Способы усиления оснований и фундаментов
Причины, вызывающие необходимость усиления оснований и фундаментов. Натуральные обследования фундаментов и их оснований. Усиление оснований при реконструкции и капитальном ремонте. Технология производства работ при усилении оснований закреплением грунтов.
Рубрика | Строительство и архитектура |
Вид | реферат |
Язык | русский |
Дата добавления | 26.01.2015 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
- Введение
- Причины, вызывающие необходимость усиления оснований и фундаментов
- Натуральные обследования фундаментов и их оснований
- Усиление и восстановление оснований при реконструкции и капитальном ремонте
- Принципы, организация и технология производства работ при усилении и оснований закреплением грунтов
- Принципы, организация и технология производства работ при усилении оснований глубинным уплотнением грунтов
- Принципы и способы восстановления и усиления фундаментов
- Список литературы
Введение
Долговечность жилых зданий, их соответствие назначению во многом определяются состоянием оснований и фундаментов. Система основание - фундамент является наиболее сложной в моделировании и предвидении ее функционирования в процессе возведения и особенно эксплуатации зданий и сооружений. Эта система в эксплуатационных условиях постоянно испытывает одновременное, зачастую трудно учитываемое воздействие многих факторов, из которых наиболее значительными являются изменения свойств основания, природные явления и воздействия, связанные с деятельностью человека.
Нарушения нормальной работы оснований и фундаментов встречаются довольно часто, и хотя обычно не происходит полного разрушения зданий и сооружений, но наблюдаются разного рода деформации, перекосы, трещины, которые без устранения причин их появления и невыполнения в срок ремонтных работ могут привести к самым серьезным последствиям, вплоть до аварий.
Классификация причин усиления оснований и фундаментов
Выбор способа усиления оснований и фундаментов, организация и технология работ по усилению во многом зависит от причин, вызывающих необходимость усиления. Основными причинами усиления оснований и фундаментов являются увеличение нагрузки на грунты оснований и тело фундаментов, а также деформации и повреждения грунтов оснований и конструкций фундаментов.
Увеличение нагрузки происходит в результате изменения технологических нагрузок, при надстройке зданий, изменениях конструктивного решения и ряде других случаев, возникающих при реконструкции зданий и сооружений.
Большая часть повреждений надземных конструкций связана с деформациями и повреждениями оснований и фундаментов. Причинами их появления являются ошибки, допущенные при изысканиях, проектировании, строительстве и эксплуатации, а также объективные факторы (изменение гидрогеологических условий, динамические и сейсмические воздействия и т.п.)
Рис.1 Классификация причин усиления оснований и фундаментов
Классификация причин, вызывающих необходимость усиления приведена на рисунке 1.
Следует отметить, что в процессе эксплуатации основания и фундаменты работают, как единая система, испытывающая одновременное воздействие многих из перечисленных факторов (изменение свойства оснований, эксплуатационные воздействия, природные явления, хозяйственная деятельность вблизи зданий и др.). Как правило, эти факторы либо оказывают одновременное негативное воздействие на основания и фундаменты, либо, воздействуя на один элемент этой системы, в конечном итоге приводят к необходимости усиления всей системы.
Натуральные обследования фундаментов и их оснований
Проведение реконструкции и капитального ремонта зданий, особенно в условиях эксплуатации, достаточно дорого и трудоемко, поэтому проектные решения должны быть приняты после тщательного обследования всех конструктивных элементов.
Общие принципы обследования строительных конструкций в основном одинаковы для всех зданий. Обследование должно проводиться поэтапно и включать в себя:
ѕ подготовительные работы (общее знакомство с объектом, изучение технической документации, составление программы обследования);
ѕ натурное освидетельствование конструкций (общий осмотр конструкций, обмеры элементов и узлов, установление геометрической схемы путем геодезической съемки положений конструкций, выявление дефектов и повреждений визуальным осмотром и с помощью инструментов и приборов);
ѕ установление характера и величины действующих нагрузок и воздействий (уточнение, а в случае отсутствия и установление технологических нагрузок, определение атмосферных нагрузок, выявление характера и степени агрессивности воздействий на конструкции среды помещений, а также природно-климатических факторов);
ѕ оценку физико-механических характеристик материалов конструкций (выявление на основе проектной и исполнительной документации характеристик материала, определение механических характеристик материалов неразрушающими методами, отбор, в случае необходимости, образцов из обследуемых конструкций и испытание их в лабораторных условиях);
ѕ установление фактической расчетной схемы (выявление на основе проектной документации принятой при проектировании расчетной схемы, установление реальной работы конструкций, составление фактической расчетной схемы);
ѕ выполнение поверочных расчетов (определение усилий в обследуемых элементах, сопоставление полученных расчетных усилий в конструкциях с их фактической несущей способностью);
ѕ анализ результатов обследования и составление технического заключения (общий анализ результатов обследования, формулирование выводов и рекомендаций по усилению и дальнейшей эксплуатации конструкций).
В систематизированном виде эти этапы даны на рис. 2.
Фактический объем и содержание обследования в каждом конкретном случае устанавливаются с учетом конструктивного решения здания, степени физического износа и разрушений отдельных элементов и здания в целом, отсутствия и наличия проектной и исполнительной документации, а также конечной цели, которая должна быть достигнута в результате усиления.
Результаты обследования, являющиеся исходными данными для разработки проекта усиления, оформляются в виде научно-технического отчета, содержащего в наиболее общем виде: описание конструкций с приложением основных чертежей, а при наличии проектной документации со ссылками на номера чертежей и места их хранения; краткое описание функционального (технологического) процесса с указанием предполагаемых при реконструкции изменений; общую характеристику эксплуатационных воздействий (технологические нагрузки, их интенсивность, выделение пыли, тепла, влаги, агрессивных веществ и т.п.); материалы освидетельствования конструкций с ведомостями дефектов и повреждений, а также с результатами геодезической съемки; анализ материалов освидетельствования с указанием причин их возникновения; результаты определения физико-механических свойств конструкций и рекомендуемые значения расчетных характеристик; поверочные расчеты конструкций; выводы и рекомендации по обеспечению дальнейшей нормальной работы конструкций, а также предложения по их устранению.
