Укрепление грунтов химическими методами

Основные направления применения инъекционного химзакрепления грунтов в промышленном и гражданском строительстве. Технологическая схема процесса цементации грунтового основания. Нагнетание инъекционных растворов. Анализ основ трехкомпонентного способа.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 16.02.2015
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

1. Общие сведения

Разработка методов химического закрепления грунтов началась в 1931 г., когда отечественный ученый Б.А. Ржаницын разработал уникальный двухрастворный способ силикатизации водонасыщенных песков. По этой же схеме осуществлялась силикатизация просадочных лессовых грунтов, в которой роль второго реагента выполнял непосредственно грунт. [5]

На начальной стадии химические способы закрепления основывались на использовании неорганического полимера - силиката натрия. На следующем этапе ученые стали смешивать силикат натрия небольшой плотности с отверждающими растворами кислот и солей. Малая вязкость растворов (1,5--3,0 мПа.с) позволила закреплять песчаные грунты с коэффициентом фильтрации от 0,2 до 2,0 м/сут.

Сегодня, в связи со значительным развитием химии органических полимеров, наиболее популярными реагентами являются выпускаемые химической промышленностью смолы, а именно мочевиноформальдегидная (карбамидная) смола. В качестве отвердителя используют соляную и щавелевую кислоты. Однако некоторая токсичность, обусловленная выделением свободного формальдегида в момент разработки закрепленного массива, т. е. при проходке тоннеля или вскрытии котлована, ограничивает применение данного способа. В результате лабораторных исследований удалось значительно уменьшить выделение свободного формальдегида. Это несколько снизило прочность закрепления, но позволило применять смолизацию при проходке подземных выработок.

В разработку рецептур химических способов закрепления песков и лессов большой вклад внесли доктора технических наук В. В. Аскалонов и В. Е. Соколович.

Химическое закрепление грунтов в широком смысле представляет собой искусственное целенаправленное преобразование строительных свойств естественных грунтов их химической обработкой различными реагентами, основанной на реакциях взаимодействия реагентов между собой или с участием химически активной части грунтов. Такое закрепление грунтов обеспечивает необратимость и долговечность приобретенных ими свойств.

Инъекционное химзакрепление необратимо повышает механическую прочность и устойчивость, уменьшает сжимаемость и водопроницаемость грунтов, а также устраняет просадочность при замачивании лессов и лессовидных грунтов, что обеспечивает широкие возможности его применения для решения многих практических задач в строительстве.

В промышленном и гражданском строительстве инъекционное химзакрепление грунтов применяется для:

усиления и устройства оснований, фундаментов вновь строящихся зданий и сооружений;

усиления оснований и фундаментов существующих зданий и сооружений;

устройства защитных стен и других подземных конструкций из закрепленных грунтов в качестве мероприятий против подвижек грунтов при их подработке горными выработками;

устройства подпорных стенок и укрепления откосов при вскрытии строительных котлованов и других открытых выработок;

повышения несущей способности свай и других опор;

в качестве временного мероприятия при проходке в слабых грунтах различных подземных выработок.

С химической точки зрения в основе инъекционного химзакрепления грунтов лежит явление конденсации неорганических и органических полимеров (крепителей) при их взаимодействии с коагулянтами (отвердителями) и заключающееся в отверждении полимеров в порах и трещинах грунтов, чем обеспечиваются положительные изменения физико-механических свойств закрепляемых грунтов.[1]

Закрепление грунтов на основе растворов силиката натрия независимо от применяемых отвердителей называется силикатизацией, на основе карбамидных смол - смолизацией, на основе цементных растворов - цементацией.

Участвующие в процессе закрепления грунтов химические вещества в растворах или газы называются закрепляющими реагентами.

Смесь растворов крепителей и отвердителей рабочих концентраций при однорастворном химзакреплении грунтов называется гелеобразующей смесью.

С технологической точки зрения инъекционное химзакрепление заключается в нагнетании под давлением в поры грунтов в их естественном залегании отверждающихся и закрепляющих грунты различных химических реагентов в виде двух отдельно нагнетаемых растворов (двухрастворный способ), одного раствора (однорастворный однокомпонентный способ), одного раствора и газа (двухкомпонентные газовые способы), гелеобразующих смесей из двух компонентов (однорастворные двухкомпонентные способы).[1]

При закреплении грунтов под существующими зданиями и сооружениями с ветхими фундаментами в качестве вспомогательного мероприятия против вероятных утечек закрепляющих реагентов через полости и трещины в кладке при нагнетании предусматривается предварительная цементация фундаментов на контакте подошвы с основанием (вспомогательная цементация).

