Использование отходов в строительстве
Классификация строительных отходов и их терминология. Развитие промышленности и накопление на предприятиях ультсырья. Производство строительных материалов и утилизация промышленных отходов. Вторичное использование цементного и асфальтового бетонов.
Рубрика | Строительство и архитектура |
Вид | реферат |
Язык | русский |
Дата добавления | 04.05.2014 |
Размер файла | 67,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат
По дисциплине: «Инженерная и экологическая безопасность строительных систем»
по теме: «Использование отходов в строительстве»
Содержание
- 1. Классификация отходов и терминология
- 2. Развитие промышленности и накопление промышленных отходов
- 3. Производство строительных материалов и утилизация промышленных отходов
- 4. Вторичное использование цементного и асфальтового бетонов
1. Классификация отходов и терминология
отход строительный утилизация цементный
В литературе до настоящего времени нет единых определений терминов «отходы» и «вторичные ресурсы», «попутные и побочные продукты», «утиль» и др.
Термин «отходы промышленности» (сельского, городского хозяйства) применительно к продуктам, представляющим интерес в качестве сырьевых материалов, часто подвергается критике. Действительно, в термине «отходы» не акцентируются потребительские свойства материальной продукции, образующейся в результате хозяйственной деятельности людей наряду с основной целевой продукцией. Вместе с тем термин «отходы» является достаточно общим. Отходы производства и потребления при их рациональной переработке перестают быть отбросами и становятся ценными исходными материалами и полуфабрикатами для готовых строительных материалов и изделий.
В соответствии со стандартизированным определением, под вторичными материальными ресурсами (BMP) следует понимать совокупность отходов производства и потребления, образующихся в народном хозяйстве. Используемые BMP считаются вторичным сырьем. Термин «отходы производства» при этом трактуется как остатки материалов и полуфабрикатов, образовавшиеся при производстве продукции и частично или полностью утратившие свои исходные потребительские свойства. С такой трактовкой понятия «отходы производства» в общем случае согласиться нельзя. При добыче, например, полезных ископаемых вскрышные породы можно рассматривать как отходы производства. Вместе с тем эти отходы имеют определенные потребительские свойства и могут рассматриваться во многих случаях как сырьевые ресурсы.
Под вторичными ресурсами часто понимают также использованные материалы, потерявшие свою первоначальную ценность. На такое вторичное сырье приходится 7--8% общего количества отходов.
Некоторые отличия, хотя часто весьма условные, могут иметь также термины «попутные продукты» и «побочные продукты». К первым обычно относят отходы, которые могут использоваться в народном хозяйстве без дополнительной переработки, ко вторым -- отходы, требующие дополнительной переработки.
Все более широкое применение находит термин «техногенное сырье». К нему относят отходы, образовавшиеся в результате технической деятельности предприятий, которые представляют интерес как сырьевые материалы для разнообразной продукции.
Техногенное сырье часто имеет ряд технико-экономических преимуществ по сравнению с обычным. Оно может быть технологически более подготовленным, чем обычное (частично обожженным, диспергированным и др.). В группу техногенного сырья не входят, однако, отходы потребления и, в частности, многие отходы городского хозяйства.
В настоящее время отсутствует всесторонняя классификация промышленных отходов, что обусловлено их различным химическим составом, свойствами, технологическими особенностями получения и условиями образования.
Все отходы промышленности и городского хозяйства можно разделить на две группы: минеральные (неорганические) и органические. Наибольшее значение для производства строительных материалов имеют минеральные продукты, которые составляют большую часть всех отходов, производимых добывающими и перерабатывающими отраслями промышленности. Эти продукты в большей мере изучены, чем органические.
П.И. Боженов предложил классифицировать побочные промышленные продукты в момент выделения их из основного технологического процесса на три следующих класса: А -- продукты, не утратившие природных свойств; Б -- искусственные продукты, полученные в результате глубоких физико-химических процессов; В -- продукты, образовавшиеся при длительном хранении в отвалах.
Продукты класса А (карьерные остатки и остатки после обогащения на полезное ископаемое) имеют химико-минералогический состав и свойства соответствующих горных пород. Область их применения обусловлена агрегатным состоянием, фракционным и химическим составом, физико-механическими свойствами. Преимущественно минеральные продукты класса А применяются как заполнители бетонов, а также как исходное глинистое, карбонатное или силикатное сырье для получения разнообразных искусственных строительных материалов (керамики, извести, автоклавных материалов и др.).
Продукты класса Б получают в результате физико-химических процессов, протекающих при обычных или чаще высоких температурах. Диапазон их возможного применения шире, чем продуктов класса А. Особенно эффективно использование этих отходов там, где продуктивно реализуются затраты топливно-энергетических ресурсов и рабочей силы на их получение. Применение продуктов этого класса рационально прежде всего при производстве цементов, материалов автоклавного твердения, где повышенная реакционная способность исходного сырья дает высокий экономический эффект. Так, при использовании доменного шлака для изготовления шлакопортландцемента почти в два раза снижаются топливно-энергетические затраты на единицу продукции, а себестоимость уменьшается на 25--30%.
Продукты класса В образуется в результате физико-химических процессов, протекающих в отвалах (самовозгорание, распад шлаков и образование порошка и др.). Типичными представителями сырьевых материалов этого класса являются горелые породы.
Приведенная выше классификация требует обязательного учета химических характеристик побочных продуктов. В зависимости от преобладающих в их составе химических соединений минеральные отходы можно разделить на следующие группы: силикатные, карбонатные, известковые, гипсовые, железистые. В пределах каждой группы возможна более подробная классификация. Например, силикатные отходы можно разделить на основные и кислые в зависимости от процентного содержания основных и кислых оксидов, карбонатные -- на кальциевые и магниевые. В некоторых случаях при химической характеристике ведущее место отводится соединениям, содержащимся в сравнительно небольшом количестве, но имеющим решающее значение при выборе способа утилизации (например, щелоче-, цинко-, алюминий содержащим и др.).
