиационной составляющей. Поэтому, уменьшение плотности ниже некоторого значения приводит к росту теплопроводности. То есть существует некоторое значение плотности, при котором теплопроводность имеет минимальное значение. Существуют оценки того, что при 20оС в порах диаметром 1мм теплопроводность излучением составляет 0,0007 Вт/(мС), диаметром 2 мм - 0,0014 Вт/(мС) и т.д. Таким образом, теплопроводность излучением становится значимой у теплоизоляционных материалов с малой плотностью и значительными размерами пор.

Теплопроводность материала увеличивается с повышением температуры, при которой происходит передача теплоты. Увеличение теплопроводности материалов объясняется возрастанием кинетической энергии молекул скелета вещества. Увеличивается также и теплопроводность воздуха в порах материала, и интенсивность передачи в них теплоты излучением. В строительной практике зависимость теплопроводности от температуры большого значения не имеет. Для пересчета значений теплопроводности матетиалов, полученных при температуре до 100оС, на значения их при 0оС служит эмпирическая формула О.Е.Власова [3]:

ло= лt/(1+в.t),(2.2)

где ло - теплопроводность материала при 0 оС;

лt - теплопроводность материала при t оС;

в - температурный коэффициент изменения теплопроводности, 1/оС, для различных материалов, равный около 0,0025 1/оС;

t - температура материала, при которой его коэффициент теплопроводности равен лt.

Для плоской однородной стенки толщиной д (рис. 2) тепловой поток, передаваемый теплопроводностью через однородную стенку, может быть выражен уравнением:

,(2.3)

где ф1,ф2 - значения температуры на поверхностях стенки, оС.

Рис. 2. Распределение температуры в плоской однородной стенке

Из выражения (2.3) следует, что распределение температуры по толщине стенки линейное. Величина названа термическим сопротивлением материального слоя и обозначена RТ, м2.оС/Вт:

,(2.4)

Следовательно, тепловой поток qТ, Вт/м2, через однородную плоскопараллельную стенку толщиной д, м, из материала с теплопроводностью л, Вт/мС, можно записать в виде

,(2.5)

Термическое сопротивление слоя - это сопротивление теплопроводности, равное разности температуры на противоположных поверхностях слоя при прохождении через него теплового потока с поверхностной плотностью 1 Вт/м2.

Теплообмен теплопроводностью имеет место в материальных слоях ограждающих конструкций здания.

2.1.2 Конвекция

Конвекция - перенос теплоты движущимися частицами вещества. Конвекция имеет место только в жидких и газообразных веществах, а также между жидкой или газообразной средой и поверхностью твердого тела. При этом происходит передача теплоты и теплопроводностью. Совместное воздействие конвекции и теплопроводности в пограничной области у поверхности называют конвективным теплообменом.

Конвекция имеет место на наружной и внутренней поверхностях ограждений здания. В теплообмене внутренних поверхностей помещения конвекция играет существенную роль. При различных значениях температуры поверхности и прилегающего к ней воздуха происходит переход теплоты в сторону меньшей температуры. Тепловой поток, передаваемый конвекцией, зависит от режима движения жидкости или газа, омывающих поверхность, от температуры, плотности и вязкости движущейся среды, от шероховатости поверхности, от разности между температурами поверхности и омывающей ее среды.

Процесс теплообмена между поверхностью и газом (или жидкостью) протекает по-разному в зависимости от природы возникновения движения газа. Различают естественную и вынужденную конвекцию. В первом случае движение газа происходит за счет разности температуры поверхности и газа, во втором - за счет внешних для данного процесса сил (работы вентиляторов, ветра).

Вынужденная конвекция в общем случае может сопровождаться процессом естественной конвекции, но так как интенсивность вынужденной конвекции заметно превосходит интенсивность естественной, то при рассмотрении вынужденной конвекции естественной часто пренебрегают.

В дальнейшем будут рассматриваться только стационарные процессы конвективного теплообмена, предполагающие постоянство во времени скорости и температуры в любой точке воздуха. Но так как температура элементов помещения изменяется довольно медленно, полученные для стационарных условий зависимости могут быть распространены и на процесс нестационарного теплового режима помещения, при котором в каждый рассматриваемый момент процесс конвективного теплообмена на внутренних поверхностях ограждений считается стационарным. Полученные для стационарных условий зависимости могут быть распространены и на случай внезапной смены природы конвекции от естественной к вынужденной, например, при включении в помещении рециркуляционного аппарата нагрева помещения (фанкойла или сплит-системы в режиме теплового насоса). Во-первых, новый режим движения воздуха устанавливается быстро и, во-вторых, требуемая точность инженерной оценки процесса теплообмена ниже возможных неточностей от отсутствия коррекции теплового потока в течение переходного состояния.

