Материаловедение

Структура древесины. Взаимосвязь анатомического строения древесины с ее физиолого-химическими и физическими свойствами. Приготовление, свойства и маркировка строительных растворов. Виды поликонденсанционных полимеров (реактопластов), сферы применения.

Рубрика Строительство и архитектура
Вид контрольная работа
Язык русский
Дата добавления 11.01.2014
Размер файла 36,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство сельского хозяйства РФ

ФГБОУ ВПО "Ульяновская государственная

сельскохозяйственная академия им. П.А. Столыпина"

кафедра "Материаловедение и технология машиностроения"

Контрольная работа

по дисциплине "Материаловедение"

Ульяновск 2013

Содержание

1. Анатомическое строение древесины.

2. Строительные растворы.

3. Поликонденсанционные полимеры (реактопласты).

Литература

1. Анатомическое строение древесины

Для полной характеристики древесины и древесных строительных материалов следует раскрыть структуру и свойства этого биологического объекта растительного происхождения: взаимосвязь анатомического строения с физико-химическими и физическими свойствами древесины, тем более что здесь прослеживаются различия между хвойными и лиственными породами, как на уровне микро-, так и макроструктуры. Принято изучать три основных разреза ствола.

В торцовом разрезе ствола дерева выделяют: сердцевину (сердцевинная трубка) -- примерно в центре ствола размещается вдоль его оси, которая является рыхлой первичной малопрочной тканью; собственно древесину, слагаемую из концентрически расположенных годичных слоев с включением в каждый из них весенней и более плотной летней древесины; камбий -- тончайший слой из полностью живых клеток, способных к росту и делению на большую часть, откладываемую в сторону древесины, и меньшую - в сторону от центра, где расположен следующий слой в виде луба; луб является внутренним слоем коры (флоэмы) и граничит с внешним слоем ее, называемой коркой (темного цвета). На долю ствола приходится 70--90% всего объема дерева; остальную часть составляют крона и корневая система. Кора составляет от 6 до 25% объема ствола, остальная часть его служит древесиной, в которой наблюдается светлое периферическое кольцо -- заболонь и более темная центральная часть -- ядро. Камбиальный слой находится между заболонью и лубом. Все эти части составляют макроструктуру древесины. У некоторых древесных пород (дуб, бук, клен и др.) на торцовом сечении можно видеть узкие радиально расположенные полоски, которые называются сердцевинными лучами.

В породах может отсутствовать ядровая часть, и тогда породы именуются заболонными (береза, липа, клен, граб и др.). В других породах заболонь имеет цвет центральной части ствола, причем последняя остается более сухой; такие породы называются спелодревесными (ель, пихта, осина, бук и др.).

Более подробное строение древесины хвойных и лиственных пород изучается с помощью микроскопа и специальных срезов слоев древесины.

Выше отмечалось, что древесина состоит в основном из клеток. Их можно разделить на два типа: прозенхимные и паренхимные. Прозенхимные имеют длину во много раз большую, чем их ширина; они придают древесине волокнистое строение, оставаясь, как правиле отмершими. Среди этих клеток различают трахеиды, клетки либриформа и сосуды. Паренхимные клетки -- короткие, имеют примерно одинаковую длину и ширину, являются живыми. Если в живой клетке имеется оболочка (клеточная стенка), внутри которой расположены протоплазма (протопласт) и ядро, то в отмершей в процессе роста дерева протопласт частично расходуется на утолщение стенки, частично высыхает вместе с ядром, оставляя полость, которая заполняется водой или воздухом, а иногда экстрактивными веществами. Естественно, что в срубленном дереве живые клетки быстро умирают, и оно состоит из омертвевших клеток, т. е. из клеточных стенок (оболочек).

Клетки в древесине имеют различное функциональное значение. Одни из них выполняют функции проводящих клеток, другие -- опорных или механических, третьи -- запасающих, четвертые -- образовательных (расположены в камбиальном слое), пятые -- ассимиляционных (находятся в листве и хвое и благоприятствуют образованию питательных веществ), шестые -- покровных (в корке дерева). Клетки, имеющие одинаковое строение и выполняющие одну и ту же функцию, образуют ткани. Особо выделяют ткани производящие, механические и запасающие, что соответствует первым трем функциям их клеток.