Для закрепления грунтов в промышленном и гражданском строительстве применяются специально разработанные и опробованные опытом инъекционные химические способы. Каждый из способов имеет свою область применения, ограниченную величинами коэффициента фильтрации - для песчаных грунтов и значениями коэффициента фильтрации, емкости поглощения и степени влажности - для просадочных лессовых грунтов. Выбор способов закрепления для конкретных грунтов осуществляется, руководствуясь указанной таблицей, с учетом гранулометрического состава, номенклатуры, коэффициента фильтрации и других характеристик естественных грунтов, а также проектных требований к прочностным и деформационным свойствам закрепленных грунтов.

С целью повышения эффективности (прочности и радиуса) закрепления грунтов однорастворными способами силикатизации и смолизации, за исключением силикатизации просадочных лессовых грунтов, во многих случаях бывает целесообразно производить предварительную химическую обработку грунтов отвердителями. Вопрос о предварительной химической обработке решается в результате проведения специальных лабораторных исследований и опытных работ в натурных условиях по химзакреплению грунтов.

В зависимости от инженерно-геологических условий, месторасположения объекта, объема работ, габаритов и технических характеристик оборудования реализуется одна из технологических схем производства работ:

укрепление грунтов с дневной поверхности (в зависимости от местных условий растворный узел перемещают по объекту по мере продвижения фронта работ или оставляют в центральной части, раствор подается по трубопроводам, проложенным к участку инъекционных работ);

укрепление грунтов из подземной выработки в один этап или, при протяженной зоне неустойчивых грунтов, поэтапно, с чередованием фаз укрепления и проходки (буровое и инъекционное оборудование размещается в забое);

укрепление грунтов из подземной выработки при размещении бурового оборудования в забое, инъекционного (растворосмесительного и насосного) - на дневной поверхности.[2]

Расположение инъекционных скважин должно обеспечить необходимый контур и сплошность укрепления грунтового массива (расстояние между скважинами и рядами скважин зависит от характеристик укрепляемого грунта и проникающей способности инъекционных растворов).

Дополнительные скважины следует назначать в том случае, если после инъекции раствора в скважинах будут обнаружены зоны с поглощением раствора, превышающим в 10 раз среднее поглощение для данной очереди скважин, участки с неполноценной инъекцией или участки скважин, которые не могли быть пробурены до проектной глубины по производственным обстоятельствам.

Оборудование для проведения работ по укреплению грунтов следует выбирать в зависимости от способа укрепления грунтов (инъекция, струйная цементация), объемов работ, вида инъекционного раствора и технологической схемы его приготовления и нагнетания.

Буровое оборудование в зависимости от назначения должно обеспечивать ударно-вращательный и вращательный способы бурения скважин, необходимое их направление, глубину бурения и диаметр скважин.

Смесительное и нагнетательное оборудование, оснащенное контрольно-измерительной аппаратурой, должно обеспечивать тщательное перемешивание компонентов раствора, требуемое давление нагнетания, высокие темпы работ при минимальных трудовых и материальных затратах, наименьшее загромождение строительных площадок, удобство транспортировки, монтажа, демонтажа и безопасное обслуживание.

В зависимости от гидрогеологических условий участка и принятой технологии инъекции при нагнетании раствора следует использовать кондукторы или пакеры. При обработке трещиноватых грунтов нагнетание раствора осуществляется через буровой став или манжетную колонну, а для обработки несвязных грунтов - через забивные инъекторы, инъекторы-тампоны или манжетные колонны.[2]

Кондукторы предназначены для закрепления и герметизации устья скважины, обеспечения заданного направления скважины при бурении, для установки на скважине инъекционной головки с запорной арматурой и измерительными приборами.

Пакеры предназначены для герметизации скважины (одиночный пакер) или изолирования участка скважины, намеченного для инъекции (двойной пакер). Закрепление пакера в скважине происходит за счет механического обжатия или гидравлического расширения резиновых манжет, укрепленных на нагнетательном ставе.

Манжетные колонны, установленные в скважины, позволяют обрабатывать несвязные грунты в любой последовательности, на любых участках и выполнять многократную инъекцию растворов разных типов в одну и ту же скважину.

Оборудование скважин (кондукторы, пакеры, манжетные колонны, инъекторы, превенторные устройства и т.п.) подбирается в зависимости от инженерно-геологических и гидрогеологических условий объекта и способа инъекции грунтов.