Рис. 2 Очередность работ по обследованию конструкций зданий перед реконструкцией и капитальным ремонтом
Указанный порядок выполнения проектно-изыскательских работ, естественно, может меняться или сокращаться в зависимости от вида сооружения, фундаменты которого требуют усиления. При разработке проекта в одну стадию (технорабочий проект или рабочие чертежи) отдельные пункты выполнения проектно-изыскательских работ могут объединяться.
Усиление и восстановление оснований при реконструкции и капитальном ремонте
Все способы усиления и восстановления оснований можно разделить на две основные группы:
ѕ усиление путем закрепления грунтов;
ѕ повышение прочности оснований глубинным уплотнением грунтов.
Принципы, организация и технология производства работ при усилении и оснований закреплением грунтов
Усиление основание путем закрепления грунтов заключается в связывании частиц грунта. Закрепление повышает механическую прочность, водоустойчивость, долговечность. В зависимости от технологии закрепления и процессов, происходящих в грунте, методы закрепления делятся на три вида: химические, физико-химические и термические.
Сущность химических методов состоит в том, что грунт через предварительно погруженные в него перфорированные трубы (инъекторы) нагнетают маловязкие растворы. Находясь в грунте растворы вступают в химическую реакцию с грунтом и, отверждаясь в нем, улучшают химические свойства основания. Химические способы делятся на две группы, к первой относятся способы, использующие силикатные растворы и их производные, ко второй - способы, применяющие органические полимеры (акриловые, карбомидные, резорцинформальдегидные, фурановые смолы и т.п.).
Наиболее распространенные имеют способы силикатизации. Материалом для силикатизации является жидкое стекло - коллоидный раствор силиката натрия.
При однорастворной силикатизации в грунт инъецируется гелеобразующий раствор, состоящий из двух или трех компонентов: растворы силиката натрия и отверждающего реагента (раствор кислот, органических составов). В результате протекающей реакции грунт цементируется гелем кремниевой кислоты.
При двухрастворной силикатизации процесс закрепления сводится к поочередному нагнетанию в грунт раствора силиката натрия и раствора хлористого калия. В процессе взаимодействия растворов образуется гидрогель кремниевой кислоты. Песок после инъекции становится водонепроницаемым.
При газовой силикатизации качестве отвердителя силиката натрия используют углекислый газ. Газ нагнетают в грунт для его предварительной активизации. После этого инъецируют силикат натрия, а затем в грунт подают углекислый газ. Способ применяется для песчаных и просадочных лессовых грунтов, а также грунтов с высоким содержанием органических веществ. Закрепленные пески приобретают прочность 0,8…1,5 МПа, а лессовые грунты 0,8…1,2 МПа.
При электросиликатизации используется комбинированное применение постоянного электрического тока и силикатных растворов. Способ предназначен для закрепления переувлажненных мелкозернистых грунтов и супесей, а также лессовых грунтов, в которых жидкое стекло проникает с трудом. При аэросиликатизации грунтов используют сжатый воздух, который подпоют в грунт вместе с закрепляющим раствором жидкого стекла. Подача сжатого воздуха позволяет получить в грунте радиально направленные от инъектора лучеобразные участки закрепленного грунта.
При больших объемах закачки тампонажных материалов применяют глинисто-силикатные растворы, представляющие собой смеси водных растворов высокодисперсных глин с небольшой добавкой силиката натрия. Силикат натрия инъецирует возникновение в порах грунта эластичного геля, обеспечивающего водонепроницаемость грунтового массива.
К другим химическим методам относятся аммонизация и смолизация.
При аммонизации в грунт под небольшим давлением нагнетается газообразный аммиак. Метод позволяет придать лессовым грунтам свойства непросадочности.
При смолизации в грунты инъецируются водные растворы синтетических смол (карбомидных, эпоксидных, фурановых и др.) вместе с отвердителями (кислотами, кислыми солями). После взаимодействия с отвердителями смола полимеризуется. Смолизация используется при закреплении песчаных с коэффициентом фильтрации 0,5…45 м/сут. и лессовых грунтов. Грунты становятся водонепроницаемыми и имеют прочность на сжатие до 1…5 МПа.
Выбор способа и зон химического закрепления грунта зависит от характеристики основания, формы и размеров фундамента, действующих нагрузок. Зоны закрепления в плане могут быть ленточными, сплошными, прерывистыми, кольцевыми и фигуристыми (рис.3).
Рис. 3 Зоны химического закрепления грунтов оснований: а - ленточная; б - сплошная; в - столбчатая; г - кольцевая
В зависимости от этого и свойств грунта определяется расстояние между инъекторами и их положение (вертикальное, наклонное, горизонтальное, комбинированное (рис.4).
К физико-химическим методам закрепления грунтов относится цементация, грунтоцементация, битуминизация и глинизация.
При цементации в грунт через инъекторы нагнетается цементный, цементно-песчаный или цементно-глинистый раствор. Добавка глин до 5 % способствует улучшению качества работ. Метод применяют для закрепления песчаных, крупнообломочных грунтов и трещиноватых скальных пород.
При грунтоцементации для укрепления оснований устраивают грунтоцементные (илоцементные) сваи. Для устройства свай грунт в пробуриваемой скважине перемешивается с вяжущим материалом без выемки его из скважины. Метод применяется для закрепления слабых грунтов при возведении вблизи эксплуатируемых зданий новых, создании подземных конструкций в слабых грунтов(например, илосвай, грунтоцементных ленточных фундаментов и т.п.), устройстве противофильтрационных завес и др.