Древесина хвойных пород имеет относительно простое строение. Она состоит из клеток почти одного типа -- трахеид. К ним относятся мертвые веретенообразные клетки длиной от 1,5 до 5 мм со стенками разной толщины и с полостями различных размеров. Трахеиды весенней древесины имеют широкие полости и тонкие стенки, а осенней -- более узкие полости и толстые стенки. У весенних трахеид, выполняющих функции водопроводящих клеток, отношение диаметра к длине составляет 1:100, у осенних -- 1:400. В стенках трахеид имеются поры, через которые клетки общаются между собой и при помощи которых содержимое живых клеток соединяется в одно целое.

Паренхимные клетки составляют живую ткань хвойной древесины; находятся, главным образом, в сердцевинных лучах и, следовательно, выполняют функции запасающих питание (крахмал и жиры) для потребления весной, а также в небольшом количестве в лубе, поблизости от камбия (вертикальная паренхима). Кроме того, паренхимные клетки, образуя межклеточные каналы, как бы выстилают поверхность смоляных ходов, столь характерных для хвойных пород. Такие ходы, располагаясь вертикально и горизонтально, образуют единую смолоносную систему, что в конечном итоге благоприятствует повышению стойкости древесины хвойных пород. В целом, однако, объемная доля паренхимной ткани в хвойной древесине составляет 3--5%, так как часть запасов питания хранимся в хвое, где не имеется паренхимных клеток.

Лиственные породы имеют более сложное анатомическое строение. Проводящими (водопроводящими) клетками (элементами) служат сосуды -- длинные трубки шириной 0,02--0,5 мм. В весенней древесине они более широкие и их можно иногда заметить невооруженным глазом. Стенки сосудов характерны утолщением кольчатой, спиральной или сетчатой формы, что придает стенкам повышенную прочность. Механические клетки, и соответственно механическая ткань, называемые у лиственных пород либриформом, заметно отличаются своей веретенообразной формой, толстыми стенками с щелевидными порами, узкими полостями клеток, имеют сравнительно небольшие длину (0,3--0,8 мм) и диаметр (0,1--0,2 мм). Все клетки либриформа являются мертвыми, и лишь паренхимные клетки, как и в хвойных породах, образуют сердцевинные лучи, как запасающие и проводящие питательные вещества в радиальном направлении при объемной доли их около 10%, т. е. в 2 -- 3 раза больше, чем в хвойных породах.

Выше были отмечены шесть функций клеток, но при кратком описании анатомического строения древесины были описаны лишь три из них, хотя три других являются не менее значимыми. Образовательная функция -- живые клетки камбия образованы тонкими оболочками и наполнены протоплазмой и ядром. В процессе роста древесины клетка камбия делится на две неравные части с возникновением одной новой активной камбиальной клетки; вторая становится либо клеткой древесины, либо -- луба. В обоих случаях после отделения клетки от камбиального слоя в ней начинается лигнификация с отложением лигнина, повышением ее гидрофобности и одревеснения, затем она отмирает. Процесс роста древесины неравномерный, что легко устанавливается по плотности и ширине годичных слоев (годичных колец): поздняя древесина (осенняя) -- плотнее и темнее весенней, а ширина слоев зависит от породы древесины. При необходимости по этим признакам можно определить процент содержания поздней древесины; чем он выше, тем прочнее древесина как строительный материал.

Ассимиляционная функция клеток заключается в усвоении клетками зеленых листьев, и хвои внешних веществ (воды, углекислоты) с образованием углеводов в результате фотосинтеза, т.е. при помощи лучистой (солнечной) световой энергии, поглощаемой хлорофиллом. Последний находится в виде хлорофилловых зерен в клетках листа, являясь в нем красящим веществом, или пигментом, придающим листьям зеленую окраску. Сущность процесса ассимиляции раскрыта великим русским ученым К.А. Тимирязевым (1843--1920).