Методы укрепления грунтов по типу используемых инъекционных материалов подразделяются на цементацию, силикатизацию и смолизацию; по методу введения раствора в грунт - на обычную инъекцию и струйную цементацию.

Цементация грунтов как способ представляет собой заполнение пустот, трещин и крупных пор в крупнообломочных грунтах раствором, образующим со временем твердый цементный или цементно-глинистый камень.

Для цементации можно использовать цементные, цементно-песчаные и цементно-глинистые растворы. В каждом отдельном случае необходимо выбирать как состав раствора, так и его водоцементное отношение (В/Ц), которое может изменяться от 1 до 0,4. Кроме того, инъекционные растворы должны обладать следующими характеристиками: подвижностью раствора по конусу АзНИИ 10--14 см, водоотделением в течение 2 ч 0-2 %, прочностью при сжатии после твердения в течение 28 сут 1--2 МПа. Исходная плотность таких растворов, как правило, составляет 1,60--1,85 г/см3. Все эти характеристики обусловливаются проектом.

Применение цементных растворов, как установлено практикой, не прекращает фильтрации полностью. Это объясняется повышенной крупностью помола цемента, который в настоящее время имеет размер частиц порядка 50 мкм, а это значит, что трещины размером 0,2 мм физически не могут быть зацементированы.

В отличие от цементации глинизация может применяться для заполнения карстовых пустот только в сухих породах, способных после нагнетания глинистого раствора впитывать из него воду. В связи с этим после заполнения пустот глинистый раствор должен находиться в течение нескольких суток под гидравлическим напором.

При глинизации применяют глинистый раствор плотностью 1,2--1,3 г/см3.

В результате повышения давления (более 2 МПа) вода из глинистого раствора отжимается, обезвоженное глинистое тесто плотно заполняет пустоты и порода становится водонепроницаемой.

Глинизация так же, как и цементация, может применяться только при небольших скоростях движения грунтовых вод во избежание уноса раствора из тампонируемой зоны, т. е. в гравелистых и трещиноватых грунтах, в которых коэффициент фильтрации находится в пределах от 50 до 5000 м/сут.

цементация инъекционный строительство

Рисунок 1 Технологическая схема процесса цементации грунтового основания: 1 - емкость для замешивания раствора; 2 - насос для раствора; 3 - напорный трубопровод; 4 - обратный труопровод; 5 - инъекторы; 6 - укрепленный грунт

В 1931 г. был разработан двухрастворный способ силикатизации, сущность которого состояла в том, что в песчаный грунт любой влажности через забитую металлическую перфорированную трубу (инъектор) поочередно нагнетались раствор силиката натрия (натриевое жидкое стекло) Na2OnSiO2 и раствор хлористого кальция CaCl2. В результате химической реакции между ними в порах грунта образуется гидрогель кремниевой кислоты, и грунт быстро и прочно закрепляется.[5]

Двухрастворный способ обеспечивает высокую прочность грунта и практически его полную водонепроницаемость. Недостатками этого способа являются высокая стоимость и большая трудоемкость работ. Поэтому его преимущественно применяют при усилении оснований под сооружениями. Закрепленный грунт имеет кубиковую прочность 1,5…3,5 МПа.

Прочность закрепленного грунта не снижается при воздействии на него агрессивных вод.

Для закрепления мелких и пылеватых песков с коэффициентом фильтрации от 0,0006 до 0,006 см/сек применяют однорастворный способ. В грунт нагнетают гелеобразующий раствор из жидкого стекла и фосфорной кислоты либо из жидкого стекла, серной кислоты и сернокислого аммония. Первая рецептура обеспечивает более быстрое гелеобразование.

Прочность закрепленного грунта значительно ниже, чем при двухрастворном способе. Этот способ находит применение главным образом при устройстве противофильтрационных завес.

Однорастворный способ силикатизации используют и для закрепления лёссовых просадочных грунтов, имеющих коэффициент фильтрации от 0,0001 до 0,0023 см/сек.

При этом в грунт нагнетают раствор одного жидкого стекла. Гелеобразование происходит за счет реакции раствора жидкого стекла с водорастворимыми солями грунта и его обменным комплексом. Роль второго раствора выполняет сам грунт.

Не рекомендуется применять силикатизацию для закрепления грунтов, пропитанных нефтяными продуктами, смолами и маслами, при наличии грунтовых вод, имеющих рН >9 при двухрастворном способе, и в случае рН>7,2 при однорастворном способе силикатизации мелких и пылеватых песков.

