Разработка грунта гидромеханическим методом. Разработка грунта бурением
Способ производства земляных работ, при котором грунт разрабатывают, транспортируют и укладывают в тело сооружения или в отвал с помощью воды. Разработка грунта гидромеханическим способом. Принцип ударного бурения в пневматических бурильных молотках.
Рубрика | Строительство и архитектура |
Вид | реферат |
Язык | русский |
Дата добавления | 30.01.2014 |
Размер файла | 86,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
ФГБОУ ВПО Кубанский государственный университет
Экономический факультет
Кафедра экспертизы и управления недвижимости
Реферат
по Технологии строительного производства
на тему: Разработка грунта гидромеханическим методом.
Разработка грунта бурением
Выполнила студентка 4 курса
Лемешева Елена Александровна
Проверил преподаватель
Свистунов Юрий Анатольевич
Краснодар 2013
1. Разработка грунта гидромеханическим методом
Гидромеханическим называют такой способ производства земляных работ, при котором грунт разрабатывают, транспортируют и укладывают в тело сооружения или в отвал с помощью воды.
При гидромеханической разработке грунтов достигаются высокий уровень производительности труда, непрерывность подачи грунта, в том числе и в труднодоступные участки, возможность разработки обводненных и подземных выемок без осушительных и водопонижающих работ. Применение этого способа требует прокладки трубопроводов и электросетей, устройства обвалований, эстакад, строительства подстанций и других сооружений. Поэтому гидромеханический способ разработки грунтов экономически оправдан при наличии значительных объемов земляных работ, легкоразмываемых грунтов, достаточных ресурсов воды и электроэнергии.
При планировке размывают грунт на участках выемок и укладывают его в насыпь. Но чаще всего гидромеханическим способом намывают большие площадки (территории) грунтом из карьеров, расположенных на суше или на дне реки (водоема). При разработке грунта на суше применяют гидромониторные установки, а при подводной разработке -- земснаряды.
Рис. 12 Схема разработки и транспортировки грунта гидромеханическим способом а -- гидромонитором встречным забоем транспортировкой пульпы землесосом; б -- то же. попутным забоем; в -- плавучий земснарядом; 1 - землесос; кол (зумпф); 3 - гидромонитор; 4- забой; 5 - всасывающая труба; 6 -- баржа с насосной установкой; 7- пульпопровод; 8- грунтовое обвалование. 9 - площадка намыва
Гидромониторная установка состоит из гидромониторов, присоединенных к магистральному трубопроводу, по которому из насосной станции подают воду. Гидромонитор представляет собой стальной ствол, колена которого позволяют поворачивать его в вертикальной и горизонтальной плоскостях под большим углом в направлении нужной точки забоя. На конец ствола каждого гидромонитора навинчивается насадок, формирующий выбрасываемую с большой кинетической энергией струю, которая превращает грунт в гидросмесь -- пульпу, направляемую самотеком по лоткам или канавам в насыпь. При расположении насыпи выше уровня забоя, а также для увеличения дальности подачи пульпы ее перекачивают по пульпопроводу землесосной установкой.
Удельный расход воды на 1 м3 грунта в зависимости от высоты забоя для мелкозернистых песков -- 3...6 м3, крупнозернистых песков -- 7...9 м3, суглинков и глин -- 7... 14 м3. При разработке песчано-гравелисто-галечных смесей требуется до 22 м3 воды.
Расход воды и скорость струи регулируют сменными насадками диаметром от 50 до 200 мм, у выхода из которых рабочее давление для разных типов гидромониторов составляет от 0,2 до 15 МПа.
При встречном забое гидромонитор устанавливают на подошве забоя и ведут размыв в направлении, обратном стоку пульпы. Процессы разработки песков и глин существенно различаются. Несвязный грунт смывают струей со всей ширины откоса, крутизна которого равна углу естественного откоса. В связных грунтах рабочий откос забоя близок к вертикали. В этом случае забой сначала подрезают снизу до его обрушения, затем смывают обрушенный грунт.
Подрезка забоя -- наиболее трудоемкая операция; на 1 м3 породы расходуется до 50 м3 воды. Высокая производительность гидромонитора обеспечивается за счет периодических обвалов грунта.
Производительность гидромониторов увеличивается также при нагнетании воды в скважины по трубам под давлением до 0,7 МПа. Насыщенный водою грунт легче размывается гидромонитором. Этот метод особенно эффективен при разработке пористых лессовых грунтов. При этом высота забоя может быть увеличена до 20 м. Тяжелые грунты рекомендуется предварительно рыхлить бульдозерами.