Большая часть природных и искусственных минеральных отходов промышленности состоит преимущественно из кремнезема, силикатов и алюмосиликатов кальция и магния. Это объясняется тем, что они являются отходами добычи и переработки природных силикатных материалов, на долю которых приходится 86,5% массы земной коры. Силикатные отходы промышленности можно разделить на четыре группы в зависимости от структуры и химического состава.
Первую группу составляют минеральные сырьевые материалы, в которых кремнезем связан в силикаты или алюмосиликаты кальция, находящиеся преимущественно в стекловидном состоянии. Они обладают гидравлической активностью при щелочной и сульфатной активации. В зависимости от содержания СаО и А1203 такие материалы твердеют в нормальных условиях или при тепло влажностной обработке. При высокотемпературном обжиге с карбонатом кальция из них можно получить портландцементный клинкер. Типичными представителями этой группы являются гранулированные доменные и фосфорные шлаки, а также топливные шлаки, образуемые при подшихтовке угля известняком.
К второй группе принадлежат отходы, в которых кремнезем связан в силикаты или алюмосиликаты, находящиеся в кристаллическом состоянии. Они не проявляют активности при нормальных темпера-турно-влажностных условиях. В эту группу входят, например, медленно охлажденные отвальные металлургические шлаки и электротермо-фосфорные шлаки, а также побочные продукты горнодобывающей промышленности.
В отходах, относимых к третьей группе, кремнезем находится преимущественно в свободном состоянии в виде кварца. Представителями этой группы силикатных продуктов являются хвосты обогащения различных руд, сырья для химической промышленности, вскрышные породы.
Отходы второй и третьей групп утилизируются в строительстве в качестве нерудных строительных материалов, как сырье для производства автоклавных материалов, керамики, стекла.
В четвертую группу можно выделить сырье, содержащее в основном силикаты кальция как в негидратированном, так и в гидратированном состоянии, например шламы металлургических производств (нефелиновые, бокситовые, сульфатные, белые и др.). Эти побочные продукты применяют для производства так называемых шламовых цементов, портландцемента, изделий автоклавного твердения.
Более подробные классификации разработаны для отдельных силикатных продуктов, в особенности шлаков и зол. Например, А.В. Волженским эти продукты в зависимости от условий образования делятся на группы: быстрого и медленного охлаждения в результате твердофазовых реакций и взаимодействия твердых фаз с расплавом. В свою очередь, каждая группа в зависимости от химического и минералогического состава делится на отдельные разновидности. Такая классификация позволяет прогнозировать рекомендуемые условия твердения вяжущих на основе шлаков и зол, а также оптимальный способ их активизации.
Для систематического рассмотрения отходов промышленности и городского хозяйства удобна их классификация в зависимости от отрасли промышленности, где они, в основном, образуются. По этому принципу можно выделить следующие группы:
1. Отходы металлургии: доменные, ферросплавные и сталеплавильные шлаки; шлаки, образующиеся при плавке руд цветных металлов; продукты обогащения руд; нефелиновые и другие шламы и др.
2. Отходы тепловой энергетики и топливной промышленности: зола, топливные шлаки, золошлаковые смеси, шахтные породы, отходы углеобогащения и др.
3. Отходы химической промышленности: железистые, известь - и гипсосодержащие отходы; соле- и гидроксидсодержащие шламы и содопродукты; фосфорные шлаки, вторичные полимерные продукты и др.
4. Отходы горнодобывающей промышленности: вскрышные и попутно добываемые породы.
5. Отходы производства строительных материалов: пыль различного химического состава, керамический и стеклянный бой, отсевы, образуемые при дроблении и др.
6. Отходы переработки древесины и другого растительного сырья: кора, обрезки, стружки, опилки, лигнин и др.
7. Отходы городского хозяйства: изношенные автопокрышки, тряпье, бумажная макулатура, строительный мусор, использованные полимерные материалы и др.
2. Развитие промышленности и накопление промышленных отходов
Особенностью научно-технического прогресса является увеличение объема общественного производства. В результате развития производства в хозяйственный оборот вовлекается все большее количество природных ресурсов. Однако степень их рационального применения в целом весьма низкая. Ежегодно используется около 10 млрд т минеральных и почти столько же органических сырьевых продуктов. Разработка и утилизация большинства важнейших полезных ископаемых в мире происходят быстрее, чем разведка их запасов. Около 70% затрат в промышленности стран СНГ приходится на сырье, материалы, топливо и энергию. И в то же время от 10 до 99% исходного сырья превращается в отходы, выбрасываемые в атмосферу и водоемы, загрязняющие землю.
Гигантски возросшее потребление минерального сырья приводит к накоплению огромных объемов отходов, а их удаление и складирование перестает быть экономически оправданным. Промышленное производство растет во всем мире из года в год, и пропорционально его росту увеличивается количество отходов, возрастая приблизительно в 2 раза за 8--10 лет. Общий вес твердых отходов, образующихся ежегодно в США, составляет 3,5 млрд т, т. е. приблизительно 50 кг на душу населения.
Наиболее интенсивно возрастает потребление энергетических ресурсов. С начала своего существования человечество использовало почти 90 млрд т условного топлива.