Нецелесообразно подвергать силикатизации грунты, когда скорость грунтовых вод превышает 0,006 см/сек.

Рисунок 2 Технологическая схема процесса силикатизации грунтового основания: 1 - насос для откачки воды из катода; 2 - наголовник; 3 - ниппель; 4- генератор постоянного тока( для электросиликатизации); 5 - бак с раствором; 6 - баллон со сжатым воздухом(компрессор); 7 - перфорированная часть инъектора; 8 - наконечник инъектора; 9 - дополнительный инъектор(для электросиликатизации)

При силикатизации просадочных лессовых грунтов с влажностью 16--20% инъекцию силикатного раствора плотностью 1,13--1,20 г/см3 можно осуществлять с помощью забивки инъекторов или через стенки пробуренных скважин. Для этого бурильным станком ЦГБ-50 проходят скважину глубиной, равной длине первой заходки. Длина заходки в существующей практике составляет 2--3 м. Затем в верхней зоне заходки устанавливают надувной тампон, через который по шлангу от насоса раствор нагнетают в грунт. Затем тампон вынимают из скважины и производят ее бурение на длину следующей заходки. Так повторяют на всю глубину закрепления просадочного лесса.[3]

При химическом закреплении песчаных грунтов на глубине 50--150 м, нагнетание химических растворов осуществляют через манжетные инъекторы, опускаемые в пробуренную под защитой глинистого раствора скважину диаметром 120--150 мм. Скважину пробуривают на всю глубину закрепляемой зоны, затем в скважину, заполненную глинистым раствором (благодаря чему стенки ее не требуют крепления), погружают инъектор с резиновыми манжетами, закрывающими его отверстия. После этого через нижнюю манжету с применением тампона нагнетают цементно-глинистый раствор, который заполняет зазор между инъектором и стенкой скважины. Этот вариант позволяет в дальнейшем нагнетать закрепляющий раствор в любой зоне инъектора. Манжетный инъектор может быть использован для закрепления грунта под существующими зданиями путем задавливания его из специально подготовленной траншеи.

Таким образом, применение инъекторов различной конструкции позволяет нагнетать химические растворы на требуемую глубину.

Смолы, которые могут быть использованы для закрепления грунтов, должны обладать невысокой вязкостью и полимеризоваться в порах грунта при температуре от 4 до 10 °С. К таким смолам относятся:

мочевино-формальдегидные (карбамидные), образующиеся в результате поликонденсации мочевины и формальдегида;

фенольные, образующиеся в результате поликонденсации фенолов и альдегидов;

фурановые, образующиеся при конденсации фурфурола и фурилового спирта; акриловые--производные акриловой кислоты;

эпоксидные, получающиеся при конденсации эпихлоргидрина (или дихлоргидрина) с полиаминами, фенолами, полиспиртами и другими соединениями.[2]

Самой приемлемой для закрепления грунтов по всем критериям является мочевиноформальдегидная (карбамидная) смола с различными отвердителями. Эта смола легко растворяется в воде, имеет малую вязкость, отверждается при невысокой температуре, а самое главное выпускается отечественной промышленностью в виде клеев в большом масштабе и по своей цене вполне доступна для широкого использования при закреплении грунтов.[6]

Сущность способа состоит в нагнетании в грунт гелеобразующего раствора, состоящего из раствора смолы и отвердителя в виде соляной или щавелевой кислоты. Способ обеспечивает прочное закрепление, придает грунтам водонепроницаемость. Кроме того, способ позволяет закреплять карбонатные грунты. При повышенном содержании карбонатов (до 3%) проводится предварительная обработка грунта раствором кислоты в объеме, равном объему гелеобразующего раствора.[5]

Рисунок 3 Технологическая схема процесса смолизации грунтового основания: 1 - инъектор; 2 - рабочий шланг; 3 - манометр; 4 - рабочий бачок; 5 - пробковый шланг; 6 - компрессор или баллон со сжатым воздухом

2. Составы и характеристики инъекционных растворов

Для инъекции грунтов используются цементные, цементно-глинистые, цементно-песчаные, цементно-полимерные, цементно-силикатные растворы, растворы на основе тонкодисперсных цементов, глинистые и глино-силикатные, силикатные и растворы на основе полимерных смол, в том числе вспененные. Для укрепления грунтов используются различные виды и рецептуры инъекционных растворов. Вид раствора определяется материалом, на основе которого его приготавливают, рецептура - различными компонентами, добавками, улучшающими и регулирующими свойства раствора.