Для инженерной практики расчетов для отопления и вентиляции важен конвективный теплообмен между поверхностью ограждающей конструкции или трубы и воздухом (или жидкостью). В практических расчетах для оценки конвективного теплового потока (рис. 3) применяют уравнения Ньютона:

,(2.6)

где qк - тепловой поток, Вт, передаваемый конвекцией от движущейся среды к поверхности или наоборот;

ta - температура воздуха, омывающего поверхность стенки, оС;

ф - температура поверхности стенки, оС;

бк - коэффициент конвективной теплоотдачи на поверхности стенки, Вт/м2.оС.

Рис. 3 Ковективный теплообмен стенки с воздухом

Коэффициент теплоотдачи конвекцией, к - физическая величина, численно равная количеству теплоты, передаваемой от воздуха к поверхности твердого тела путем конвективного теплообмена при разности между температурой воздуха и температурой поверхности тела, равной 1оС. При таком подходе вся сложность физического процесса конвективного переноса теплоты заключена в коэффициенте теплоотдачи, к. Естественно, что величина этого коэффициента является функцией многих аргументов. Для практического использования принимаются весьма приближенные значения к.

Уравнение (2.5) удобно переписать в виде:

,(2.7)

где Rк - сопротивление конвективной теплоотдаче на поверхности ограждающей конструкции, м2.оС/Вт, равное разности температуры на поверхности ограждения и температуры воздуха при прохождении теплового потока с поверхностной плотностью 1 Вт/м2 от поверхности к воздуху или наоборот.

Сопротивление Rк является величиной обратной коэффициенту конвективной теплоотдачи к:

,(2.8)

е __________________________________________________________________________________________________________________

2.1.3 Излучение

Излучение (лучистый теплообмен) - перенос теплоты с поверхности на поверхность через лучепрозрачную среду электромагнитными волнами, трансформирующимися в теплоту (рис.4).

Рис. 4 Лучистый теплообмен между двумя поверхностями

Любое физическое тело, имеющее температуру отличную от абсолютного нуля, излучает в окружающее пространство энергию в виде электромагнитных волн. Свойства электромагнитного излучения характеризуются длиной волны. Излучение, которое воспринимается как тепловое и имеющее длины волн в диапазоне 0,76 - 50 мкм, называется инфракрасным.

Например, лучистый теплообмен происходит между поверхностями, обращенными в помещение, между наружными поверхностями различных зданий, поверхностями земли и неба. Важен лучистый теплообмен между внутренними поверхностями ограждений помещения и поверхностью отопительного прибора. Во всех этих случаях лучепрозрачной средой, пропускающей тепловые волны, является воздух.

В практике расчетов теплового потока при лучистом теплообмене используют упрощенную формулу. Интенсивность передачи теплоты излучением qл, Вт/м2, определяется разностью температуры поверхностей, участвующих в лучистом теплообмене:

, (2.9)

где ф1и ф2 - значения температуры поверхностей, обменивающихся лучистой теплотой, оС;

бл - коэффициент лучистой теплоотдачи на поверхности стенки, Вт/м2.оС.

Коэффициент теплоотдачи излучением, л - физическая величина, численно равная количеству теплоты, передаваемой от одной поверхности к другой путем излучения при разности между температурой поверхностей, равной 1оС.

Введем понятие сопротивления лучистой теплоотдаче Rл на поверхности ограждающей конструкции, м2.оС/Вт, равное разности температуры на поверхностях ограждений, обменивающихся лучистой теплотой, при прохождении с поверхности на поверхность теплового потока с поверхностной плотностью 1 Вт/м2.

Тогда уравнение (2.8) можно переписать в виде:

,(2.10)

Сопротивление Rл является величиной обратной коэффициенту лучистой теплоотдачи л:

.(2.11)

2.1.4 Термическое сопротивление воздушной прослойки

Для внесения единообразия сопротивление теплопередаче замкнутых воздушных прослоек, расположенных между слоями ограждающей конструкции, называют термическим сопротивлением Rв.п, м2.оС/Вт.

Схема передачи теплоты через воздушную прослойку представлена на рис.5.

Рис. 5. Теплообмен в воздушной прослойке

Тепловой поток, проходящий через воздушную прослойку qв.п, Вт/м2, складывается из потоков, передаваемых теплопроводностью (2) qт, Вт/м2, конвекцией (1) qк, Вт/м2,и излучением (3) qл, Вт/м2.

qв.п=qт+qк+qл.(2.12)

При этом доля потока, передаваемого излучением самая большая. Рассмотрим замкнутую вертикальную воздушную прослойку, на поверхностях которой разность температуры составляет 5оС. С увеличением толщины прослойки от 10 мм до 200 мм доля теплового потока за счет излучения возрастает с 60% до 80%. При этом доля теплоты, передаваемой путем теплопроводности, падает от 38% до 2%, а доля конвективного теплового потока возрастает с 2% до 20% [2].