Наибольшую разрушающую силу струя имеет на расстоянии 3...4 м от насадка. Поэтому рационально применять гидромониторы ближнего боя при высоте забоя не менее 3 м.
С увеличением расстояния размывающая способность струи уменьшается. Из условия компактности струи, обладающей еще достаточной разрушающей силой, определяют максимальное расстояние гидромонитора от забоя.
Недостаток разработки грунта встречным забоем заключается в образовании недомывов, для зачистки которых дополнительно требуется бульдозер.
При попутном забое гидромонитор устанавливают на верхней бровке забоя. Направление струи гидромониторов совпадает с направлением движения пульпы. Струей воды сначала размывают осевую канаву для отвода пульпы, затем -- забой в непосредственной близости от гидромонитора и откоса канавы. Ширина разрабатываемого элемента забоя 10...15 м.
Достоинством разработки грунта попутным забоем является то, что гидромониторы находятся в сухом месте; струя гидромонитора используется для улучшения отвода пульпы к приемным устройствам. Недостаток этого способа -- значительное снижение производительности ввиду затруднительной подрезки грунта и обрушения забоя. Поэтому большее распространение получил первый способ работы -- встречным забоем, который особенно эффективен при разработке плотных и связных грунтов. Попутным забоем обычно разрабатывают рыхлые суглинистые и песчаные грунты.
В последних моделях гидромониторов применяется дистанционное управление; в сочетании с гусеничным ходом это позволяет производить работы в непосредственной близости от забоя, чем достигается интенсивное разрушение грунта. - Транспортировать пульпу можно самдтеком, когда величина уклонов стоков, зависящая от вида грунта и крупности его частиц, обеспечивает движение ее с частицами грунта во взвешенном состоянии.
При транспортировании под напором пульпу, собираемую в колодце (зумпфе), перекачивают грунтовым насосом (землесосом) или гидроэлеватором в насыпь. Грунтовой насос представляет собой центробежный насос для перекачки воды с твердыми частицами. Гидроэлеватор -- это водоструйный насос, в корпусе которого в результате большой скорости движения воды создается разрежение. Под его влиянием гидросмесь всасывается в насос, смешивается со струей воды и подается по напорному трубопроводу к месту укладки грунта.
Скорость движения пульпы в пульпопроводе во избежание заиливания труб должна быть выше критической (критическая скорость потока соответствует началу осаждения твердых частиц на дно).
Земснарядами площадки намывают в результате подачи пульпы со дна водоемов по напорным трубопроводам в насыпи.
Земснаряд представляет собой баржу, оборудованную грунтозаборным устройством для свободного всасывания или всасывания с попутным рыхлением (фрезами, гидрорыхлителями и пр.), грунтовым насосом, плавучим пульпопроводом на понтонах, соединенным с береговым пульпопроводом, папильонажными сваями и лебедками с якорями для фиксации рабочего положения.
Разработку грунта начинают с погружения до заданной отметки всасывающего устройства. В процессе его заглубления земснаряд периодически отводят назад и в сторону для расширения воронки. Для дальнейшей разработки выемки земснаряд папильонируют, т. е. перемещают его в забое свайно-канатным способом с помощью тросов по дуге окружности, канатным способом -- манипуляцией лебедками с периодической перекладкой якорей или свайно-бесканатным способом -- поворотом грунтозаборного устройства вокруг вертикальной оси с подачей земснаряда вперед отталкиванием от напорной сваи.
На планировочных работах обычно применяют земснаряды производительностью до 150 м3/ч, подающие пульпу на расстояние до 3,5 км.
Для разработки 1 м3 песчаных грунтов расходуется 7... 11 м3 воды, песчано-гравийных и суглинистых -- от 14 до 22 м3.
Укладка грунта в насыпь основана на выпадении взвешенных его частиц из пульпы при снижении скорости потока до 0,3...0,03 см/с после выпуска пульпы в отстойные бассейны, устраиваемые на месте будущей насыпи.
Насыпи, на которых предполагается строить какие-либо сооружения, намывают слоями толщиной 0,5...2,5 м песчаными или песчано-гравелистыми грунтами. Перед началом намыва по контуру будущей насыпи бульдозером устраивают обвалование из местного грунта, причем если намываемого слоя менее 2 м, заблаговременно до намыва возводят фундаменты; по намываемой поверхности прокладывают водопроводные и канализационные сети.