В зависимости от инженерно-геологических условий, цели и принятого метода инъекции для укрепления грунтов следует применять инъекционные растворы на основе минеральных вяжущих (ГОСТ 13078, ГОСТ 30459, ГОСТ 31108, ГОСТ 25795, ТУ 5735-001-17466563-09) или полимерных материалов (ГОСТ 14231), обладающих широким диапазоном реологических и физико-механических характеристик.[1]

К инъекционным растворам предъявляются следующие требования:

высокая проникающая способность;

минимальная усадка тампонажного камня;

возможность регулирования технологических (реологических) параметров (вязкость, сроки схватывания или отверждения и др.);

прочность и водонепроницаемость укрепленного грунта, соответствующая цели инъекции.

При выборе вида и состава инъекционного раствора следует учитывать:

геологические и гидрогеологические условия конкретного участка;
минералогический и химический состав грунта и грунтовых вод (карбонатность, загипсованность, содержание глинистых и гумусовых частиц);

цель инъекции (повышение прочности, стабильности или водонепроницаемости грунтов, заполнение крупных пустот или трещин, предотвращение водопритока и т.п.);

назначение раствора (инъекционный, буровой, для устройства обоймы, грунтоцементных свай и др.);

требования к физико-механическим характеристикам укрепленного грунта и к технологическим параметрам раствора (прочность, водонепроницаемость грунта, плотность, вязкость, сроки схватывания раствора и др.);

требования технологии приготовления (высокая растворимость и смешиваемость материалов, простота приготовления, возможность полной механизации работ), стоимость и дефицитность исходных материалов, требования техники безопасности;

экологические требования к материалам для приготовления растворов, правила безопасности при приготовлении растворов и производстве работ по укреплению грунта.[2]

Для достижения необходимого эффекта укрепления грунтов в определенных инженерно-геологических условиях могут быть использованы комплексы растворов, нагнетаемые в грунт в последовательности, установленной опытным путем.

Свойства растворов регулируют соотношением исходных компонентов и инертных и активных минеральных и химических добавок (ГОСТ 5802, ГОСТ 30459).

В каждом конкретном случае рабочие рецептуры инъекционных растворов назначают после проведения лабораторных исследований по укреплению грунтов и опытных инъекций в производственных условиях.

При обычной инъекции грунтов для обеспечения высоких прочностных характеристик грунтов (более 1,0 МПа) используются все виды растворов на основе цемента с различными добавками, тонкодисперсные минеральные вяжущие, силикатные (твердые гели) с органическими и неорганическими отвердителями (в том числе двухрастворная силикатизация), а также растворы полимерных смол.

Для повышения водонепроницаемости, устойчивости и обеспечения прочности укрепленного грунта от 0,3 до 1,0 МПа рекомендуется использовать цементные растворы жидких консистенций с силикатом натрия (ГОСТ 13078) и бентонитовой глиной (ГОСТ 25795, ТУ 5751-001-41219638-2010), растворы на основе тонкодисперсных вяжущих (ТУ 5735-001-17466563-09), силикатные растворы с неорганическими отвердителями (однорастворная силикатизация), растворы на основе полимерных смол малой концентрации.

Для струйной цементации грунтов рекомендуется использовать растворы минеральных вяжущих (цемент, бентонитовая глина и др.) жидких консистенций (В:Ц=0,8-1,2) с химическими добавками разного назначения.[2]

Инъекционные растворы (суспензии) на основе минеральных материалов (цемент, глина, зола и т.п.) с химическими добавками, регулирующими свойства раствора, следует использовать для заполнения пустот, крупных пор и трещин, повышения прочности и снижения водопроницаемости крупнопористых несвязных грунтов с коэффициентом фильтрации 50 м/сут, а также трещиноватых скальных грунтов с величиной раскрытия трещин от 0,1 мм и более и удельным водопоглощением грунта от 0,01 л/(мин·м·м вод.ст.).

Тонкодисперсные минеральные вяжущие рекомендуется использовать для инъекции:

несвязных грунтов (в том числе пылеватых и мелкозернистых песков) с коэффициентом фильтрации 0,3 м/сут;

скальных грунтов с раскрытием трещин более 0,05 мм, при необходимости значительного (более 2,0 МПа) повышения прочности несвязных грунтов;

в случаях, когда применение растворов смол запрещается экологическими требованиями (СанПиН 1.2.2363-08*) или требованиями проекта на укрепление грунтов.[2]

Инъекционные растворы на основе тонкодисперсных минеральных вяжущих обладают свойствами обычных цементных суспензий, отличаясь от них гранулометрическим составом, вязкостью, сопоставимой с вязкостью воды и водорастворимых полимерных смол и силикатов.