Рис. 4 Варианты расположения инъекторов при закреплении грунтов оснований: 1 - фундамент; 2 - инъектор; 3 - зона закрепления; 4 - шахта
При глинизации для заполнения скважин используют глинистые растворы. Применяется она в трещиноватых породах.
При битуминизации в качестве инъецируемого вещества используют разогретый битум или холодную битумную эмульсию. Способ рекомендуется для песчаных грунтов с коэффициентами фильтрации 10…50 м/сут. Из-за сложности технологии метод применяется очень ограниченно.
Термическое закрепление грунтов (обжиг) применяются в основном при закреплении просадочных грунтов. В пробуренных в грунте скважинах сжигают газообразное, жидкое или твердое топливо.
Одновременно в скважину подают воздух. Обжиг производят при температуре 400…800 С в течение 5…10 дней. Вокруг скважины образуется столб закрепленного грунта диаметром 1,5…3,0 м с прочностью 1…3 Па.
Иногда в практике применяется электротермический способ обжига грунта. В качестве источника используются нихромовые электронагреватели. Скважины во всех случаях могут пробуриваться вертикально, наклонно и горизонтально.
Работы по усилению оснований перечисленными выше методами инъекцирования должны выполняться в определенной последовательности.
Перед производством работ по закреплению грунтов следует:
ѕ уточнить расположение подземных коммуникаций, а также расположение и состояние сооружений, находящихся вблизи места закрепления;
ѕ подготовить бригаду исполнителей, предварительно прошедших курс обучения технологии производства работ;
ѕ обеспечить наличие предусмотренного проектом комплекта оборудования и материалов;
ѕ выполнить контрольное закрепление грунта и провести его испытания.
Производство закрепления грунтов включает последовательно следующие виды работ:
ѕ подготовительные и вспомогательные работы, включая приготовление закрепляющих растворов;
ѕ работы по погружению в грунты инъекторов и бурению, а также по оборудованию инъекционных скважин;
ѕ нагнетание закрепляющих реагентов в грунты;
ѕ извлечение инъекторов и заделку инъекционных скважин;
ѕ работы по контролю закрепления.
Подготовительные и вспомогательные работы выполняют до начала основных работ. К ним относятся: подготовка и планировка территории; подводка электроэнергии, горячего и холодного водоснабжения, канализации; установление (при необходимости) геодезического наблюдения за осадками фундаментов; размещение на площадке химреагентов и материалов; оборудование стационарного узла приготовления растворов (при объеме закрепления более 10 тыс. м3 грунта); размещение мест погружения инъекторов или бурения инъекционных скважин; согласование возможности проведения работ с электронадзором и лицами, ответственными за подземные коммуникации; приготовление закрепляющих растворов рабочих концентраций; выполнение контрольных работ по закреплению грунтов.
Принципы, организация и технология производства работ при усилении оснований глубинным уплотнением грунтов
Для повышения прочности оснований за счет уплотнения грунтов используются механические способы, устройство грунтовых свай, включение в основание жестких элементов.
Способ устройства грунтовых свай основан на погружении штампов, которые образуют скважины с вытеснением грунта радиально в стороны. В результате этого грунт вокруг скважины уплотняется. Погружение штампа выполняется проколом, забивкой, вибрированием. В отформованную скважину засыпают местный грунт или песок, песчано-гравийную смесь, щебень и снова ее отформовывают. Операции повторяют до тех пор, пока усредненная плотность грунтового массива не станет равной требуемой. Наибольший эффект уплотнения достигается при шахматном расположении скважин. Расстояние между осями скважин зависит от диаметра уплотняющего органа и требуемого коэффициента уплотнения.
Недостатком такого способа является наличие при забивке элементов колебаний, могущих вызвать недопустимые осадки зданий.
Следует учитывать, что глинистые грунты в меньшей степени реагируют на вибрацию, чем пески. Чтобы деформировались глинистые грунты, требуется продолжительное воздействие вибрации. Довольно быстро реагируют на динамические воздействия водонасыщенные пески и супеси, находящиеся в рыхлом состоянии или в состоянии средней плотности. Фундаменты реконструируемых зданий в таких грунтах могут подвергаться значительным неравномерным осадкам вследствие уплотнения или выдавливания из-под них грунта. Опасность колебаний при забивке элементов, вызывающих осадку зданий, существенно зависит не только от вида грунта, но и глубины погружения оболочки или сваи, расстояния от них до существующих зданий и ряда других факторов. С увеличением расстояния амплитуды смещений быстро затухают. Большое влияние на это оказывают грунтовые условия. Использование молотов меньшего веса приводит к снижению амплитуд смещений грунта и зоны их влияния. Значения амплитуд максимальны при погружении трубы или сваи на глубину 3…6 м. Увеличение амплитуды на глубине может быть связано не только с особенностями геологического строения площадки, но и с перерывами в погружении сваи, например в тиксотропных грунтах.
С целью снижения уровня колебаний уменьшают частоту ударов и высоту падения молота, увеличивают его вес, а также сокращают время «отдыха» сваи в процессе забивки. Снизить уровень колебаний позволяют следующие способы: погружение элементов в лидерные скважины, в тиксотропной рубашке и вдавливанием.
Глубинное упрочнение оснований с использованием вяжущих материалов (закрепление грунтов) выполняется по следующей технологии. Вначале в грунте спиралевидным снарядом проходят первичную скважину диаметром, меньшим заданного, а затем скважину заполняют закрепляющим материалом. После этого по оси первичной скважины снарядом большего диаметра проходят скважину проектного диаметра, вдавливая закрепляющий материал в грунт. Под напором погружаемого снаряда закрепляющий материал проникает в грунт через стенки скважины и ее дно. При этом закрепляющий материал частично перемешивается с грунтом, что способствует образованию вокруг скважины оболочки повышенной прочности (рис. 5).