Ее схематически можно представить в следующем виде: листья поглощают из атмосферы углекислый газ СO2; хлорофилловые зерна в листьях на солнечном свету поглощают продиффундировавший углекислый газ СO2 и выделяют кислород в воздух; оставшийся в листьях углерод вступает во взаимосвязь с молекулами воды, проникшей к кроне дерева из почвы по сосудам заболонного слоя древесины; в результате такого взаимодействия образуется промежуточное вещество -- формальдегид СH2O; шесть молекул газообразного формальдегида (с резким неприятным запахом и вкусом) в результате фотосинтеза и полимеризации (т. е. соединения друг с другом) образуют новую молекулу вещества, именуемого глюкозой:

6СH2O = С6H12O6;

глюкоза из листьев по сосудам переходит в различные части древесины и отлагается там в запас; под влиянием молекул воды и ферментов п молекул глюкозы переходят в одну молекулу крахмала, а именно:

nС6H12O6 = H2O + (С6H10O5)n

Величина индекса п -- степени полимеризации крахмала -- высокая, но не до конца пока выясненная по своему числовому значению. Однако она может оказаться еще больше с возникновением макромолекулы целлюлозы (клетчатки) со степенью полимеризации до 6000 и выше. Из таких макромолекул целлюлозы в процессе роста дерева слагаются стенки клеток древесины.

Немаловажную роль в росте и сохранности дерева имеют функциональные клетки -- покровные. Они возникают при делении клеток камбия с отложением их в сторону луба, а затем полностью отмирают и переходят, как структурообразующий элемент, во внешний слой коры дерева, т. е. в корку. Корка предохраняет дерево -- древесину, камбиальный слой и луб (проводящий питательные вещества от кроны в ствол и корневую систему) -- от механических повреждений, вредного воздействия внешней среды, низких температур или резких температурных колебаний.

древесина раствор полимер строительный

2. Строительные растворы

Общие сведения. Строительными растворами называют разновидность ИСК, получаемую при отвердевании рационально подобранной и тщательно перемешанной смеси, состоящей в основном; из вяжущего вещества, воды и мелких заполнителей (песка). Отсутствие крупного заполнителя придает строительным растворам некоторые специфические особенности по сравнению с бетонами, например, повышенную пластичность.

Строительные растворы применяют для связывания в монолит кирпичной, каменной кладки или крупных изделий, например панелей, блоков при строительстве сборных жилых и промышленных зданий. Растворы используют также при декоративной отделке стен и потолков, для устройства полов, изготовления тонкостенных конструкций, выполнения штукатурных работ.

Основная особенность употребления строительных растворов заключается в том, что их укладывают по пористому основанию - кирпичу, бетону, пористому камню -- сравнительно тонкими слоями без специального, как правило, механического уплотнения. Однако при повышенной жесткости строительные растворы имеют различное функциональное назначение и по этому признаку их классифицируют на кладочные, штукатурные, монтажные и специальные, к которым относятся акустические, тампонажные, гидроизоляционные, рентгенозащитные и др.

По виду используемых мелкозернистых заполнителей выделяют строительные растворы тяжелые и легкие. Средняя плотность тяжелых - свыше 1500, а легких строительных растворов -- менее 1500 кг/куб.м.

По виду вяжущего вещества строительные растворы различают: цементные, приготовляемые с применением портландцемента или его разновидностей; известковые -- на основе извести воздушной или гидравлической; гипсовые -- с применением в них строительного или высокопрочного гипса; смешанные, получаемые на основе двух или нескольких вяжущих, чаще всего цемента и извести, реже -- цемента и глины. В этих растворах известь и глина, а иногда и некоторые другие тонкодисперсные и тонкомолотые добавки (шлаки, золы и др.) играют роль твердых пластификаторов, поскольку они обладают большой водоудерживающей способностью. Их присутствие предотвращает интенсивный отсос воды из раствора в пористый кирпич, бутовый камень или бетон при кладке и монтаже сборного объекта.