Силикатные растворы рекомендуется использовать для повышения прочности и водонепроницаемости пористых грунтов с коэффициентом фильтрации от 0,5 до 80,0 м/сут и скальных грунтов с раскрытием трещин более 0,05 мм, а также для вторичной (после инъекции растворов на основе обычного цемента) обработки грунтов.

Для обеспечения высоких прочностных характеристик грунта (2,0 МПа и выше) должна использоваться двухрастворная силикатизация и однорастворная рецептура с отвердителем кремнефтористоводородной кислотой.

Силикатные рецептуры с другими отвердителями обеспечивают прочность укрепленного грунта от 0,3 до 1,0 МПа и водонепроницаемость грунта. Они рекомендуются для обработки грунтов до и после их цементации, а также самостоятельно, в зависимости от гидрогеологических характеристик грунтов и требований к укреплению грунта.

Инъекционные растворы на основе полимерных смол (как правило, карбамидные смолы марок КМ, с отвердителем щавелевой кислотой) следует использовать для инъекции несвязных грунтов с коэффициентом фильтрации 0,3 м/сут.

Если укрепляемые грунты имеют повышенное содержание карбонатов или органических частиц (от 0,1% до 3,0%), а также при необходимости снизить степень отфильтровывания жидкой фазы суспензий на основе минеральных вяжущих, рекомендуется проводить предварительную обработку грунтов слабыми растворами кислот (отвердителей к растворам смол).

Вспененные полимерные растворы на основе полиуретановых или полимерсиликатных материалов рекомендуется использовать для водоподавления, ликвидации выносов воды и грунта, герметизации течей или стабилизации водонасыщенных несвязных грунтов.

3. Нагнетание инъекционных растворов

Инъекционный раствор нагнетается в скважину непосредственно вслед за гидравлическим опробованием скважин. В зависимости от технологических параметров раствора нагнетание выполняют однокомпонентными или многокомпонентными насосами. При нагнетании однокомпонентным насосом раствор, приготовленный путем смешивания компонентов раствора в отдельной емкости или растворомешалке, нагнетается в скважину по одному раствороводу. При нагнетании многокомпонентным насосом компоненты раствора подаются по отдельным раствороводам к смесителю, установленному непосредственно у инъектора (пакера). Вода для промывки системы также подается по отдельному раствороводу. Нормальным режимом инъекции считается ход нагнетания раствора, при котором нагнетание ведется непрерывно, с постепенным снижением расхода раствора (при этом давление раствора соответствует давлению отказа или постепенно возрастает до давления отказа), а весь нагнетаемый раствор поступает в грунт. Состав (плотность) нагнетаемого раствора не должен меняться, если при непрерывном нагнетании расход раствора при постоянном давлении нагнетания уменьшается или давление нагнетания раствора при постоянном его расходе возрастает. Плотность раствора следует увеличивать (сгущать) в тех случаях, когда при нагнетании раствора с максимальным достигнутым расходом давление нагнетания не повышается или при достижении давления отказа расход раствора не уменьшается. При инъекции растворов на основе силикатов и смол режим нагнетания должен выбираться в зависимости от времени гелеобразования, позволяющего, с учетом проницаемости грунтов, вязкости раствора и допустимого давления нагнетания, выполнить инъекцию необходимого объема раствора. На сегодняшний день разработаны и усовершенствованы технические средства для инъекционной технологии наступающими (нисходящими) заходками и инъекционной манжетной технологии. При этом укрепление тела фундамента и контактной зоны, а также при инъекции скальных грунтов бурение скважин и инъекцию выполняют:

способом наступающих заходок с использованием кондуктора: скважина бурится на глубину первой заходки и после промывки инъецируется.