Прямой расчет этих составляющих достаточно громоздок. Поэтому в нормативных документах [4] приводятся данные о термических сопротивлениях замкнутых воздушных прослоек, которые в 50-х годах ХХ века была составлена К.Ф.Фокиным [2] по результатам экспериментов М.А.Михеева [5]. При наличии на одной или обеих поверхностях воздушной прослойки теплоотражающей алюминиевой фольги, затрудняющей лучистый теплообмен между поверхностями, обрамляющими воздушную прослойку, термическое сопротивление следует увеличить в два раза. Для увеличения термического сопротивления замкнутыми воздушными прослойками в [2] рекомендуется иметь в виду следующие выводы из исследований:

1) эффективными в теплотехническом отношении являются прослойки небольшой толщины;

2) рациональнее делать в ограждении несколько прослоек малой толщины, чем одну большой;

3) воздушные прослойки желательно располагать ближе к наружной поверхности ограждения, так как при этом в зимнее время уменьшается тепловой поток излучением;

4) вертикальные прослойки в наружных стенах необходимо перегораживать горизонтальными диафрагмами на уровне междуэтажных перекрытий;

5) для сокращения теплового потока, передаваемого излучением, можно одну из поверхностей прослойки покрывать алюминиевой фольгой, имеющей коэффициент излучения около е=0,05. Покрытие фольгой обеих поверхностей воздушной прослойки практически не уменьшает передачу теплоты.

2.1.5 Коэффициенты теплоотдачи на внутренней и наружной поверхностях

Рассмотрим стенку, отделяющую помещение с температурой tв от наружной среды с температурой tн. Наруружная поверхность путем конвекции обменивается теплотой с наружным воздухом, а лучистой - с окружающими поверхностями, имеющими температуру tокр.н. То же самое и с внутренней стороны. Можно записать, что тепловой поток с плотностью q, Вт/м2, проходящий сквозь стену, равен

,(2.13)

где tокр.в и tокр.н - температура поверхностей, окружающих соответственно внутреннюю и наружную плоскости рассматриваемой стенки, оС;

бк.в, бк.н - коэффициенты конвективной теплоотдачи на внутренней и наружной поверхностях стенки, м2.оС/Вт;

бл.в, бл.н - коэффициенты лучистой теплоотдачи на внутренней и наружной поверхностях стенки, м2.оС/Вт.

В инженерных расчетах принято теплоотдачу на поверхностях ограждающих конструкций не разделять на лучистую и конвективную составляющие. Считается, что на внутренней поверхности наружного ограждения в отапливаемом помещении происходит тепловосприятие, оцениваемое общим коэффициентом бв, Вт/(м2.оС), а на наружной поверхности - теплоотдача, интенсивность которой определяется коэффициентом теплоотдачи бн, Вт/(м2.оС).

Кроме того, принято счтать, что температура воздуха и окружающих поверхностей равны друг другу, то есть tокр.в =tв, а tокр.н =tн. То есть

,(2.14)

Следовательно, принимается, что коэффициенты теплоотдачи на наружной и внутренней поверхностях ограждения равны сумме коэффициентов лучистого и конвективного теплообмена с каждой стороны:

.(2.15)

Коэффициент теплоотдачи на наружной или внутренней поверхности по физическому смыслу - это плотность теплового потока, отдаваемая соответствующей поверхностью окружающей ее среде (или наоборот) при разности температуры поверхности и среды в 1 оС.

Величины, обратные коэффициентам теплоотдачи, принято называть сопротивлениями теплообмену на внутренней Rв, м2.оС/Вт, и наружной Rн, м2.оС/Вт, поверхностях ограждения:

Rв = 1/ бв; Rн=1/ бн.(2.16)

2.1.6 Теплопередача через многослойную стенку

Если с одной стороны многослойной стенки, состоящей из n слоев, поддерживается температура tв, а с другой стороны tн< tв, то возникает тепловой поток q, Вт/м2 (рис. 6).