Рост мирового потребления минерального сырья (5--6% в год) достигает таких размеров, что удвоение его физического объема должно происходить через каждые 30 лет, а ископаемого топлива -- и того быстрее. Гигантски возросшие масштабы и продолжающийся рост потребления этих ресурсов требуют все больших затрат на их воспроизводство. Непрерывно увеличивающийся объем отходов, образующихся при добыче ископаемого сырья и топлива, их переработке и использовании, представляет собой один из источников все большего загрязнения и захламления природной среды. Из года в год растущая масса отходов -- один из главных факторов снижения качества окружающей среды и разрушения природных ландшафтов.
Огромные количества промышленных отходов накоплены в отвалах. Для складирования отходов отчуждаются огромные площади земельных угодий. Под отвалы промышленных предприятий заняты сотни тысяч гектаров земель, пригодных для сельскохозяйственного производства.
Транспортирование и складирование отходов отвлекают значительные средства от основного производства. На организацию и эксплуатацию отвалов, например, предприятий угольной и энергетической отрасли расходуются средства, составляющие 8--10% стоимости добываемого угля, производимой энергии и пара.
Промышленные отходы отрицательно влияют на экологические факторы. Прежде всего это относится к составу воздуха, эдафизическим, гидрохимическим и гидрофизическим факторам. Эдафизические факторы включают химический состав и структуру веществ, циркулирующих в почве; гидрохимические и гидрофизические -- объединяют все факторы, связанные с водой как средой обитания разнообразных живых организмов.
Наиболее значительны выбросы предприятий энергетической, химической и металлургической промышленностей. В атмосферу поступают газообразные и твердые отходы при сгорании топлива, а также в результате разнообразных технологических процессов. Например, в зависимости от зольности угля, крупные ТЭЦ выбрасывают в атмосферу 10--100 т золы, распространяющейся в радиусе нескольких километров. Кроме того, в отходящих газах тепловых электростанций ежесуточно поступают в атмосферу десятки тонн серного ангидрида.
Источниками загрязнения атмосферы разнообразной пылью являются также предприятия по производству строительных материалов, горно-обогатительные комбинаты и другие предприятия, технологические процессы которых основаны на дроблении, измельчении и обжиге больших количеств минерального сырья. При работе, например, вращающихся печей для обжига цементного клинкера пылевынос составляет 8--20% сухого сырья. Даже после очистки газовоздушные выбросы технологических агрегатов цементных заводов содержат 100-- 150 мг/м3 пыли. Учитывая, что объем отходящих газов из одной вращающейся клинкеро-обжиговой печи, зависящий от ее размеров, вида сырья, топлива и режима обжига, колеблется от 40 до 600 тыс. м3/ч, количество выносимой в атмосферу пыли даже при хорошей работе электрофильтров составляет около 100 кг/ч.
Промышленные отходы отрицательно воздействуют не только на атмосферу, но и на гидросферу (водную среду). Например, один целлюлозно-бумажный комбинат сбрасывает около 150 тыс. м3 сточных вод в сутки, т. е. столько же, сколько крупный промышленный город. В таких стоках содержатся волокна и другие неокисляемые органические включения. Большую опасность представляют фенольные соединения, содержащиеся в сточных водах предприятий лесохимической, коксохимической, сланцевой, анилинокрасочной промышленности, а также различных заводов химической обработки сельскохозяйственного сырья. Сточные воды некоторых химических предприятий содержат синтетические поверхностно-активные вещества, даже незначительное количество которых вызывает образование стойкой пены, в результате чего резко ухудшаются биохимические свойства воды.
Промышленные отходы, сосредоточенные в отвалах, шлаконакопителях, хвостохранилищах, загрязняют поверхностный сток в районах размещения промышленных предприятий. Сброс промышленных отходов приводит, в конечном счете, к загрязнению вод Мирового океана, которое вызывает резкое снижение его биологической продуктивности и отрицательно влияет на климат планеты.
Образование отходов в результате деятельности промышленных предприятий негативно сказывается и на качестве почвы, в которой накапливаются избыточные количества губительно действующих на живые организмы соединений, в том числе канцерогенных веществ. В загрязненной почве происходят процессы ее деградации и нарушается жизнедеятельность почвенных организмов.
Высокая загрязненность окружающей среды в результате выбросов и накопления отходов представляет потенциальную опасность для естественных экологических систем различного уровня, а также для здоровья человека. За последние годы выявлен и возник целый ряд болезней -- эндокринных, аллергических, токсических, вызванных действием химических веществ, выбрасываемых человеком в окружающую среду.
Рациональное решение проблемы промышленных отходов зависит от ряда факторов: вещественного состава отходов, их агрегатного состояния, количества, технологических особенностей и т. д. Снижение ущерба, обусловленного образованием промышленных отходов, достигается совершенствованием производства и соблюдением технологической дисциплины, повышением эффективности шламохвосто-хранилищ, а также обезвреживанием и рациональным захоронением отходов.
В соответствии с действующими нормативами все промышленные отходы делятся на четыре класса опасности:
Класс Характеристика вещества (отходов)
Первый Чрезвычайно опасные
Второй Высокоопасные
Третий Умеренно опасные
Четвертый Малоопасные
Класс опасности промышленных отходов определяется содержанием в них определенных химических веществ:
-- наличие в отходах ртути, сулемы, хромовокислого калия, трех хлористой сурьмы, бензапирена, оксида мышьяка и других высокотоксичных веществ позволяет отнести их к первому классу опасности;
-- наличие в отходах хлористой меди, хлористого никеля, трех окисной сурьмы, азотнокислого свинца и других, менее токсичных веществ дает основание отнести эти отходы ко второму классу опасности;
-- наличие в отходах сернокислой меди, щавелевокислой меди, хлористого никеля, оксида свинца, четыреххлористого углерода и других веществ позволяет отнести их к третьему классу опасности;
-- наличие в отходах сернокислого марганца, фосфатов, сернокислого цинка, хлористого цинка дает основание отнести их к четвертому классу опасности.