Рис. 5 Схема устройства скважины с использованием вяжущего материала:
а-д - последовательность устройства скважины: 1 - снаряд малого диаметра; 2 - вяжущий материал; 3 - снаряд большого диаметра; 4 - слой закрепленного грунта; 5 - скважина проектного диаметра; 6 - материал заполнения скважины
В качестве твердеющей смеси может быть использована любая композиция, отверждающаяся с грунтом, например, химические реагенты, применяемые для химического закрепления грунтов (фенолформальдегидная, карбамидная и другие смолы, жидкое стекло), а также цементно-песчаные и цементные растворы. Для предотвращения выдавливания закрепляющего материала из скважины на поверхность первичную скважину заполняют закрепляющим материалом на 1…1,5 м ниже ее устья, а диаметр первичной скважины должен быть менее 0,8 диаметра проектной скважины. В зависимости от характера грунтовых напластований закрепление можно выполнять выборочно на отдельных участках, причем толщина закрепляемых слоев по длине скважины может быть различной.
По окончании упрочнения грунта скважины заполняют грунтом или другим материалом с уплотнением.
Расстояние между скважинами определяют исходя из условий обеспечения совместной работы грунта в массиве, а также необходимой несущей способности укрепляемого основания.
Для уплотнения слабых водонасыщенных грунтов, в том числе и обводненных лессовых, можно использовать грунтоизвестковые сваи. В процессе гашения известь в скважине увеличивается в троекратном объеме. Развивающееся при этом давление существенно укрепит стенки скважины.
Глубинное уплотнение может быть выполнено в виде вертикальных или наклонных скважин; может быть также принято и комбинированное расположение скважин.
Выбор способа глубинного уплотнения основания зависит от конкретных условий реконструируемого объекта, диаметра скважин, материала, используемого для упрочнения и др. Например, для уплотнения оснований существующих зданий в основном устраивают наклонные скважины (рис. 6).
Рис. 6 Вариант упрочнения основания песчаными сваями: 1 - здание; 2 - фундамент; 3 - песчаные сваи; 4 - зона упрочнения; 5 - насыпной грунт; 6 - торф
Принципы и способы восстановления и усиления фундаментов
Выбор способов ремонта и усиления ленточных и столбчатых фундаментов мелкого заложения зависит от причин, вызывающих необходимость усиления, особенностей конструктивного решения фундаментов, действующих нагрузок, а также от инженерно-геологических условий и степени стесненности рабочей площадки. От принятого способа усиления или ремонта существенным образом зависит организация и технология производства работ.
Основные способы усиления фундаментов мелкого заложения с их краткой характеристикой даны ниже.
Усиление и восстановление кладки фундаментов цементацией. Способ применяется, когда кладка ослаблена по всей толще, а увеличения нагрузки на фундамент нет. Цементация производится путем нагнетания в пустоты фундамента через инъекционные трубы цементного раствора консистенции от 1:1 до 1:2 и более под давлением 0,2…1,0 МПа (рис. 7). Через один инъектор заполняется пространство диаметром 0,6…1,2 м.
Рис. 7 Усиление кладки фундамента при ее большом износе инъекцией цементного раствора: 1 - инъекторы; 2 - фундамент; 3 - цементный раствор
Обычно число мест инъекции зависит от степени разрушения кладки фундаментов. Работы по укреплению целесообразно вести захватками длиной 2,0…2,5 м. Иногда для уменьшения расхода раствора боковые поверхности фундамента перед цементацией покрывают цементной штукатуркой.
Ремонт и усиление тела фундаментов материалами на основе полимеров. Способ основан на использовании полимербетонов, полимерных растворов и мастик для заделки трещин в теле фундаментов и инъецирования их внутрь. Для заделки трещин шириной 2 мм и более и раковин глубиной менее 50 мм используются полимеррастворы и полимермастики. Если разрушения более значительны и имеются обнажения арматуры, восстановление выполняют полимербетоном или полимерраствором, нанесением торкретбетона. При наличии пустот, трещин и других дефектов внутри тела для укрепления его используют инъекционное лечение полимерными смесями смол с отвердителями. В связи с высокой стоимостью смол инъекцирование их ограничивается небольшими объемами дефектов.
Устройство защитных растворных рубашек. Способ применяется при ремонте незначительных наружных повреждений фундаментов. Для этого в кладку в шахматном порядке через 0,5 м заделываются металлические анкеры, к которым прикрепляется арматурная сетка, и затем наносится раствор на крупном песке простым оштукатуриванием или торкретированием. Иногда вместо раствора наносят бетон, применяя пневмонабрызг или укладку в опалубку. Данный способ обычно применяется совместно с другими мерами усиления. Из-за появления трещин в ступенях ленточного фундамента их усилили путем устройства над ступенями продольных железобетонных балок (рис. 8). Балки опираются на контрфорсы, ширина которых определяется по расчету на смятие кладки в местах пересечения ригеля контрфорса с кладкой стены. Расстояние между контрфорсами находится из расчета балок на изгиб. Весь фундамент заключается в железобетонную рубашку, монолитно связанную с балками.
Рис. 8 Вариант усиления кладки ленточного фундамента: 1 - фундамент; 2 - трещины в ступенях; 3 - продольная балка на ступени; 4 - контрфорс; 5 - рубашка; 6 - рандбалки; 7 - стена здания
фундамент капитальный ремонт грунт
Частичная замена кладки фундамента производится при ремонтах со средней степенью разрушения тела фундамента. Способ применяется когда нагрузка на фундамент увеличивается, а несущая способность основания достаточна.
Усиление железобетонных фундаментов обоймами ввиду простоты и надежности устройства получило широкое распространение в практике. Обоймы, устраиваемые без углубления фундамента, могут выполняться как без увеличения площади подошвы, так и с ее уширением. По материалу они могут быть бетонными и железобетонными. Последние более надежны, так как охватывают усиливаемый фундамент, обжимая его при усадке бетона.