Этот тепловой поток движется от среды с температурой tв, оС, к среде с температурой tн, оС, проходя последовательно от внутренней среды к внутренней поверхности с температурой фв, оС:

q= (1/ Rв).( tв - фв), (2.17)

Рис.6. Распределение температуры при теплопередаче через многослойную стенкзатем от внутренней поверхности сквозь первый слой с термическим сопротивлением R Т,1 к стыку первого и второго слоев:

q= (1/ RТ,1).( фв- t1 ),(2.18)

после этого через все остальные слои

q= (1/ R Т,i).( ti-1 - ti ),(2.19)

и, наконец, от наружной поверхности с температурой фн к наружной среде с температурой tн:

q= (1/ R н).( фн- tн ),(2.20)

где R Т,i- термическое сопротивление слоя с номером i, м2.оС/Вт;

Rв, Rн- сопротивления теплообмену на внутренней и наружной поверхностях, м2.оС/Вт;

ti-1 - температура, оС, на стыке слоев с номерами i-1 и i;

ti - температура, оС, на стыке слоев с номерами i и i+1.

Переписав (2.16) - (2.19) относительно разностей температуры и сложив их, получим равенство:

tв- tн = q.(Rв+R Т,1+R Т,2+…+R Т,i+….+R Т,n+Rн) (2.21)

Выражение в скобках - сумма термических сопротивлений плоскопараллельных последовательно расположенных по ходу теплового потока слоев ограждения и сопротивлений теплообмену на его поверхностях называется общим сопротивлением теплопередаче ограждения Ro, м2.оС/Вт:

Ro=Rв+УR Т,i+Rн,(2.22)

а сумма термических сопротивлений отдельных слоев ограждения - его термическим сопротивлением RТ, м2.оС/Вт:

RТ = R Т,1+R Т,2+…+Rв.п+….+R Т,n,(2.23)

где R Т,1, R Т,2,…, R Т,n - термические сопротивления отдельных плоскопараллельных последовательно расположенных по ходу теплового потока слоев слоев ограждающей конструкции, м2.оС/Вт, определяемые по формуле (2.4);

Rв.п - термическое сопротивление замкнутой воздушной прослойки, м2.оС/Вт, по п. 2.1.4.

По физическому смыслу общее сопротивление теплопередаче ограждения Ro - это разность температуры сред по разные стороны ограждения, которая формирует проходящий через него тепловой поток плотностью 1 Вт/ м2, в то время как термическое сопротивление многослойной конструкции - разность температуры наружной и внутренней поверхностей ограждения, которая формирует проходящий через него тепловой поток плотностью 1 Вт/ м2,

Из (2.22) следует, что тепловой поток q, Вт/м2, проходящий через ограждение, пропорционален разности температуры сред по разные стороны ограждения (tв- tн) и обратно пропорционален общему сопротивлению теплопередаче Ro

q= (1/ Rо). (tв- tн),(2.24)

2.1.7 Приведенное сопротивление теплопередаче

При выводе общего сопротивления теплопередаче рассматривалось плоско-параллельное ограждение. А поверхности большинства современных ограждающих конструкций не являются изотермическими, то есть температура на различных участках наружной и внутренней поверхностей конструкции не являются одинаковыми из-за наличия различных теплопроводных включений, имеющихся в конструкции/

Поэтому введено понятие приведенного сопротивления теплопередаче ограждающей конструкции, которым называется сопротивление теплопередаче однослойной ограждающей конструкции той же площади, через которую проходит одинаковый с реальной конструкцией поток теплоты при одинаковой разности между температурой внутреннего и наружного воздуха. Важно отметить, что приведенное сопротивление теплопередаче относится ко всей конструкции или ее участку, а не к площадке в 1 м2. Это происходит потому, что теплопроводные включения могут быть обусловлены не только регулярно уложенными связями, но и довольно крупными элементами крепления фасадов к колоннам, и самими колоннами, врезающимися в стену, и примыканием одних ограждений к другим.

Поэтому приведенное сопротивление теплопередаче конструкции (или участка конструкции) может быть определено выражением:

(2.25)

где Q - поток теплоты, проходящей через конструкцию (или участок конструкции), Вт;

A - площадь конструкции (или участка конструкции), м2.

Выражение является по своему смыслу усредненной по площади (или приведенной к единице площади) плотностью потока теплоты через конструкцию, то есть можно записать:

(2.26)

Из (2.24) и (2.25) следует:

(2.27)

Ограждающие конструкции с применением эффективных теплоизоляционных материалов выполняются таким образом, что слой теплоизоляционного материала закрывает, насколько возможно, большую площадь конструкции. Сечения теплопроводных включений выполняют насколько возможно малыми. Следовательно, можно выделить участок конструкции, удаленный от теплопроводных включений. Если пренебречь влиянием теплопроводных включений на этом участке, то его теплозащитные свойства можно характеризовать при помощи условного сопротивления теплопередаче , определенного формулой (2.22). Отношение значения приведенного сопротивления теплопередаче конструкции к значению условного сопротивления теплопередаче рассмотренного участка называется коэффициентом теплотехнической однородности:

(2.28)

Величина коэффициента теплотехнической однородности оценивает, насколько полно используются возможности теплоизоляционного материала, или по-другому - каково влияние теплопроводных включений. Этот коэффициент практически всегда меньше единицы. Равенство его единице означает, что теплопроводные включения отсутствуют, и возможности применения слоя теплоизоляционного материала используются максимально. Но таких конструкций практически не бывает.