В зависимости от физико-химических свойств отходов, а также от их количества применяют различные методы обезвреживания и переработки: механические, биологические, химические, сорбционные, термические, а также комбинированные.
Наиболее распространен способ обезвреживания отходов сжиганием. Сжигание происходит в печах и топках различных конструкций.
На многочисленных производствах с малотоннажным выпуском продукции, что характерно для крупных промышленных городов, иногда экономически невыгодно или технически невозможно создать локальные системы переработки и обезвреживания отходов. В этом случае промышленные отходы отправляют на специальные полигоны для централизованного приема и обезвреживания. Основными методами обработки отходов, как правило, являются термические и физико-химические. Отходы сложного минерального состава, использовать которые в настоящее время невозможно, подвергают захоронению под санитарным надзором.
Вредные вещества, отравляющие атмосферу и водоемы, в некоторых случаях целесообразно извлекать для получения затем ценных химических продуктов. Для этого создаются энерготехнологические комплексы, производящие не только электроэнергию, но и такие вещества, как сульфат аммония, серный ангидрид и др. Увеличивается производство серной кислоты на основе серного ангидрида -- одного из основных компонентов отходящих газов многих производств.
На ряде металлургических предприятий освоена технология регенерации металлов путем переработки шлаков, шламов и др. Каждая тонна алюминия, извлеченного из отходов, обходится в 10 раз, меди -- в 6, цинка -- в 3,5 и свинца -- в 2,5 раза дешевле, чем те же металлы, выплавленные обычным способом -- из рудного сырья.
Эффективное решение проблемы промышленных отходов -- это внедрение безотходной технологии. Безотходные производства основаны на принципиальном изменении технологических процессов, разработке систем с замкнутым циклом, обеспечивающих многократное использование продуктов, и комплексном использовании сырья.
При комплексном использовании сырьевых материалов промышленные отходы или побочные продукты одних производств являются исходными материалами других. Подобное использование сырья логически обусловлено потребностями развития народного хозяйства на современном этапе. Важность комплексного использования сырьевых материалов можно рассматривать в нескольких аспектах. Во-первых, утилизация отходов позволяет решать задачи по охране окружающей среды, освобождать ценные земельные угодья, отчуждаемые под отвалы и шламохранилища, устранять вредные выбросы в окружающую среду. Во-вторых, отходы промышленности в значительной степени покрывают потребность ряда перерабатывающих отраслей в сырье, причем во многих случаях высококачественном, подвергнутом в процессе производства первичной технологической обработке (измельчению, обжигу и т. д.). В-третьих, при комплексном использовании сырья снижаются удельные капитальные затраты на единицу продукции и уменьшается срок их окупаемости; снижаются также непроизводительные расходы основного производства, связанные со складированием отходов, строительством и эксплуатацией хранилищ для них; уменьшаются затраты, расход теплоты и электроэнергии на новую продукцию за счет технологической подготовленности отходов; увеличивается производительность оборудования.
К настоящему времени, учитывая эффективность применения многих минеральных и органических отходов в качестве сырьевых ресурсов, отходами их можно считать лишь по отношению к целевой продукции предприятий.
В Германии, например, были приняты специальные нормативные акты, согласно которым металлургические шлаки из категории отходов были переведены в разряд побочных продуктов производства. Для каждого вида шлаков (доменного, конвертерного, электроплавильного и др.) разработан перечень производственных факторов (начиная от обработки жидких шлаков и заканчивая технологией их переработки в твердом состоянии), влияющих на их свойства и определяющих направления, где они могут быть использованы с наибольшей пользой. Предприятия -- поставщики шлаков, обеспечивающие их надлежащее качество, получают специальный сертификат, указываемый на отгрузочных документах. Из 25 млн т доменных шлаков, образовавшихся в 2000 г. в европейских странах, было использовано почти 100%: около 60% -- в производстве цемента, остальное -- в других отраслях строительной индустрии. Из общего объема сталеплавильных шлаков в отличие от доменных получило использование пока лишь 75%, остальные хранятся в отвалах.
На Волховском алюминиевом заводе впервые в мировой практике разработана новая технология получения глинозема, соды, поташа и портландцемента из нефелинового сырья.
Эксплуатационные затраты на производство глинозема, соды, поташа и цемента, получаемых из нефелинового сырья, на 10--15% ниже (при некотором повышении капитальных вложений) затрат на производство этих продуктов при раздельном получении: глинозема -- из бокситов, соды -- аммиачным способом, поташа -- из калийсодержащего сырья, цемента -- из известняка и глины. Кроме того, с помощью системы оборотного водоснабжения, обслуживающей глиноземное и содовое производства, можно исключить сброс производственных сточных вод. Помимо цемента из отходов основного производства -- нефелинового шлама можно изготовлять другие строительные изделия (кирпич, блоки, плиты), бетон, огнеупоры, стекло и ситаллы, порошковый отвердитель и т. д.
Из отраслей-потребителей промышленных отходов, являющихся побочными продуктами различных производств, наиболее емкой является производство строительных материалов. Учитывая, что затраты на материальные ресурсы в сметной стоимости производства большинства строительных материалов составляют более 55%, очевидно, можно утверждать, что применение отходов -- побочных промышленных продуктов -- это один из путей повышения эффективности производства строительных материалов.