Обоймы без увеличения площади подошвы фундаментов устраиваются редко. Их применяют в тех случаях, когда тело фундамента имеет недостаточную прочность, а его подошва и основание находятся в хорошем состоянии. Обоймы с увеличением площади подошвы фундамента устраиваются в фундаментах мелкого заложения, выполненных из различных кладок, бетона или железобетона. Изготовление обойм возможно как на всю высоту фундамента, так и на часть высоты (рис. 9). Применяют данный способ при необходимости увеличения нагрузки на фундамент и недостаточной несущей способности основания. По этим причинам обоймы достаточно часто используют для усиления бутовых и бутобетонных фундаментов при надстройке или других видах реконструкции зданий старой постройки. Некоторые схемы таких усилений, даны на рис. 10.
Рис. 9 Схемы усиления ленточных фундаментов бетонными обоймами: а - обойма у подошвы; б, в - трапецеидальная и прямоугольная обоймы на всю высоту тела фундамента; 1 - фундамент; 2 - обойма; 3 - штрабы; 4 - балка усиления
Рис. 10 Варианты усиления бутовых и бутобетонных фундаментов: а - обоймами с креплением их балками и штрабами; б - арматурными элементами; в - жестким металлическим каркасом; 1 - существующий фундамент; 2 - обойма усиления; 3 - металлическая балка; 4 - арматурные стержни; 5 - металлический каркас
Обоймы устраивают как в подвальных, так и бесподвальных зданиях. Возможные схемы усиления обоймой фундаментов и стен подвала приведены на рис. 11.
Рис. 11 Варианты усиления обоймами стен (а), (б) и столбов (в) подвала: 1 - стена подвала и фундамента; 2 - столб; 3 - обойма; 4 - арматурные стержни; 5 - арматурные тяжи; 6 - хомуты
При необходимости значительного увеличения площадей подошвы применяются более жесткая система разгрузочных балок с устройством подкосов, опирающихся на кладку (рис. 9, в). Для обеспечения жесткости в продольном направлении балки между собой связывают уголками и арматурными стержнями. После обетонирования фундамент имеет повышенную несущую способность. На рис. 11, б приведено подобное решение для сборного ленточного фундамента. Толщина обоймы и требуемая величина уширения подошвы определяются расчетами с учетом повышения расчетной нагрузки в случае реконструкции или снижения несущей способности грунтов при эксплуатации. При необходимости не только уширения подошвы, но и повышения прочности тела стен подвала или колонн обоймы фундаментов и стен делают едиными (рис. 10).
После усиления уширенная часть фундамента начинает воспринимать часть действующей и дополнительной нагрузок. В случаях большого увеличения нагрузок элементы уширения должны быть введены в работу путем предварительного обжатия основания. В настоящее время в практике имеется значительное количество способов обжатия. Для ленточных фундаментов, в частности, может быть применен способ, суть которого заключается в установке с двух сторон фундамента дополнительных железобетонных сборных блоков уширения, нижнюю часть которых стягивают анкерами из арматурной стали, пропущенными сквозь них и существующие фундаменты. Верхняя часть блоков отжимается от поверхности фундаментов клиньями или домкратами. В результате этого блоки поворачиваются вокруг нижней, закрепленной анкерами точки, и подошвой обжимают неуплотненный грунт основания. После обжатия зазор между блоками и фундаментом расклинивается и заполняется бетоном (рис. 12, а).
Рис. 11 Варианты усиления сборных ленточных фундаментов с помощью: а - горизонтальных штраб и монолитной обоймы; б - металлического каркаса и монолитной обоймы; 1 - фундамент; 2 - обойма; 3 - арматурные стержни
Рис. 12 Варианты усиления с предварительным обжатием основания: 1 - фундамент; 2 - блоки; 3 - тяжи; 4 - фиксированная затяжка; 5 - прижимной щит; 6 - антифрикционное покрытие; 7 - клинья; 8 - поперечная балка; 9 - обжатое основание; 10 - домкрат; 11 - сборный банкет; 12 - бетон
Известен и другой способ усиления с обжатием основания. Суть его заключается в установке по периметру фундаментов блоков обоймы, которые путем горизонтальных усилий обжатия тяжами вдавливаются в грунт (рис. 12, б). Для облегчения погружения блоков в грунт поверхность контакта блоков и фундамента смазываются антифрикционными материалами. При стягивании тяжей, пропущенных через прижимные щиты, блоки усиления сдавливаются и сползают вниз вдоль фундамента, обжимая тем самым грунт. После обжатия между блоками и поперечными балками, проходящими через стену здания, устанавливаются клинья, а блоки связывают фиксирующей затяжкой.
Рассмотренные способы пригодны в случаях, когда фундамент не имеет консолей. При наличии их применяют, например, способ, схема которого дана на рис. 12, в. В этом случае, с помощью домкратов через заранее уложенные бетонные элементы на грунт основания передается давление, несколько меньшее, чем под подошвой фундамента. Перед снятием домкратов устанавливают распорные клинья, а затем устраивают бетонную обойму
Усиление путем подведения конструктивных элементов под подошву фундаментов. В качестве дополнительных элементов, подводимых под существующие фундаменты, используют плиты, столбы и сплошные стены. Возможные схемы усиления даны на рис. 13.
В случае незначительного увеличения глубины заложения с одновременным уширением подошвы фундамента под нее подводят железобетонные плиты (рис. 13, а). Для этого на участках длиной 1…2 м. грунт под фундаментом откапывают и на месте изготавливают монолитную железобетонную плиту или монтируют сборные железобетонные элементы. После обжатия грунта в основании промежуток между плитой и подошвой фундамента заполняют бетоном, тщательно уплотняя его вибраторами.
Отдельные столбы под фундамент подводят в тех случаях, когда возможна передача нагрузки на более прочный грунт, расположенный на небольшой глубине от подошвы. Столбы располагают по линии или в шахматном порядке на определенном расстоянии друг от друга (рис. 13, б, в).
В случае недостаточной несущей способности основания или при необходимости устройства подвала под фундаменты подводят сплошную стену (рис. 13, г). Иногда стенку выполняют с одновременным увеличением площади подошвы.