Величина, обратная приведенному сопротивлению теплопередаче, названа коэффициентом теплопередачи ограждающей конструкции К, Вт/м2.оС:

. (2.29)

Коэффициент теплопередачи ограждения К равен плотности теплового потока, проходящего сквозь ограждение, при разности температуры сред по разные стороны от него в 1оС.

Следовательно, тепловой поток q, Вт/м2, проходящий через ограждение за счет теплопередачи, может быть найден по формуле:

q= К.( tв- tн ).(2.30)

2.1.8 Распределение температуры по сечению ограждения

Важной практической задачей является расчет распределения температуры по сечению ограждения (рис.7). Из дифференциального уравнения (2.1) следует, что оно линейно относительно сопротивления теплопередаче, поэтому можно записать температуру tx в любом сечении ограждения:

,(2.31)

где Rх-в и Rх-н - сопротивления теплопередаче соответственно от внутреннего воздуха до точки х и от наружного воздуха до точки х, м2.оС/Вт.

Рис. 7. распределение температуры в многослойной стенке. а) в масштабе толщин слоев, б) в масштабе термических сопротивлений

Однако выражение (2.30) относится к ограждению без возмущающих одномерность теплового потока. Для реального ограждения, характеризуемого приведенным сопротивлением теплопередаче при расчете распределения температуры по сечению ограждения надо учитывать уменьшение сопротивлений теплопередаче Rх-в и Rх-н с помощью коэффициента теплотехнической однородности:

.(2.32)

2.2 Влажностный режим ограждающих конструкций

Влажностный режим ограждений тесно связан с их тепловым режимом, поэтому он изучается в курсе Строительной теплофизики. Увлажнение строительных материалов в ограждениях отрицательным образом сказывается на гигиенических и эксплуатационных показателях зданий.

2.2.1 Причины появления влаги в ограждениях

Пути попадания влаги в ограждения различны, а мероприятия по снижению влажности строительных материалов в них зависят от причины увлажнения. Эти причины следующие.

1. Строительная (начальная) влага, то есть влага, оставшаяся в ограждении после возведения здания. Ряд строительных процессов является «мокрыми», например, бетонирование, кладка из кирпича и штучных блоков: ячеистобетонных, керамзитобетонных и других, оштукатуривание. Для сокращения продолжительности мокрых строительных процессов в зимних условиях применяются сухие процессы. Например, во внутренних слоях наружных стен поэтажной разрезки ставятся пазогребневые гипсовые гидрофобизированные панели. Обычная внутренняя штукатурка заменяется гипсокартонными листами.

Строительная влага должна быть удалена из ограждений в первые 2 - 3 года эксплуатации здания. Поэтому очень важно, чтобы в нем хорошо работали системы отопления и вентиляции, на которые ляжет дополнительная нагрузка, связанная с испарением воды.

2. Грунтовая влага, та влага, которая может проникнуть в ограждение из грунта путем капиллярного всасывания. Для предотвращения попадания грунтовой влаги в ограждение строителями устанавливаются гидроизолирующие и пароизолирующие слои. Если слой гидроизоляции поврежден, грунтовая влага может подниматься по капиллярам в строительных материалах стен ло высоты 2 -2,5 м над землей.

3. Атмосферная влага, которая может проникать в ограждение при косом дожде, при протечках крыш в районе карнизов, неисправности наружных водостоков. Наиболее сильное воздействие дождевой влаги наблюдается при полной облачности с длительными моросящими дождями с ветром, с высокой влажностью наружного воздуха. Для предотвращения попадания влаги внутрь стены от смоченной наружной поверхности применяются специальные фактурные слои, плохо пропускающие жидкую фазу влаги. Обращается внимание на герметизацию стыков стеновых панелей при крупнопанельном домостроении, на герметизацию периметров окон и других проемов.

4. Эксплуатационная влага попадает в ограждение от внутренних источников: при производственных процессах, связанных с применением или выделением воды, при мокрой уборке помещений, при прорывах водопроводных и канализационных сетей. При регулярном использовании воды в помещении делают водонепроницаемые полы и стены. При авариях необходимо как можно быстрее удалить влагу с ограждающих конструкций.