3. Производство строительных материалов и утилизация промышленных отходов
Промышленность строительных материалов -- базовая отрасль строительного комплекса. Она относится к числу наиболее материалоемких отраслей промышленности. Материалоемкость определяется отношением количества или стоимости израсходованных на производство продукции материальных ресурсов к общему объему продукции. Учитывая, что многие минеральные и органические отходы по своему химическому составу и техническим свойствам близки к природному сырью, а во многих случаях имеют и ряд преимуществ (предварительная термическая обработка, повышенная дисперсность и др.), применение в производстве строительных материалов промышленных отходов является одним из основных направлений снижения материалоемкости этого массового многотоннажного производства. В то же время снижение объемов разрабатываемого природного сырья и утилизация отходов имеет существенное экономико-экологическое значение. В ряде случаев применение сырья из отвалов промышленных предприятий практически полностью удовлетворяет потребности отрасли в природных ресурсах.
Первое место по объему и значению для строительной индустрии принадлежит доменным шлакам, получаемым в качестве побочного продукта при выплавке чугуна из железных руд. В настоящее время доменные шлаки являются ценным сырьевым ресурсом для производства многих строительных материалов и прежде всего портландцемента. Использование доменных шлаков как активного компонента цемента позволяет существенно увеличить его выпуск. Европейскими нормами разрешается вводить в портландцемент до 35% доменного гранулированного шлака, а в шлакопортландцемент -- до 80%. Ввод доменных шлаков в сырьевую смесь увеличивает производительность печей и снижает расход топлива на 15%. При использовании доменных шлаков для производства шлакопортландцемента снижаются топливно-энергетические затраты на единицу продукции почти в 2 раза, а себестоимость -- на 25--30%. Кроме того, шлак как активная добавка значительно улучшает ряд строительно-технических свойств цемента.
Доменные шлаки стали сырьем не только для традиционных, но и для таких сравнительно новых эффективных материалов, как шлакоситаллы -- продуктов, полученных методом каталитической кристаллизации шлакового стекла. По прочностным показателям шлакоситаллы не уступают основным металлам, существенно превышая стекло, керамику, каменное литье, природный камень. Шлакоситаллы в 3 раза легче чугуна и стали, они имеют прочность на истирание в 8 раз выше, чем у каменного литья и в 20--30 раз, чем у гранита и мрамора.
По сравнению с доменными пока значительно в меньшей степени используются сталеплавильные шлаки и шлаки цветной металлургии. Они являются большим резервом получения строительного щебня и могут быть с успехом использованы в производстве минеральной ваты, портландцемента и других вяжущих материалов, бетонов автоклавного твердения.
Большим количеством отходов в виде различных шламов характеризуется глиноземное производство. Несмотря на отличия в химическом составе шламов, остающихся после выщелачивания А1203 из природного глиноземсодержащего сырья, все они содержат 80--85% гидратированного двухкальциевого силиката. После обезвоживания этот минерал обладает способностью твердеть как при нормальной температуре, так и в условиях тепловлажностной обработки. Наиболее крупнотоннажный отход глиноземного производства -- нефелиновый (белитовый) шлам -- с успехом используется для производства портландцемента и других вяжущих, материалов автоклавного твердения и др. При применении нефелинового шлама в производстве портландцемента расход известняка сокращается на 50---60%, производительность вращающихся печей повышается на 25--30%, а расход топлива снижается на 20--25%.
Большое количество отходов в виде золы и шлаков, а также их смесей образуется при сжигании твердых видов топлива. Их выход составляет: в бурых углях -- 10--15%, каменных углях -- 5--40%, антраците -- 2--30%, горючих сланцах -- 50--80%, топливном торфе -- 2--30%. В производстве строительных материалов обычно используются золы сухого удаления и золошлаковая смесь из отвалов. Область применения золошлакового сырья в производстве строительных материалов чрезвычайно разнообразна. Наиболее значительными направлениями использования топливных зол и шлаков являются дорожное строительство, производство вяжущих, тяжелых и ячеистых бетонов, легких заполнителей, стеновых материалов. В тяжелых бетонах золы используют, в основном, в качестве активной минеральной добавки и микронаполнителя, что позволяет снизить расход цемента на 20--30%. В легких бетонах на пористых заполнителях золы применяют не только как добавки, снижающие расход цемента, но и как мелкий заполнитель, а шлаки в качестве пористого песка и щебня. Золы и шлаки используются также для изготовления искусственных пористых заполнителей легких бетонов. В ячеистых бетонах зола применяется как основной компонент или добавка для снижения расхода вяжущего.
Все большее применение в промышленности строительных материалов находят отходы угледобычи и углеобогащения. На углеобогатительных фабриках угольных бассейнов ежегодно образуются миллионы тон отходов, которые с успехом могут быть использованы для получения пористого заполнителя и кирпича. Использование отходов углеобогащения в качестве топливной и отощающей добавки при изготовлении керамических изделий позволяет сократить расход условного топлива на 50--70 кг на 1000 шт. кирпича и повысить его марку. При строительстве дорог отходы угледобычи могут широко использоваться в конструкции дорожной одежды.
Ценнейшее сырье для промышленности строительных материалов представляют собой отходы горнорудных предприятий и предприятий нерудной промышленности. Можно привести немало примеров эффективного использования вскрышных пород, отходов обогащения руд, отсевов дробления как сырья для получения вяжущих, автоклавных материалов, стекла, керамики, фракционированных заполнителей. Эксплуатационные расходы на получение 1 м3 щебня из отходов горнорудных предприятий в 2--2,5 раза ниже, чем на добычу его из карьеров.