Если рельеф территории неровный, намыв начинают с самых низких отметок, где насыпь будет иметь максимальную высоту. При высоте насыпи более 5,5 м намыв ведут в два яруса.
Непрерывное ведение работ обеспечивается намывом грунта участками-картами. Во время перекладки труб и устройства второго яруса обвалования на одной карте намывают грунт на смежной и т. д. Для удаления осветленной воды из карт устраивают водоотводные колодцы, по трубам которых вода стекает за пределы насыпи.
В пересеченных местностях, когда использование мобильных транспортных средств осложняется трудностями устройства дорог, целесообразно применять комбинированный способ разработки грунта, предусматривающий гидравлическое транспортирование грунта, разрабатываемого экскаватором. Грунт погружают в передвижной бункер конвейера, с которого он поступает в приемный бункер передвижного землесоса. Здесь грунт размывается и удаляется самотёком по лоткам или перекачивается по напорному пульповоду в насыпь.
2. Разработка грунта бурением
В строительстве бурение используют при исследовании свойств и качества грунтов, определении уровня грунтовых вод, устройстве скважин водоснабжения и водопонижения грунтовых вод, устройстве свайных фундаментов, искусственном закреплении грунтов и т. п.
В разрабатываемых породах бурильным инструментом бурят цилиндрические отверстия -- выработки. Выработку диаметром до 75 мм и глубиной до 6 м называют шпуром, выработку больших размеров -- скважиной. Шпуры и скважины бывают вертикальными, наклонными и горизонтальными. Начало шпура или скважины у поверхности земли называют устьем, низ -- забоем, боковые поверхности -- стенками.
Процесс бурения состоит из двух операций: разрушения (отделения) породы на дне скважины и удаления разрушенной породы из скважины.
Эффективность бурения скважин и шпуров определяется скоростью бурения, которая зависит от: физико-механических свойств грунта, в основном от сопротивления породы разрушению под действием бурового инструмента; вида и формы бурового инструмента и способа его воздействия на забой скважины (ударное, вращательное, ударно-вращательное и т. д.); диаметра скважины и, в ряде случаев, ее глубины; способа, скорости и тщательности удаления из забоя скважины буровой мелочи; общей организации и масштаба производства буровых работ.
Трудоемкость бурения породы -- буримость -- характеризуется временем чистого бурения 1 м скважины (шпура) и зависит от крепости породы.
Разрушенный грунт (буровая мелочь, шлам) удаляется из скважин глинистым раствором или водой, струей сжатого воздуха, шнековыми устройствами, желонками и другими приспособлениями.
Стенки скважины в слабых, рыхлых и насыщенных водой грунтах крепят стальными обсадными трубами. Колонны обсадных труб составляют из звеньев длиной 1,5...4,5 м, соединяемых муфтами, ниппелями или свинчиванием (труба в трубу).
В зависимости от геологических и гидрогеологических условий выработок и их глубины применяют те или иные способы бурения, которые можно подразделить на две основные группы.
К первой группе относятся ударный (ударно-канатный), ударно-вращательный, вращательный, а также вибрационный способы бурения, при которых породу разрушают механически, воздействуя на нее породоразрушающими инструментами.
Ко второй группе относятся термический, взрывной, гидравлический и электрогидравлический способы, при которых для бурения используются физико-химические методы разрушения горных пород.
Ударный (ударно-канатный) способ заключается в том, что буровой снаряд массой 1000...3000 кг падает с определенной высоты в забой скважины и разрушает породу благодаря развивающейся при его падении живой силе удара. После каждого удара буровой снаряд поворачивается на некоторый угол, вследствие чего создаются условия для равномерного разрушения всей площади забоя скважины. Во время бурения в скважину периодически подают воду, и образовавшийся шлам вычерпывают желонкой.
Станками ударно-канатного бурения бурят скважины в неоднородных и разно-прочных грунтах диаметром до 400 мм и глубиной до 50 м. Из-за сравнительно невысокой производительности станки ударно-канатного бурения вытесняются более производительными станками ударно-вращательного и вращательного бурения.
Принцип ударного бурения использован в пневматических бурильных молотках (ручных и колонковых перфораторах), которые широко применяются для бурения шпуров диаметром 32...40 и 50...75 мм в полускальных и скальных грунтах.