Затем цементный камен в пределах заинъектированной зоны разбуривается, скважина углубляется на следующую заходку, производится нагнетание инъекционного раствора в эту заходку, разбуривание цементного камня и т. д. до тех пор, пока не будет выполнено нагнетание раствора в контактную зону (рисунок 4);

Рисунок 4 Укрепление тела фундамента и контактной зоны через трубу-кондуктор

способом как нисходящих, так и восходящих заходок с использованием одинарного пакерующего устройства: в первом случае с бурением скважины на длину заходки и последующим разбуриванием, во втором случае -- на полную глубину без разбуривания; после установки на проектную глубину пакера (в первом случае начинают с 1-й заходки, во втором случае -- с 5-й заходки) интервал скважины инъецируется, скважина оставляется на ОЗЦ, после чего цикл повторяют (рисунок 5).

Рисунок 5 Укрепление тела фундамента и контактной зоны с использованием пакерующего устройства

для укрепления грунтов основания с низкой несущей способностью разработана инъекционная технология с использованием манжетных колонн. Данная технология позволяет выполнять инъекцию грунтового массива как в восходящем, так и в нисходящем порядке, причем при манжетной технологии имеется возможность возврата к нагнетанию в любом интересующем интервале.

Основным преимуществом этой технологии перед другими является поинтервальное инъецирование укрепляемых грунтов, что позволяет надежно управлять инъекционным процессом.

Порядок выполнения операций при этом следующий (рисунок 6):

бурение инъекционной скважины на проектную глубину с укреплением при необходимости ее стенок;

установка в скважине манжетной колонны, оборудованной центраторами;

установка в манжетной колонне на последней манжете двойного пакера-обтюратора;

нагнетание в затрубное пространство обойменного раствора до выхода его через устье скважины;

после затвердевания обойменного раствора в скважину на первоочередной интервал устанавливают двойной пакер и выполняют нагнетание расчетного количества инъекционного раствора, после чего пакер переставляют на очередной интервал и продолжают нагнетание, и так выполняют работы по всему проектному интервалу каждой скважины.

Рисунок 6 Стабилизация грунтов основания фундамента с использованием манжетной технологии (обозначения см. на рис. 4, 5)

4. Бурение скважин, приготовление и инъекция растворов при струйной цементации грунтов

Способ струйной цементации грунтов следует применять для укрепления и стабилизации грунтов, устройства ограждений и противофильтрационных завес при строительстве и реконструкции любых объектов в несвязных, неустойчивых и водонасыщенных грунтах.

Струйная цементация грунтов основана на разрушении природной структуры грунта энергией высокоскоростной струи жидкости и перемешивании его с нагнетаемым под высоким давлением (от 20 до 80 МПа) раствором до образования в грунтовом массиве грунтоцементной сваи, диаметр которой зависит от характеристик укрепляемого грунта и используемого метода струйной цементации.[2]

В зависимости от физико-механических характеристик укрепляемых грунтов и проектных требований к параметрам укрепления может применяться одно- ("Jet-1"), двух- ("Jet-2") и трехкомпонентный ("Jet-3") метод струйной цементации.

Однокомпонентный способ обработки грунта рекомендуется применять для укрепления рыхлых грунтов (крупно- и среднезернистых песков), а двух- и трехкомпонентный - для укрепления мелкозернистых песков, связных и других видов грунтов.

При однокомпонентном способе струйной цементации размыв и перемешивание грунта производят высоконапорными струями инъекционного раствора с образованием грунтоцементной сваи из укрепленного грунта диаметром от 0,3 до 0,8 м.

При двухкомпонентном способе в грунт подается одновременно инъекционный раствор и сжатый воздух для предварительного разрушения грунта воздушной струей с образованием грунтоцементной сваи из укрепленного грунта диаметром от 1,5 до 2,0 м.

Трехкомпонентный способ заключается в размыве грунта водовоздушной струей под давлением от 40 до 60 МПа и выше с отдельной подачей под давлением от 3 до 5 МПа укрепляющего раствора из нижерасположенного сопла, при этом диаметр укрепления грунта достигает от 2 до 3 м.

Струйный скважинный монитор предназначен для нагнетания в скважину под высоким давлением раствора, размыва грунта и перемешивания разрыхленного грунта с твердеющим раствором.

Состав работ по струйной цементации грунтов включает бурение направляющих скважин и спуск монитора в скважину, установку его на проектной глубине, приготовление инъекционного раствора, подъем монитора с одновременной подачей инъекционного раствора через сопла*, размыв в грунте полостей и заполнение их грунтоцементным материалом, извлечение рабочего органа и перемещение агрегата на новую точку.[2]

Давление нагнетания инъекционного раствора должно находиться в пределах от 20 до 80 МПа.

При струйной цементации грунтов давление нагнетания раствора зависит от характеристик обрабатываемых грунтов и проектных размеров грунтоцементных свай.