Значительным выходом отходов, представляющих интерес для производства строительных материалов, характеризуется химическая промышленность. Основными из них являются фосфорные шлаки и фосфогипс. Фосфорные шлаки -- отходы при возгонке фосфора в электропечах -- перерабатываются, в основном, в гранулированные шлаки, шлаковую пемзу и литой щебень. Гранулированные электротермофос-форные шлаки близки по структуре и составу к доменным и так же с высокой эффективностью могут использоваться в производстве цементов. На их основе разработана технология шлакоситаллов. Использование фосфорных шлаков в производстве стеновой керамики позволяет повысить марку кирпича и улучшить другие его свойства.
Потребности промышленности строительных материалов в гипсовом сырье практически в полной мере можно удовлетворить за счет гипсосодержащих отходов промышленности и, в первую очередь, фосфогипса. К настоящему времени разработан ряд технологий получения строительного и высокопрочного гипса из фосфогипса, реализованных пока недостаточно. Этому в определенной мере способствует существующая ценовая политика на природное сырье, не поощряющая в полной мере альтернативных вторичных сырьевых ресурсов. В Японии, где нет собственных запасов природного гипсового сырья, для получения разнообразных гипсовых изделий фосфо-гипс используют практически полностью.
Применение фосфогипса эффективно также в производстве портландцемента, где он не только позволяет, как и природный гипсовый камень, регулировать сроки схватывания цемента, но, будучи введенным в сырьевую смесь, выполняет роль минерализатора, снижающего температуру обжига клинкера.
Большая группа эффективных строительных материалов изготавливается из отходов древесины и переработки другого растительного сырья. С этой целью используют опилки, стружку, древесную муку, кору, сучья, костру и т. д. Все древесные отходы можно разделить на три группы: отходы лесозаготовительной промышленности, отходы лесопильного производства и отходы деревообрабатывающей промышленности.
Из отходов древесины, полученных на различных стадиях ее переработки, изготовляют древесноволокнистые и древесно-стружечные плиты, арболит, ксилолит, опилкобетон, ксилобетон, фибролит, королит, древесные пластики. Все эти материалы в зависимости от области применения разделяют на конструкционно-теплоизоляционные, теплоизоляционные и отделочные.
Применение материалов на основе древесных отходов, наряду с высокими технико-экономическими показателями, обеспечивает архитектурную выразительность, хороший воздухообмен и микроклимат помещений, улучшенные теплотехнические показатели.
Значительный объем отходов, которые могут служить вторичными сырьевыми ресурсами, образуется на самих предприятиях строительных материалов. Это, наряду с отходами производства нерудных материалов, стекольный и керамический бой, цементная пыль, отходы производства минеральной ваты и др. Комплексное использование сырья на большинстве предприятий позволяет создавать безотходные технологии, при которых полностью сырьевые ресурсы перерабатываются в строительные материалы.
Существенные резервы для развития сырьевого потенциала в производстве строительных материалов представляют отходы городского хозяйства. В передовых странах мира в составе твердых бытовых отходов превалируют макулатура, полимерные продукты, текстиль, стекло. Имеется многолетний опыт производства на базе этих отходов картона, волокна, строительных пластмассовых изделий и др.
При оценке промышленных отходов как сырья для производства строительных материалов необходимо учитывать их соответствие нормам на содержание радионуклидов. Как природное, так и техногенное сырье включает радионуклиды (радий-226, торий-232, калий-40 и др.), которые являются источниками у-радиоизлучений. При распаде радия-226 выделяется радиоактивный газ, который поступает в окружающую среду. По расчетам специалистов, он вносит до 80% в общую дозу облучения людей.
В соответствии со строительными нормами в зависимости от концентрации радионуклидов строительные материалы делятся на три класса:
1-й класс. Суммарная удельная активность радионуклидов не превышает 370 Бк/кг. Эти материалы используются для всех видов строительства без ограничений.
2-й класс. Суммарная удельная активность радионуклидов находится в диапазоне от 370 до 740 Бк/кг. Эти материалы могут быть использованы для дорожного и промышленного строительства в границах территории населенных пунктов и зоны перспективной застройки.
3-й класс. Суммарная удельная активность радионуклидов не превышает 700, но ниже 1350 Бк/кг. Эти материалы можно использовать в дорожном строительстве за границами населенных пунктов -- для оснований дорог, дамб и др. В границах населенных пунктов их можно применить для строительства подземных сооружений, покрытых слоем грунта толщиной более 0,5 м, где исключено длительное пребывание людей.
Если величина суммарной удельной активности радионуклидов в материале превышает 1350 Бк/кг, вопрос о возможном применении таких материалов решают в каждом случае отдельно при согласовании с органами здравоохранения.
Содержание радионуклидов в промышленных отходах определяется их происхождением, концентрацией природных радионуклидов в исходном сырье. Например, в фосфогипсах ряда стран концентрация радионуклидов по радию-226 находится в пределах 600--1500 Бк/кг, торию-232 -- 5--7Бк/кг и калию-40 -- 80--110 Бк/кг. Фосфогипсы российских и украинских предприятий имеют незначительную активность, которая не превышает 1005 Бк/кг.
В Европейских нормах запрещается использование в строительстве материалов с радиационным излучением свыше 25 нКи/кг; рекомендуется контролировать материалы с радиационным излучением от 10 до 25 нКи/кг и считать нерадиоактивными материалы с радиационным излучением менее 10 нКи/кг.
Широкая утилизация отходов в производстве строительных материалов требует решения ряда организационных и научно-технических проблем. Необходима региональная каталогизация отходов с указанием их полной характеристики. Требует развития стандартизация отходов как сырьевых ресурсов в производстве конкретных строительных материалов. Масштабы утилизации промышленных отходов и отходов городского хозяйства будут расширяться по мере внедрения комплекса технических мер по стабилизации их состава, повышению степени технологической подготовки (снижение влажности, гранулирование и др.).