5. Гигроскопическая влага находится внутри ограждения вследствие гигроскопичности его материалов. Гигроскопичность - это свойство материала поглощать (сорбировать) влагу из воздуха. При длительном пребывании строительного изделия в воздухе с постоянными температурой и относительной влажностью, количество влаги, содержащейся в материале, становится неизменным (равновесным). Это равновесие влагосодержания соответствует гигротермическому состоянию внешней воздушно-влажной среды и в зависимости от свойств материала (химического состава, пористости и т.д.) может быть большим или меньшим. Нежелательно применять материалы с высокой гигроскопичностью в ограждениях. В то же время, применение гигроскопичных штукатурок (известковых) практикуется в местах с периодическим пребыванием людей, например, в церквях. Про такие впитывающие влагу при увлажнении воздуха и отдающие ее при снижении влажности воздуха стены говорят, что они «дышат».

6. Парообразная влага, находящаяся в воздухе, заполняющем поры строительных материалов. При неблагоприятных условиях влага может конденсироваться внутри ограждений. Во избежание отрицательных последствий конденсации влаги внутри ограждения оно должно быть грамотно сконструировано, чтобы уменьшить риск выпадения конденсата и создать условия для полного высыхания сконденсированной за зиму влаги летом.

7. Сконденсированная влага на внутренних поверхностях ограждений при высокой влажности внутреннего воздуха и температуре внутренней поверхности ограждения ниже точки росы. Меры борьбы с увлажнением внутренней поверхности ограждений связаны с вентиляцией помещений, снижающей влажность внутреннего воздуха, и с утеплением ограждающих конструкций, исключающим понижение температуры, как на глади поверхности ограждения, так и в местах теплопроводных включений.

2.2.2 Отрицательные последствия увлажнения наружных ограждений

Известно, что с повышением влажности материалов ухудшаются теплотехнические качества ограждения за счет увеличения коэффициента теплопроводности материалов, что приводит к увеличению теплопотерь здания и большим энергозатратам на отопление.

Теплопроводность увеличивается с повышением влажности материала из-за того, что вода, находящаяся в порах материала, имеет коэффициент теплопроводности около 0, 58 Вт/ моС, что в 22 раза больше, чем у воздуха. Большая интенсивность возрастания коэффициента теплопроводности материала при малой влажности происходит из-за того, что при увлажнении материала сначала заполняются водой мелкие поры и капилляры, влияние которых на теплопроводность материала больше, чем влияние крупных пор. Еще более резко возрастает коэффициент теплопроводности, если влажный материал промерзает, так как лед имеет теплопроводность 2,3 Вт/моС, что в 80 раз больше чем у воздуха. Установить общую математическую зависимость теплопроводности материала от его влажности для всех строительных материалов невозможно, так как на нее большое влияние оказывает форма и расположение пор. Увлажнение строительных конструкций приводит к снижению их теплозащитных качеств, приводя к увеличению коэффициента теплопроводности влажного материала.

На внутренних поверхностях ограждения с мокрыми слоями формируется более низкая температура, чем с сухими, создающая в помещении неблагоприятную радиационную обстановку. Если температура на поверхности ограждения окажется ниже точки росы, то на этой поверхности может выпадать конденсат. Влажный строительный материал неприемлем, так как является благоприятной средой для развития в нем грибов, плесени и других микроорганизмов, споры и мельчайшие частицы которых вызывают у людей аллергию и другие заболевания. Таким образом, увлажнение строительных конструкций ухудшает гигиенические качества ограждений.

Чем больше влажность материала, тем менее морозостоек материал, а, значит, недолговечен. Замерзающая в порах материалов и на стыках слоев вода разрывает эти поры, так как при превращении в лед вода расширяется. Деформация возникает также у ограждений, подверженных увлажнению, но выполненных из невлагостойких материалов, таких как фанера, гипс. Поэтому применение невлагостойких материалов в наружных ограждениях ограничено. Следовательно, увлажнение строительных материалов может иметь отрицательные последствия для технических качеств ограждений.

2.2.3 Связь влаги со строительными материалами

По характеру своего взаимодействия с водой твердые тела делятся на смачиваемые (гидрофильные) и несмачиваемые (гидрофобные). К гидрофильным строительным материалам относятся бетоны, гипс, вяжущие на водной основе. К гидрофобным - битумы, смолы, минеральные ваты на несмачиваемых вяжущих. Гидрофильные материалы активно взаимодействуют с водой, а ограниченно смачиваемые и несмачиваемые - менее активно.

Фактором значительно влияющим на характер взаимодействия материала с влагой, находящейся в воздухе, или при непосредственном контакте с водой является капиллярно-пористая структура большинства строительных материалов. При взаимодействии с влагой могут изменяться физико-механические и теплотехнические свойства строительных материалов.

Для правильного понимания путей движения влаги в ограждающих конструкциях и методов предотвращения неблагоприятных процессов или их последствий необходимо знать формы связи влаги со строительными материалами.