Рис. 13 Варианты усиления подведением конструкций под фундаменты в виде: а - железобетонных плит; б, в - отдельных столбов; г - сплошной стены; 1 - фундамент; 2_столб; 3 - шурф; 4 - сплошная стена; 5 - плита; 6 - арматурный каркас
При значительном ослаблении тела фундамента и необходимости его заглубления иногда более выгодно сделать разборку старого и построить новый с необходимой глубиной заложения. Для ленточных фундаментов последовательность операций устройства фундаментов приведена на рис. 14. Вначале через стену пропускают разгружающие балки, надежно опирая их на опоры из шпальных клеток или домкраты. Последние более удобны, так как позволяют регулировать положение балок. После передачи нагрузки от стен на опоры старый фундамент разбирается отдельными захватками длиной 2,0…3,5 м и устраивается новый на более глубокой отметке. Между новым фундаментом и стеной для обеспечения их совместной работы производится инъецирование песчано-цементного раствора под давлением. Затем осуществляется засыпка котлована и демонтаж разгружающих конструкций.
Рис. 14 Переустройство ленточного фундамента с разборкой старой кладки фундамента
Изменение конструктивного решения фундаментов. В практике используются приемы усиления путем переустройства столбчатых фундаментов в ленточные (рис. 15). Для этого между столбами устраивают железобетонную стену в виде перемычки, нижнюю часть которой подводят под подошву существующего фундамента. Перемычка охватывает также подколонник. В случае незначительного повышения несущей способности перемычка может выполняться с уширенной подошвой. При необходимости устройства подвала перемычку делают на всю высоту столбов.
Рис. 15 Переустройство столбчатых фундаментов в ленточные: 1 - столбчатый фундамент; 2 - железобетонная перемычка; 3 - арматурные каркасы; 4 - уширенная часть перемычки
При значительном увеличении нагрузки столбчатые фундаменты переустраиваются в перекрестно-ленточные и плитные, а ленточные в плитные (рис. 16).
Рис. 16 Переустройство ленточных фундаментов в плитные
1 - ленточный фундамент; 2 - отверстия в ленточном фундаменте; 3 - подводимая плита; 4 - пропуски плиты под ленточным фундаментом; 5 - арматурные каркасы
Усиление фундаментов сваями. Сваи применяют для передачи нагрузки от фундаментов на более прочные слои грунта в тех случаях, когда основание имеет высокую деформативность и наблюдаются подземные воды, осложняющие процесс уширения или заглубления фундаментов.
Во всех случаях усиление производят двумя приемами: пересадкой фундамента на выносные сваи или подведением свай под подошву фундамента. Выносные сваи применяют при высоком уровне грунтовых вод, а подводимые при низком. В ленточных фундаментах выносные сваи устраиваются с одной или двух сторон фундамента, в столбчатых фундаментах они располагаются как с двух противоположных сторон, так и по всему периметру (рис. 17). Подводимые под подошву сваи могут устанавливаться в один, несколько рядов или кустами. Головы свай с усиливаемыми фундаментами соединяются ростверками, выполняемыми в виде железобетонных поясов для ленточных фундаментов или железобетонных обойм для столбчатых. Длину свай назначают по расчету в зависимости от характеристик грунтов и нагрузок на фундамент. В практике применяется большое количество способов усиления фундаментов сваями различного конструктивного решения. Некоторые из них рассмотрены ниже.
Рис. 17 Усиление ленточных и столбчатых фундаментов
1 - усиливаемый фундамент; 2 - свая; 3 - ростверк; 4 - рандбалка; 5 - поперечные балки; 6 - рычажный ростверк
Усиление набивными и буронабивными сваями. Набивные сваи устраивают погружением в основание обсадочных труб диаметром 250…375 мм с последующим извлечением из них грунта и заполнением их бетоном с трамбованием или уплотнением сжатым воздухом (пневмонабивные сваи). Иногда могут быть использованы набивные сваи, выполняемые по технологии винтового продавливания. Скважины образуются спиралевидными снарядами, при проходке которых грунт не извлекается, а уплотняется. В случае устройства буронабивных свай пробуривают скважины, устанавливают арматурные каркасы и бетонируют ствол.
При усилении столбчатых фундаментов набивными и буронабивными сваями вначале бетонируют сваи. Затем головы свай с арматурными выпусками связывают железобетонной обоймой, выполняемой вокруг существующего фундамента (рис. 18, а). Концы свай должны быть заглублены в прочный грунт. Для усиления могут быть поставлены две, четыре или больше свай, расположенных симметрично.
При усилении ленточных фундаментов выносные сваи размещают параллельными рядами с обеих сторон фундамента. Вынос свай определяется удобством расположения бурового оборудования. В случаях усиления выносными сваями фундаментов из бутовой кладки в них на требуемой высоте устраивают штрабы, в которые монтируют металлические продольные балки (рандбалки). Под продольными балками устанавливают поперечные металлические балки. Шаг балок 2,0…3,5 м. После установки балок по верху свай бетонируется ленточный ростверк. Для обеспечения совместной работы фундамента и установленных свай производят расклинивание промежутка между ростверком и поперечными балками. Схема такого решения приведена на рис. 18, б.
Рис. 18 Варианты усиления ленточных (а, б) и столбчатых (в) фундаментов набивными сваями: 1 - фундамент; 2 - ростверк; 3 - набивные сваи; 4 - зона уплотненного грунта; 5 - металлические балки; 6 - балка, бетонируемая на месте
В сборных ленточных фундаментах может использоваться вариант, схема которого приведена на рис. 18, в. При этом в стене фундамента отверстия не пробивают, а поперечные железобетонные балки изготавливают на месте, объединяя их арматурными стержнями, пропускаемыми через горизонтальные швы кладки. Балки работают совместно со стеной за счет сил трения и сцепления.