Ударно-вращательное бурение с погружным пневмоударником (пневмоударное бурение) по сравнению с ударно-канатным имеет более высокую скорость; при этом можно бурить направленные (от 0 до 90° к горизонтали) скважины, отсутствует необходимость в подвозке тяжелого инструмента и снабжении водой. Ударное действие и вращение долота осуществляются двумя независимыми механизмами. Станками ударно-вращательного бурения можно бурить скважины диаметром до 155...200 мм, глубиной: до 36 м в скальных грунтах средней и выше средней крепости (VI--IX категорий по буримости).
К ударно-вращательному бурению можно отнести шарошечный способ бурения, который по кинематике действия рабочего органа является типично вращательным, а по динамике действия породоразрушающего наконечника -- ударным. грунт гидромеханический бурение пневматический
Станки шарошечного бурения получили наибольшее распространение для бурения скважин диаметром 190...320 мм и глубиной до 35 м в полускальных и скальных грунтах. Основные их достоинства -- высокая производительность (20... 150 м в смену), непрерывность процесса бурения и возможность его автоматизации; недостатки -- большая масса станков и малая стойкость долот в труднобуримых породах.
Вращательное бурение заключается в том, что буровой снаряд из штанг шнекового типа с резцовой коронкой, прижатый к забою скважины за счет массы станка, получает вращение от двигателя станка. Резцы коронки при вращении в забое скважины срезают породу, которая в виде мелочи непрерывно удаляется из скважины спиральными витками штанг.
Вращательное бурение скважин осуществляется в основном станками шнекового бурения, а в отдельных случаях, для бурения разведочных скважин в особо вязких абразивных грунтах (для получения керна),-- станками алмазного и дробового бурения.
Преимущества вращательного бурения -- достаточно высокая скорость бурения в плотных и полускальных грунтах и непрерывность процесса, возможность бурения как вертикальных, так и наклонных скважин.
При вибрационном бурении применяют вибраторы направленного (вертикального) действия, жестко присоединенные к колонне буровых труб, имеющей на конце рабочий наконечник. Под действием вибрирующего снаряда некрепкие грунты и породы выделяют связанную воду; часть породы в зоне контакта с вибрирующим наконечником переходит в подвижное состояние, что влечет за собой резкое снижение сопротивляемости грунта сдвигу и способствует погружению вибробурового снаряда в породу.
Для вибробурения шпуров и скважин диаметром до 125 мм и глубиной до 20......25 м применяют самоходные виброустановки. При вибропогружении повышается почти в 10 раз скорость проходки скважины по сравнению с ударно-канатным бурением, однако с увеличением глубины выработки до 15...20 м скорость резко уменьшается.
Термическое (огневое) бурение основано на прожигании породы высокотемпературной газовой струей, выходящей со сверхзвуковой скоростью из сопла огнеструйной горелки. Для получения высокотемпературной газовой струи используют распыленный керосин и газообразный кислород (иногда воздух). Порода нагревается до температуры 2000 °С, увеличивается в объеме, растрескивается и разрушается на мелкие частицы, которые вместе с продуктами сгорания удаляются из скважины струей охлажденных газов.
Термическое бурение применяется только в исключительно труднобуримых кварцсодержащих скальных, а также в мерзлых грунтах.
Ручные термобуры применяют для бурения шпуров диаметром 60 мм и глубиной 1,5...2 м, а передвижные станки -- для бурения скважин диаметром 250......360 мм, глубиной до 17...22 м. Производительность станков в хорошо термо-буримых породах достигает 12... 15 м/ч.
Гидравлическое бурение основано на использовании ударного действия тонкой высоконапорной струи воды, подаваемой в забой скважины со сверхзвуковой скоростью. Гидравлический способ особенно эффективен при устройстве скважин глубиной до 8 м в мягких и водонасыщенных грунтах. Эксперименты подтверждают возможность использования этого способа для бурения скальных грунтов.
Электрогидравлическое бурение основано на явлении гидравлических ударов, возникающих в жидкой среде вследствие импульсного разряда между разомкнутыми контактами электрической цепи, к которым подводится высокое напряжение. Если в зоне высоковольтных электрических разрядов поместить породу, то под действием многократно повторяющихся ударов она разрушится. Этот метод находится в стадии промышленных экспериментов.
Применение ультразвука для бурения скважин и резания пород основывается на совместном воздействии на хрупкую породу ультразвуковых колебаний бурового инструмента (частота свыше 20 кГц) и кавитационного эффекта в промывочной жидкости. Источником ультразвука являются мощные магнитострикционные излучатели. Ведутся работы по звуковому и инфракрасному разрушению пород.