Обоснованная система энергетической классификации связи влаги с материалом разработана академиком П.А.Ребиндером [6]. По природе энергии связывания влаги с веществом и величине энергетического уровня различаются три вида этой связи.

Химическая форма связи влаги с материалом самая прочная, потому что влага в этом случае необходима для химических реакций. Такая влага входит в состав структурной решетки материалов типа кристаллогидратов и не участвует во влагообменных процессах. Поэтому при рассмотрении процессов влагопередачи через ограждение ее можно не учитывать.

1. Физико-химическая связь влаги со строительными материалами проявляется в адсорбировании на внутренней поверхности пор и капилляров материала. Адсорбированная влага подразделяется на влагу первичных мономолекулярных слоев, отличающуюся высоким энергетическим уровнем связи с поверхностью гидрофильных материалов, и влагу последующих полимолекулярных слоев, составляющих пленку воды, удерживаемой капиллярными силами. Для удаления мономолекулярной и частично полимолекулярной влаги не достаточно сил естественной сушки в обычных природных условиях и условиях помещений. К физико-механической форме связи относят также осмотически (структурно) связанную влагу в растительных клетках органических материалов растительного происхождения. Эта влага может быть удалена путем естественной сушки.

2. Физико-механическая связь определяет удержание влаги в порах и капиллярах силами капиллярного давления и смачивания гидрофильных материалов. Эта влага перемещается внутри материала при возникновении давлений, превышающих капиллярное и испаряется из поверхностных слоев конструкций в процессе естественной сушки. Наибольшей прочностью обладает связь воды с микрокапиллярами.

2.2.4 Влажный воздух

Атмосферный воздух, состоящий из кислорода, азота, углекислого газа и небольшого количества инертных газов всегда содержит некоторое количество влаги в виде водяного пара. Смесь сухого воздуха с водяным паром называют влажным воздухом. С достаточной для технических расчетов точностью можно считать, что влажный воздух подчиняется всем законам смеси идеальных газов. Каждый газ, в том числе и пар, входящий в состав смеси, занимает тот же объем, что и вся смесь. Пар находится под своим парциальным давлением, которое определяют по уравнению Клайперона:

,(2.33)

где Mi - масса i-го газа, в данном случае водяного пара, кг;

R - универсальная газовая постоянная, равная 8 314,41 Дж/(кмоль.К);

Т - температура смеси в абсолютной шкале, К;

V - объем, занимаемый смесью газов, м3;

мi - молекулярный вес газа, кг/моль. Для водяного пара мп= 18,01528 кг/кмоль.

По закону Дальтона сумма парциальных давлений газовых компонентов смеси равна полному давлению смеси. Влажный воздух принято рассматривать как бинарную смесь, состоящую из водяного пара и сухой части атмосферного воздуха, эффективный молекулярный вес которого равен мв ? 29 кг/моль. Барометрическое давление влажного воздуха Рб, Па, складывается из парциального давления сухого воздуха ев, Па, и парциального давления пара еп, Па:

.(2.34)

Парциальное давление водяных паров называют также упругостью водяного пара.

Для характеристики меры увлажнения воздуха пользуются понятием относительной влажности воздуха цв, которая показывает степень насыщенности воздуха водяным паром в % или долях единицы полного насыщения при одинаковых температуре и давлении.

При относительной влажности 100% воздух полностью насыщен водяным паром и называется насыщенным. Парциальное давление насыщенного водяного пара называют также давлением насыщения воздуха водяным паром или максимальной упругостью водяных паров и обозначают Е. Величина относительной влажности цв равна отношению парциального давления водяного пара еп во влажном воздухе при определенных атмосферном давлении и температуре к давлению насыщения Е при тех же условиях:

,(2.35) или ц, %

.(2.36)

Парциальное давление насыщенного водяного пара - максимаьная упругость водяных паров - при заданном барометрическом давлении является функцией только температуры t:

.(2.37)

Его значения определяют экспериментальным путем и приводят в специальных таблицах [2]. Кроме того, имеется ряд формул, аппроксимирующих зависимость Е от температуры. Например, формулы, приводимые в [7]:

- над поверхностью льда при температуре от -60 оС до 0 оС

,(2.38)

- над поверхностью чистой воды при температуре от 0 оС до 83 оС

,(2.39)

Нормальным для пребывания человека гигиенистами считается диапазон относительной влажности от 30% до 60%. При относительной влажности воздуха выше 60% испарение влаги с кожи человека затруднено и его самочувствие ухудшается. При более низкой относительной влажности воздуха, чем 30% испарение с поверхности кожи и слизистых оболочек человека усиливается, что вызывает сухость кожи, першение в горле, способствующие простудным заболеваниям.