Нагнетание раствора при струйной цементации грунта должно проводиться триплексными насосами высокого давления по соединенным с монитором нагнетательным армированным шлангам.

Монитор следует спускать в скважину при обеспечении подачи воды и воздуха с малым расходом и низким давлением в соответствии с таблицей 2. После установки монитора на проектной глубине при неподвижном его положении разрушение грунта должно проводиться в течение от 1 до 2 мин (до появления пульпы из скважины). Подъем монитора следует начинать после увеличения расхода, давления раствора и воздуха до рабочих величин. Подъем монитора следует осуществлять плавно и непрерывно. Максимально допустимая скорость подъема должна устанавливаться по результатам опытных работ. Наиболее эффективная обработка несвязных грунтов достигается при относительно больших расходах инъекционного раствора, а в связных грунтах (плотные, суглинки, глины) - при относительно высоких давлениях нагнетания раствора. Расход инъекционного раствора при струйной цементации грунта должен регулироваться по выносу раствора с грунтовой пульпой из скважины. Нормальный процесс цементации сопровождается незначительным выносом раствора от 30% до 40% от инъектируемого объема раствора. При чрезмерном выносе расход раствора должен быть уменьшен, при отсутствии выноса - увеличен.

Рисунок 7 Технологическая последовательность производства работ по укреплению грунтов с применением технологии «Jet grouting»

Размещено на Allbest.ru


Подобные документы

  • Существующие основные типы грунтов. Характеристика грунтов города Москвы и их поведение при строительстве. Выбор конструкции фундамента в зависимости от типа грунта. Схема размещения в городе Москве нового жилищного строительства в ближайшие годы.

    реферат [281,0 K], добавлен 23.01.2011

  • Оценка деформаций грунтов и расчет осадки фундаментов, свойства и деформируемость структурно неустойчивых грунтов. Передача нагрузки на основание при реконструкции зданий. Механические свойства грунтов, стабилометрический метод исследования их прочности.

    курсовая работа [236,8 K], добавлен 22.01.2012

  • Определение показателей сжимаемости грунтов в лабораторных условиях на компрессионных приборах. Стабилизация осадки и закон ламинарной фильтрации для песчаных грунтов. Скорость фильтрации воды в порах. Сдвиговые испытания и линейная деформируемость.

    презентация [267,4 K], добавлен 10.12.2013

  • Анализ инженерно-геологических условий, свойств грунтов, оценка расчетного сопротивления грунтов. Анализ объемно-планировочных и конструктивных решений здания. Определение глубины заложения и обреза фундаментов. Определение осадки свайного фундамента.

    курсовая работа [460,4 K], добавлен 27.04.2015

  • Контролируемые параметры оснований и фундаментов. Состояние прилегающей территории, цоколя и стен подвала. Тип и глубина заложения фундаментов. Физико-механические характеристики грунтов основания. Уровень грунтовых вод. Деформации грунтов основания.

    презентация [2,5 M], добавлен 26.08.2013

  • Природа грунтов и показатели физико-механических свойств. Напряжения в грунтах от действия внешних сил. Разновидность песчаных грунтов по степени водонасыщения. Построение графика компрессионной зависимости и определение коэффициента сжимаемости грунта.

    курсовая работа [610,6 K], добавлен 11.09.2014

  • Строительная классификация грунтов площадки, описание инженерно-геологических и гидрогеологических условий. Выбор типа и конструкции фундаментов, назначение глубины их заложения. Расчет фактической нагрузки на сваи, определение их несущей способности.

    курсовая работа [245,7 K], добавлен 27.11.2013

  • Оценка инженерно-геологических условий и свойств грунтов с определением расчетного сопротивления грунтов основания. Определение глубины заложения подошвы фундамента. Определение давления на грунт основания под подошвой фундамента. Расчет плитной части.

    курсовая работа [3,7 M], добавлен 24.08.2015

  • Определение дополнительных характеристик физических и механических свойств грунтов, их просадочности. Постоянные и временные распределенные нагрузки на перекрытия и покрытия. Определение глубины заложения фундамента. Расчёт осадки грунтового основания.

    курсовая работа [185,0 K], добавлен 22.06.2012

  • Характеристика площадки, инженерно-геологические и гидрогеологические условия. Оценка строительных свойств грунтов площадки и возможные варианты фундаментов здания. Определение несущей способности и количества свай. Назначение глубины заложения ростверка.

    курсовая работа [331,0 K], добавлен 23.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.