Для пластификации строительного раствора применяют не только неорганические вещества, особенно известь и гипс, но и органические, в частности, поверхностно-активные вещества. Они снижают расход воды в строительном растворе, улучшают его морозостойкость и т. п. К такого рода добавкам относятся мылонафт, ССБ, СДБ, абиетат натрия, подмыльный щелок (ПМЩ) и др. В зимнее время в растворы добавляют противоморозные вещества добавки): поташ в количестве 10--15% от массы воды затворения, нитрит натрия -- до 5--10%, а также аммиачную воду, нитрат кальция, карбонат натрия и др. Хорошие показатели получаются с добавкой ацетата натрия, при которой кладочные растворы интенсивно набирают прочность при отрицательных температурах до -15°С. Оптимальный расход этой добавки составляет 4% от массы цемента. Она снижает водопотребность, повышает морозостойкость. Противоморозные добавки снижают температуру замерзания жидкой среды растворной смеси, участвуют в процессах гидратации вяжущего вещества.

Заполнителем в растворе служит природный песок обычный (речной, горный и др.) или искусственный пониженной массы -- керамзитовый, термозитовый, из вспученного перлита или вермикулита, пемзы или туфа и др. Природные пески по загрязненности посторонними примесями не должны отличаться от песков для цементных бетонов. По гранулометрическому составу песок назначают с наибольшей плотностью с тем, чтобы понизить расход вяжущего вещества. Не допускаются зерна крупнее 10 мм, а количество зерен| размером от 5 до 10 мм ограничивается пределом не более 5% по массе. В низкомарочных растворах допускается содержание в песке пылевато-глинистых примесей до 10, реже -- до 15--20% при условии обязательного увеличения продолжительности перемешивания раствора при его изготовлении. В качестве ускорителя твердения строительных растворов используют, так же как в бетонах, хлористый кальций.

Для кладочных, облицовочных и штукатурных растворов применяют цементы, получаемые путем совместного помола портландцементного клинкера с добавками гипса, кремнеземистых, мрамора, пыли электрофильтров клинкерообжигательных печей и др. Но содержание клинкера в таких цементах должно быть не менее 20%. Допускаются пластифицирующие, гидрофобизирующие, воздухововлекающие добавки. Марки цементов -- не менее 200, тонкость помола -- через сито № 008 должно проходить не менее 88% взятой навески, водоотделение цементного теста при В/Ц = 1,0 --не более 30% по объему. Цемент должен выдерживать испытание на равномерность изменения объема, содержание SO3 не должно превышать 1,5--3,5% массы цемента, содержание щелочных оксидов -- не более 2% массы цемента.

Для строительных растворов специального назначения -- декоративных, кислотостойких, рентгенозащитных, тампонажных и других штукатурок -- с особой тщательностью выбирают разновидность вяжущего, добавок и химически стойких заполнителей. Оптимизировать структуру растворов следует с учетом их конкретного назначения, обеспечивая пористость акустических растворов, высокую плотность, кислото- и щелочестойких растворов, гидрофобность при гидроизоляции и т. д.

Приготовление, свойства и маркировка строительных растворов. Оптимальный состав раствора устанавливают общим методом, но с учетом специфической особенности этого материала -- укладывают его на пористое основание кладки, пористую поверхность при оштукатуривании стен и т. п., т. е. требуется предусмотреть увеличение водоудерживающей способности раствора, чтобы предотвратить расслаивание слоя до его отвердевания. Возможны и другие функции строительного раствора -- конструктивные, декоративные, водозащитные и т. п., что учитывается на первой стадии проектирования состава.

В редких случаях, при малых объемах работ, составы низкомарочных растворов назначают по таблицам с проверкой их качества в лаборатории и на производстве. Профессором Н.А. Поповым предложен метод подбора состава строительных растворов, основанный на применении формулы:

R28 =k * Ru, (Ц - 0,05) + 4,

где k -- коэффициент качества песка.

Технология приготовления строительного раствора на специализированных заводах или отдельных растворных узлах слагается из ряда взаимосвязанных операций: подготовки исходных материалов -- просеивания природного песка, домола при необходимости и рассева искусственного песка; дозирования материалов по массе; перемешивания отвешенных компонентов до однородного состояния растворной смеси в стационарных или передвижных растворомешалках разной емкости. Продолжительность перемешивания обусловлена видом исходных материалов, но обычно составляет не менее 1,5 мин, а при содержании в смеси высокодисперсных добавок -- 3--4 мин. Транспортируют готовую растворную смесь с помощью специально оборудованных автоцистерн и самосвалов.