При повышении температуры воздуха заданной абсолютной влажности его относительная влажность понижается, так как в соответствии с формулой (2.36) величина парциального давления водяного пара останется без изменения, а давление насыщения возрастет из-за увеличения температуры. Наоборот, при охлаждении воздуха относительная влажность возрастет вследствие снижения величины давления насыщения Е. По мере остывания воздуха при некоторой его температуре, когда еп станет равно Е, относительная влажность воздуха станет равной 100%, то есть воздух достигнет полного насыщения водяным паром. Температура tр, оС, при которой воздух с определенной абсолютной влажностью находится в состоянии полного насыщения, называется точкой росы. Если воздух будет охлаждаться ниже точки росы, то, часть влаги начнет конденсироваться из воздуха. Воздух при этом будет оставаться насыщенным водяным паром, а давление насыщения воздуха Е соответственно достигнутой температуре будет снижаться. Причем температура воздуха в каждый момент времени будет точкой росы для сформировавшейся абсолютной влажности воздуха.

При соприкосновении влажного воздуха с внутренней поверхностью наружного ограждения, имеющей температуру фв ниже точки росы воздуха tр, на этой поверхности будет конденсироваться водяной пар. Таким образом, условиями отсутствия выпадения конденсата на внутренней поверхности ограждения и в его толще является поддержание температуры выше точки росы, а это означает, что парциальное давление водяных паров в каждой точке сечения ограждения должно быть меньше давления насыщения.


Подобные документы

  • Теплотехнический расчет наружных ограждений жилого пятиэтажного здания к климатических условиях г. Москвы. Техническая характеристика здания, конструкция ограждений, планы и разрезы. Проверка наружных стен на конденсацию влаги в толще ограждений.

    курсовая работа [368,6 K], добавлен 22.09.2011

  • Здание как единая энергетическая система. Основы теплопередачи в здании. Коэффициенты теплоотдачи на внутренней и наружной поверхностях. Влажностный режим ограждающих конструкций. Разность давлений на наружной и внутренней поверхности ограждений.

    курс лекций [3,5 M], добавлен 11.11.2010

  • Теплотехнический расчет наружных ограждений. Климатические параметры района строительства. Определение требуемых значений сопротивления теплопередаче ограждающих конструкций. Расчет коэффициентов теплопередачи через наружные ограждения. Тепловой баланс.

    курсовая работа [720,6 K], добавлен 14.01.2018

  • Средняя температура самого холодного месяца в качестве расчетной температуры наружного воздуха в расчете влажностного режима ограждения, обеспечение его оптимальных параметров. Сопротивления теплоотдаче у внутренней и наружной поверхности ограждения.

    контрольная работа [62,8 K], добавлен 27.01.2012

  • Теплотехнический расчет наружных стен, чердачного перекрытия, перекрытий над неотапливаемыми подвалами. Проверка конструкции наружной стены в части наружного угла. Воздушный режим эксплуатации наружных ограждений. Теплоусвоение поверхности полов.

    курсовая работа [288,3 K], добавлен 14.11.2014

  • Расчет основных коэффициентов теплопередачи через наружную стену, через пол чердачного перекрытия, через заполнения световых проемов. Определение требуемого сопротивления воздухопроницанию. Расчет плотности потока водяного пара через наружную стену.

    курсовая работа [133,7 K], добавлен 14.03.2015

  • Анализ теплозащитных свойств ограждения, определяющихся его термическим сопротивлением. Теплотехнический расчет наружных ограждений с целью экономии топлива. Расчет влажностного режима наружных ограждений, возможность конденсации влаги в толще ограждения.

    курсовая работа [253,8 K], добавлен 16.07.2012

  • Теплотехнический расчет наружных ограждений. Определение теплопотерь через ограждающие конструкции. Выбор отопительных приборов. Подбор диаметров отдельных участков трубопроводов. Необходимый воздухообмен для жилых зданий. Аэродинамический расчет каналов.

    курсовая работа [627,7 K], добавлен 25.11.2015

  • Расчётные параметры наружного и внутреннего воздуха. Нормы сопротивления теплопередаче ограждений. Тепловой баланс помещений. Выбор системы отопления и типа нагревательных приборов, гидравлический расчет. Тепловой расчет приборов, подбор элеватора.

    контрольная работа [1,2 M], добавлен 15.10.2013

  • Теплофизический расчет наружных ограждений спортивного зала, проверка ограждения на воздухопроницание. Расчет влажностного режима и стационарного температурного поля в ограждении. Коэффициенты теплопередач ограждающих конструкций и теплопотерь.

    курсовая работа [404,6 K], добавлен 16.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.