Усиление вдавливаемыми сваями. В настоящее время накоплен большой опыт повышения несущей способности фундаментов вдавливаемыми сваями. Сваи могут быть как цельными, так и составными из отдельных элементов. Этот способ имеет целый ряд преимуществ: отсутствие динамических и вибрационных воздействий на здание при устройстве усиления, нет необходимости в усиленном армировании ствола сваи, высокая точность установки свай, минимальное загрязнение окружающей среды и незначительные энергозатраты при устройстве.
Ленточные фундаменты можно усиливать с помощью выносных вдавливаемых свай из трубчатых элементов длиной 0,8…1,2 м, располагаемых попарно с двух сторон стены, схема подобного усиления приведена на рис. 19, а. Сваи погружают домкратами, усилия от которых передаются на железобетонные балки, изготавливаемые совместно со сплошным железобетонным поясом, который затем омоноличивается со сваями. Вдавливание свай осуществляется одновременно с двух сторон стены. Трубчатые элементы по мере вдавливания стыкуются между собой с помощью сварки. После вдавливания, демонтажа домкратов и упорных балок заполняются полости свай бетоном, устанавливаются арматура и опалубка оголовок свай и через отверстия в балке производится их бетонирование. В ряде случаев под ленточные фундаменты сваи можно подводить в один ряд. Работы выполняют из шурфов, откопанных до подошвы или ниже подошвы фундаментов (рис. 19, б).
Рис. 19 Варианты усиления фундаментов трубчатыми задавливаемыми сваями: 1 - фундамент; 2 - металлические трубчатые сваи; 3 - арматурный каркас оголовка сваи; 4- оголовок; 5 - железобетонная балка; 6 - стена; 7 - отверстия; 8 - наддомкратная балка; 9 - клинья; 10 - уголки; 11 - домкрат
Для передачи нагрузки на сваю между домкратом и сваей устанавливается распределительная подушка. Чтобы не снимать домкрата после каждого вдавливания, его приваривают к подушке. После вдавливания звена поршень домкрата поднимают вверх и сваю наращивают очередным звеном. При вдавливании необходимого количества звеньев сваю закрепляют с помощью уголков и клиньев, убирают домкрат и заполняют полость трубы бетоном, а шурф - бутобетоном.
В строительной практике часто используют составные вдавливаемые железобетонные сваи "Мега". Сваи состоят из трех типов секций; головной, рядовых и нижней (рис. 20). Сначала отрывают шурф ниже подошвы фундамента и устанавливают нижнюю секцию. Затем на нее прикрепляют головную секцию и сверху ставят домкрат, упирающийся в специальный распределительный элемент. После вдавливания нижней секции домкрат демонтируют, снимают головную секцию, устанавливают рядовую секцию, затем головную и монтируют снова домкрат. После вдавливания установленной рядовой секции операцию повторяют до тех пор, пока конец сваи не достигнет проектной отметки. На последнем этапе промежуток между распределительным элементом и сваей расклинивают и заполняют бетоном. В случае передачи больших нагрузок сваи "Мега" делают выносными в два ряда (рис. 20, б). При этом они связываются поперечными железобетонными балками.
Рис. 20 Варианты усиления фундаментов железобетонными задавливаемыми сваями: 1 - фундамент; 2 - распределительный элемент; 3 - железобетонная балка; 4 - клинья; 5 - домкрат; 6, 7, 8 - соответственно головная, рядовая и нижняя секции свай
Усиление буроинъекционными сваями позволяет производить работу без разработки котлованов, обнажения тела фундаментов и нарушения структуры грунта основания. Сущность этого способа заключается в устройстве под фундаментом жестких корневидных свай, передающих большую часть нагрузки на более плотные слои грунта. Сваи выполняют вертикальными или наклонными с помощью установок вращательного бурения, позволяющих пробуривать скважины через расположенные выше стены и фундаменты.
В скважины устанавливают арматурные каркасы и через инъекционные трубы нагнетают цементно-песчаный раствор или мелкозернистый бетон. Отличительной особенностью данного типа свай является их малый диаметр (127…190 мм) и относительно большое по сравнению к диаметру заглубление (более 100). Наибольшее распространение буроинъекционные сваи получили при усилении оснований и фундаментов реконструируемых и реставрируемых зданий. Сваи имеют значительную прочность на растяжение, поэтому их иногда используют в качестве анкеров в конструкциях, подверженных воздействию горизонтальных сил. Некоторые схемы усилений буроинъекционными сваями приведены на рис. 21.
Рис. 21 Варианты усиления фундаментов буроинъекционными сваями: 1 - стена здания; 2 - подводимый потолок; 3 - буроинъекционные сваи; 4 - существующие сваи; 5 - распределительные плиты
Усиление фундаментов способом «стена в грунте». Способ применяют при усилении фундаментов, расположенных вблизи фундаментов других зданий, на стесненной площадке, в сложных грунтовых условиях и т.п. Конструктивные решения усиления (глубокими стенами или прямоугольными столбами) зависят от причин усиления грунтовых условий, величины и характера нагрузок на фундамент, а также ряда других факторов. Например, при устройстве глубоких выемок или подвалов вблизи существующего фундамента, усиление производится глубокими стенами, возводимыми между выемкой и фундаментом (рис. 22, а). При этом повышение устойчивости стены достигается устройством анкерных креплений. Увеличение несущей способности столбчатых фундаментов может обеспечиваться возведением вокруг них глубоких стен или столбов прямоугольного сечения с двух- или четырехсторонним расположением (рис. 22 б, в), а иногда в виде замкнутого короба (рис. 22, г). Стены и столбы объединяются с фундаментом железобетонной обоймой. При необходимости одновременного увеличения устойчивости основания и усиления фундамента устраивают параллельные глубокие стены, объединенные стенами-перемычками меньшей глубины (рис. 22, д). За счет заключения в жесткую обойму при таком решении значительно повышается устойчивость основания и одновременно усиливается фундамент.