Огромное значение имеет экономическое стимулирование, включающее вопросы ценообразования, финансирования, материального стимулирования.
4. Вторичное использование цементного и асфальтового бетонов
Заполнители из дробленого бетона. В результате разборки зданий и сооружений, а также накопления некондиционной продукции на предприятиях сборного железобетона образуются значительные количества так называемый бетонного лома. Переработка бетонного лома направлена в настоящее время в основном на получение вторичных заполнителей и высвобождение арматурной стали.
Широкое распространение получила технология, когда оборудование для получения заполнителя из бетонного лома устанавливают на месте демонтажных работ, а полученный заполнитель используется, в основном, для устройства щебеночной подготовки дорожных одежд и оснований. Эффективной является технология, предусматривающая получение фракционированного щебня (7.3) и использование его при заводском производстве бетона и железобетонных конструкций.
Разрушение конструкций при утилизации бетонного лома может производиться ударными методами, раскалыванием, резкой, дроблением. Из средств разрушения ударными методами применяют гидравлические и пневматические молоты, раскалыванием -- гидроклинья; резкой -- алмазные круги, оборудование для плазменной резки и др.; дроблением -- бетоноломы с перемещаемыми прямыми или изогнутыми зубьями, подвешиваемые на экскаваторе вместо ковша. При разрушении крупногабаритных конструкций может быть использована энергия взрыва и расширения. Применение расширяющихся реактивов позволяет уменьшить шум, вибрации и выброс строительного мусора при разрушении конструкций. Ряд расширяющихся реактивов разработан на основе извести.
Разработан ряд установок первичного дробления некондиционного бетона и железобетона с применением дробильно-сортировочного оборудования, используемого при переработке битого камня из карьеров. Коэффициент полезного действия таких установок ниже, чем камнедробильных. Для разрушения железобетонных конструкций длиной до 12 м применяют гидравлические прессы, развивающие давление до 2 МПа.
Арматура из бетона извлекается с помощью магнитных сепараторов. После извлечения арматуры бетонный лом поступает на щековую дробилку для получения вторичного щебня.
Установлено, что применение крупных заполнителей из дробленого бетона классов В20--В40 позволяет получать бетон той же или незначительно (на 5--10%) ниже прочности бетона на природных заполнителях.
С уменьшением крупности вторичного заполнителя (до 3--10 мм) при прочих равных условиях прочность существенно снижается. Наибольшее снижение прочности характерно для бетона на вторичном известняковом заполнителе (около 20%) и примерно вдвое меньше -- на гранитном.
При замене мелкого природного заполнителя (из кварцевого песка средней крупности) заполнителем из дробленого бетона (фракции менее 3 мм) при В/Ц-0,65 прочность снижается в среднем на 20% для бетона на вторичном гранитном и на 25% для бетона на вторичном известняковом заполнителях. При этом существенно ухудшается удобоукладываемость бетонных смесей.
Использование вторичных заполнителей увеличивает деформативность бетона; она тем больше, чем меньше крупность заполнителя и прочность бетона, подвергаемого дроблению. Модуль упругости бетона на вторичных заполнителях снижается на 7--18% по сравнению с бетоном на природных заполнителях. Ухудшение прочностных свойств бетонов на заполнителях из дробленого бетона и возрастание их деформативности под нагрузкой могут быть компенсированы введением в смесь добавок суперпластификаторов.
Положительный эффект достигается при использовании крупного заполнителя из дробленого бетона в сочетании с природным кварцевым песком.
Применение крупного заполнителя из дробленого бетона не уменьшает, а в некоторых случаях увеличивает морозостойкость. Это обусловлено высокой прочностью сцепления зерен этого заполнителя и цементного камня. Применение мелкого заполнителя из дробленого бетона приводит к снижению морозостойкости из-за его высокого водопоглощения и, как следствие, повышенной капиллярной пористости бетона.
Повышение качества заполнителей из дробленого бетона достигается их активацией. Эффект активации заполнителей состоит в разрушении слабых зерен щебня или удалении остатков цементного камня, образовании свежих сколов, что приводит к повышению технических характеристик бетонов за счет улучшения качества контактной зоны.
Из методов активации можно отметить механические, химические и др. При механических методах активации дробленого бетона предусматривается самоизмельчение при перемешивании щебня в смесительных установках или их обработка в шаровых мельницах с металлическими шарами.
Хорошие результаты достигнуты в случае помола дробленого бетона со стальными шарами после предварительного низкотемпературного обжига. В данном случае был получен щебень, практически свободный от растворного компонента, а его свойства -- дробимость, водопоглощение и насыпная плотность близки к аналогичным показателям исходного щебня.
В Москве введено несколько комплексов по утилизации железобетонных отходов. Однако существующая система переработки отходов далека от совершенства, имеющиеся установки по своей производительности и составу технологического оборудования не в состоянии обеспечить переработку всех строительных отходов, образующихся в городе.
Регенерация асфальтобетона. Реконструкция автомобильных дорог, строительство в городах магистральных дорог приводит к увеличению из года в год количества старого асфальтобетона, который может быть регенерирован и использован повторно. Повторное использование старого асфальтобетона позволяет существенно сократить расход нефтяного битума при производстве ремонтно-восстановительных работ.
Разрушение асфальтобетонных покрытий вызывается воздействием погодно-климатических условий и механических перегрузок от движущихся автотранспортных средств. При этом битум стареет -- становится более жестким, повышается его температура размягчения и хрупкости, увеличивается вязкость, уменьшается растяжимость, нарастает содержание асфальтенов.
Минеральные частицы в асфальтобетоне вследствие механических воздействий подвергаются дезинтеграции, изменяется гранулометрический состав.