Взрывобурение заключается в том, что в забой скважины периодически подаются ампулы с жидкими компонентами взрывчатого вещества (ВВ) -- окислителем и горючим. По трубам в воде или из сопла взрывобура посылаются твердые заряды ВВ массой 150...200 г с частотой 20...25 зарядов в час. Может быть также применен взрывобур, являющийся дозатором непрерывно подаваемого горючего и окислителя (четырехокись азота и керосин) и непрерывно (или прерывно) поступающего инициатора взрыва (например, сплава К и Na).
Создаются станки взрывного бурения скважин диаметром до 300 мм и с глубиной бурения до 40 м, а также взрывобуры для дробления негабарита.
Плазмобурение заключается в нагреве забоя скважины плазменным факелом, образующимся в плазмотроне (электрической дуге между электродом и соплом газовой горелки, охлаждаемой водой) при прохождении струи азота или смеси азота и водорода.
Несмотря на создание и внедрение новых физических и комбинированных видов бурения, в ближайшее время механические виды (ударное, ударно-вращательное и вращательное) бурения пород останутся преобладающими.
Список используемой литературы
1. Терентьев О.М. Технология строительных процессов: Учебник для строительных техникумов. Москва, 2002.
2. Строительные материалы (Материаловедение. Строительные материалы) / Под общей редакцией проф. В.Г. Микульского и проф. В.В. Козлова, Москва, 2004.
3. Технология строительного производства / Под редакцией профессоров О.О. Литвинова и Ю.И. Белякова, Киев, 1985.
Размещено на Allbest.ru
Подобные документы
Проектирование и определение объемов земляных работ, разработка грунта в траншеях, назначение и разработка водопроводных колодцев и котлованов. Объем грунта извлекаемого механизированным способом и вручную, приямки при строительстве трубопроводов.
реферат [28,7 K], добавлен 05.07.2011Виды земляных сооружений. Характеристика подготовительных, вспомогательных и основных земляных работ. Способы разработки грунта. Разработка грунта одно- и многоковшовыми экскаваторами, землеройно-транспортными машинами. Гидромеханизация земляных работ.
презентация [3,6 M], добавлен 20.04.2014Планировка строительной площадки. Объем земляных работ, подбор техники для их производства. Подбор скреперов для перемещения грунта из выемки в насыпь, экскаватора для рытья котлована и автосамосвалов для вывозки грунта. Технология размораживания грунтов.
курсовая работа [182,8 K], добавлен 16.12.2012Порядок разработки грунта в котловане, определение его габаритных размеров и вычисление объемов требуемых земляных работ. Подбор комплекта машин и необходимого оборудования для разработки грунта в котловане, калькуляция трудовых затрат и зарплаты.
практическая работа [20,5 K], добавлен 09.06.2009Расчет размеров котлована под здание. Вычисление объемов земляных работ. Подбор комплекта машин для разработки грунта и его транспортирования. Калькуляция трудовых затрат и заработной платы. Календарный план производства работ, технология производства.
контрольная работа [27,9 K], добавлен 25.03.2012Вскрышные работы, методы разработки грунта в основном и вспомогательном карьере. Определение размеров карты отсыпки грунта, его разравнивание и уплотнение. Технология укладки грунта в зимних условия. Разработка календарного графика производства работ.
курсовая работа [3,0 M], добавлен 02.04.2012Расчет размеров котлована под здание и объемов земляных работ. Расчет технико-экономических показателей комплекта машин для разработки грунта и его транспортирования. Калькуляция трудовых затрат и заработной платы. Составление ведомости земляных работ.
курсовая работа [27,4 K], добавлен 30.05.2013Назначение размеров котлована под фундамент здания. Вычисление объемов земляных работ. Подбор комплекта машин для разработки грунта. Составление ведомости объемов земляных работ, календарного плана. Расчет параметров забоя для экскаватора драглайн.
курсовая работа [39,5 K], добавлен 22.12.2010Назначение, устройство и принцип работы бульдозера. Характеристика поворотного, неповоротного, полусферического и сферического видов отвала. Влияние свойств грунта на процесс его разработки. Эффективные методы повышения производительности бульдозеров.
курсовая работа [1,7 M], добавлен 07.12.2011Расчет размеров котлована под здание, объемов земляных работ. Комплектация машин для разработки грунта и его транспортирования. Калькуляция трудовых затрат и заработной платы. Календарный план и технология производства работ. Расчет материальных ресурсов.
курсовая работа [24,2 K], добавлен 23.03.2010