Рис. 22 Схемы усиления фундаментов способом «стена в грунте»
1 - фундамент; 2 - стена в грунте или прямоугольный столб; 3 - выемка; 4 - анкер; 5 - стена в виде короба; 6 - глубокие ленты или стены; 7 - стены-перемычки
Иногда усиление фундаментов производят комбинированными способами, одновременно устраивая «стены в грунте» и сваи, а также применяя различные способы закрепления грунтов и оснований.
Усиление фундаментов опускными колодцами позволяет повысить несущую способность за счет заключения грунта основания в жесткую обойму. Колодец (круглый или прямоугольный в плане) опускают по мере выемки грунта по наружному периметру его стен. При этом основание фундамента сохраняется ненарушенным и заключается в обойму (рис. 23). Размеры колодца в плане и его глубина определяются расчетом, при этом грунт внутри колодца рассматривается как тело в жесткой обойме.
Рис. 23 Усиление фундамента опускным колодцем: а - установка опускного колодца перед погружением; б - погружение колодца на проектную глубину; 1 - фундамент; 2 - колодец; 3 - котлован; 4 - обжимаемое основание
При усилении ростверков в случае большой степени их износа устраивают железобетонные обоймы. Возможная схема обоймы дана на рис. 24, а. Арматура обоймы должна быть замкнутой по периметру ростверка. По возможности ее следует делать предварительно напряженной. В случае оплывающих грунтов и наличия большого количества воды усиление производят с применением способа «стена в грунте» (рис. 24, б). Иногда под ростверк подводят дополнительные железобетонные ленты, усиливая тем самым ростверк и верхние участки свай (рис. 24, в).
Рис. 24 Усиление ростверков свайных фундаментов: 1 - сваи; 2 - ростверк; 3 - железобетонная обойма; 4 - зацементированный щебень; 5- замкнутое ограждение «стена в грунте»; 6 - железобетонная лента
Усиление свайных фундаментов в случае их недостаточной несущей способности можно выполнять задавливание дополнительных свай или наращивание существующих свай дополнительными секциями. Чаще всего устраивают дополнительные выносные сваи. Пример последнего дан на рис. 25.
Рис. 25 Вариант усиления свайных фундаментов выносными сваями: 1, 2 - сваи и ростверк фундамента; 3 - отверстие для пропуска горизонтальной балки; 4 - поперечная балка; 5 - продольная балка; 6 - новый ростверк; 7 - дополнительная выносная свая
Список литературы
1. Бойко, М.Д. Диагностика повреждений и методы восстановления эксплуатационных качеств зданий / М.Д. Бойко. - Л. : Стройиздат, 1975. - 335 с.
2. Леденев, В.И. Усиление конструкций при реконструкции / В.И. Леденев, В.В. Леденев. - Тамбов : ТИХМ, 1991. - 104 с.
3. Швец, В.Б. Усиление и реконструкция фундаментов / В.Б. Швец, В.И. Феклин, Л.К. Гинзбург. - М.: Стройиздат, 1985. - 240 с.
Размещено на Allbest.ru
Подобные документы
Виды контроля технического состояния зданий. Порядок проведения работ по сплошному техническому обследованию городской застройки. Ремонт и усиление оснований и фундаментов, характеристика основных методов. Особенности электроразрядной технологии.
реферат [4,3 M], добавлен 29.08.2012Методы усиления оснований и фундаментов при реконструкции сооружений. Введение дополнительных опор. Повышение прочности конструкций фундаментов. Усиление фундамента корневидными сваями. Подведение свайных фундаментов под реконструируемое здание.
реферат [1,8 M], добавлен 03.11.2014Усиление оснований и фундаментов при реконструкции и капитальном ремонте, проведение инженерно-геологических изысканий; принципы и технология закрепления и уплотнения грунтов, организация и способы ремонта. Калькуляция затрат при ремонте рулонной кровли.
контрольная работа [1,0 M], добавлен 24.09.2011Контролируемые параметры оснований и фундаментов. Состояние прилегающей территории, цоколя и стен подвала. Тип и глубина заложения фундаментов. Физико-механические характеристики грунтов основания. Уровень грунтовых вод. Деформации грунтов основания.
презентация [2,5 M], добавлен 26.08.2013Анализ инженерно-геологических условий и порядок расчета оснований и фундаментов 7-ми этажного дома. Определение нагрузок на фундамент здания, выбор типа оснований и конструкций. Проектирование фундаментов на естественном основании, расчет их осадки.
курсовая работа [633,1 K], добавлен 21.06.2009Основные методы восстановления и усиления фундаментов без расширения подошвы. Восстановление гидроизоляции и влажностного режима. Технические решения при ремонте и усилении стен деревянных зданий. Ремонт и усиление каменных арок, сводов, перемычек.
контрольная работа [1,6 M], добавлен 16.12.2011Оценка инженерно-геологических условий и свойств грунтов. Определение расчетного давления на грунты оснований. Разработка вариантов фундамента на естественном основании. Определение технико-экономических показателей устройства оснований и фундаментов.
курсовая работа [1,3 M], добавлен 20.04.2015Геологическое строение оснований. Форма и размеры геологических тел в основании сооружений. Определение напряжений в массивах грунтов, служащих основанием или средой для сооружения. Практические методы расчета конечных деформаций оснований фундаментов.
контрольная работа [26,4 K], добавлен 17.01.2012Проектирование конструкций сооружения и их оснований по предельным состояниям. Проект трехэтажного промышленного каркасного здания. Инженерно-геологические и грунтовые условия строительной площадки. Технико-экономическое сравнение вариантов фундаментов.
курсовая работа [387,1 K], добавлен 12.12.2012Физико-механические характеристики грунтов. Состав работ при устройстве фундаментов. Определение расчетного сопротивления, осадки и деформации основания, расчеты фундаментов мелкого заложения и свайных, объема котлована, стоимости затрат и материалов.
курсовая работа [324,1 K], добавлен 10.11.2010