Для расчета состава асфальтобетона, получаемого из старого материала с добавлением нового битума и минеральных составляющих, необходимо определить гранулометрический состав и плотность минерального остова старого асфальтобетона после экстрагирования из него битума, вязкость или температуру размягчения и глубину проникания выделенного битума и его количественное содержание. Затем рассчитывают необходимое количество вновь добавляемых минеральных составляющих и битума. Регенерация на асфальтобетонном заводе дает экономию средств и материалов на 15--20%, регенерация на месте -- примерно 30% (по сравнению с укладкой нового слоя толщиной 4 см), холодная регенерация -- 30--40%.
Для восстановления свойств битума необходима его пластификация путем добавления менее вязкого битума, гудрона или высоко ароматизированных тяжелых нефтяных фракций (например, экстрактов селективной очистки масел). Количество вводимых пластифицирующих добавок в старый битум составляет 8--12% от массы битума, содержащегося в старом асфальтобетоне.
В связи с изменением гранулометрического состава старого асфальтобетона при его регенерации вводят свежие каменные материалы в количестве 10--20% по массе.
На основании накопленного опыта в практику использования старых асфальтобетонных материалов вошли в основном два способа:
1) предварительное нагревание отслуживших срок слоев асфальтобетонных покрытий, их разрыхление на глубину 4--5 см, добавление новых каменных материалов и битума (или готовой смеси), разравнивание и уплотнение. Все операции производят на ремонтируемом участке автомобильной дороги. Битум может быть введен в виде эмульсии. Можно добавлять гудрон или тяжелый экстракт селективной очистки масел для пластификации старого битума из покрытия;
2) снятие старого асфальтобетона, его транспортирование к смеси тельной установке, дробление до размеров не крупнее 50 мм, загрузка в смеситель принудительного действия с одновременным добавлением новых каменных материалов и вяжущего, доставка полученной асфальтобетонной смеси к месту восстановительных работ, ее укладка и уплотнение. Смесь может содержать до 80% старого асфальтобетона.
Кусковой старый асфальтобетон размером до 60 см из приемного бункера подается питателем / в щековую дробилку 2, откуда ленточным конвейером -- на молотковую дробилку 3, где измельчается до частиц мельче 40 мм на гранулят, и непрерывным дозатором 4 подается в сушильно-смесительный агрегат 5. Необходимое количество добавочного щебня, песка и минерального порошка (обычно 20--40%) из агрегатов питания 6 и силосной банки 7 непрерывными дозаторами также подается в сушильно-смесительный агрегат. Добавочное количество битума (обычно 2--4% массы материала) подается в среднюю часть барабана 8. В барабанном смесителе происходит плавление гранулята, нагрев минеральной части и взбрызгивание битума 9. Готовая смесь выгружается в ковш скипового подъемника и направляется в бункер готовой продукции 10, а затем в автомобиль-самосвал.
Размещено на Allbest.ru
Подобные документы
Характеристика бетонов на основе естественных компонентов и техногенных отходов. Технологии изготовления строительных материалов на основе золошлаковых отходов и пластифицирующих добавок. Разработка рецептуры тяжелых бетонов с использованием отходов.
дипломная работа [831,1 K], добавлен 08.04.2013Особенности требований к источникам сырья относительно его количества, технологичности, пригодности для производства строительных материалов. Порядок использования шлаков как основного заполнителя и различных примесей при изготовлении бетонных смесей.
реферат [15,2 K], добавлен 21.02.2011Экология бетона. Характеристика ячеистого бетона (газобетона): теплоизоляция, огнестойкость, звукоизоляция, экология, обрабатываемость и экономичность. Проблема утилизации строительных отходов и переработка за рубежом. Вторичное использование бетона.
реферат [1,7 M], добавлен 23.10.2008Добавление дисперсных минеральных добавок в бетонные смеси для обеспечения экономии цемента и повышения сульфатостойкости, жаростойкости, водостойкости и сопротивляемости щёлочной коррозии. Доменные шлаки, зола-унос, топливные гранулированные шлаки.
курсовая работа [274,2 K], добавлен 18.12.2010Кризис экономического положения промышленности строительных материалов в России. Значение и эффективность реорганизации производства на предприятиях промышленности строительных материалов. Общая характеристика и структура строительного комплекса Украины.
реферат [22,1 K], добавлен 02.06.2010Разработка строительных композиционных материалов и изделий на основе глинистого сырья с улучшенным комплексом эксплуатационных свойств для условий Крайнего Севера. Методы определения физико-механических характеристик образцов на основе отходов.
презентация [576,4 K], добавлен 14.01.2014Основные виды нарушений в строительстве и промышленности строительных материалов. Классификация дефектов по основным видам строительно-монтажных работ, при производстве строительных материалов, конструкций и изделий. Отступления от проектных решений.
реферат [91,2 K], добавлен 19.12.2012Характеристика материалов, применяемых в строительстве и ремонте, пожароопасность строительных материалов. Вредны химические и физические факторы воздействующие на человека. Воздействие строительных материалов на человека. Химический состав материалов.
контрольная работа [30,0 K], добавлен 19.10.2010Создание новой шкалы классов бетонов по прочности. Необходимые свойства искусственных каменных облицовочных плит. Рассмотрение основных способов формования плотных бетонов. Использование пропиточных составов для насыщения пористых строительных материалов.
контрольная работа [20,0 K], добавлен 12.12.2012Общие сведения о строительных материалах. Влияние различных факторов на свойства бетонных смесей. Состав, технология изготовления и применение в строительстве кровельных керамических материалов, дренажных и канализационных труб, заполнителей для бетона.
контрольная работа [128,5 K], добавлен 05.07.2010