Сухая смесь соединяется с водой в мешалках со свободным перещиванием, размещаемых на кузове автомобиля (автосмесителя), в пути следования к объекту строительства.

Перед транспортированием (выборочно) и укладкой готовой растворной смеси определяют ее качественные характеристики, в том числе удобоукладываемость по пористому основанию, нерасслаиваемость при транспортировании и хранении, условную вязкость и другие заданные свойства.

Удобоукладываемость -- это способность растворной смеси равномерно укладываться по пористому основанию (кирпичу, бетону, природному камню и пр.) тонким слоем. Если раствор обладает хорошей удобоукладываемостью, то он способен заполнить все поверхностные неровности основания и образовать сплошность сцепления со всей поверхностью. При недостаточной удобоукладываемости растворная смесь распределяется неравномерно и соприкасается, а затем и сцепляется с основанием только на отдельных участках. Слой становится неодинаковой плотности и толщины. С этим свойством связана характеристика его вязкости, выражаемая обычно в каких-либо условных единицах. От вязкости зависит способность растворной смеси перемещаться (перекачиваться) к месту укладки по трубам, шлангам, лоткам и т. п.

Оценка условной вязкости, или подвижности, растворной смеси Производится с помощью стандартного металлического конуса, поражаемого в испытуемый материал. Глубина погружения конуса принимается в зависимости от производственного назначения раствора. Так, например, строительные растворы для кирпичной кладки должны характеризоваться глубиной погружения конуса от 9 до 13 см, а для вибрированной кладки из бутового камня -- всего 1--3 см. Подвижность их при монтаже стен из крупных элементов должна быть 5--7 см.

Важно не только равномерно и тонким слоем распределить растворную смесь, но предохранить твердеющий слой от быстрого отсасывания воды затворения в поры и капилляры кладки, панели и пр. Для обеспечения длительной водоудерживающей способности растворной смеси в нее вводят порошкообразные или органические вещества, о которых сообщалось выше. Их количество определяют при проектировании оптимального состава строительного раствора. При этом необходимо сохранить в составе наименьшее количество цемента, тем более что на приготовление растворов расходуется до 15--20% общего количества цемента, применяемого в строительных работах.

Качество отвердевшего строительного раствора в основном характеризуется прочностными, деформативными свойствами и долговечностью. В кирпичной кладке и крупнопанельных зданиях строительные растворы воспринимают напряжения не только от сжимающих усилий, но и вследствие изгиба и среза. В связи с этим раствор в кладке должен обладать необходимой прочностью на растяжение при изгибе и раскалывании. При работе наружных стен из крупноразмерных элементов, подвергающихся механическим и температурно-влажностным воздействиям, важными являются деформативные свойства строительного раствора: усадка, коэффициент температурного линейного расширения, модуль упругости и др. В повышении герметизации стыков, особенно в крупнопанельных зданиях, основную роль играет водонепроницаемость и прочность сцепления раствора с поверхностью бетонных конструкций.

Повышение несущей способности кирпичных стен, тем более при низкой марке кладочного раствора, достигается использованием в горизонтальных и вертикальных швах кладки полимерцементного раствора. Периферийная замена обычного кладочного раствора на полимерцементный (на глубину 12 см) в горизонтальных швах кладки повышает несущую способность стен на 40--50%. Наибольший эффект увеличения прочности наблюдается при воздействии растягивающих усилий, что обусловлено высокими адгезионными свойствами полимера. Того же результата достигают усилением отдельных конструктивных элементов кирпичных стен: перемычек, узлов опирания балок перекрытий и др. Значительно снижаются трудозатраты, расход материалов и сокращаются сроки производства работ.

Обеспечение длительной нормальной эксплуатации зданий связано с долговечностью кладочного строительного раствора, т. е. с его способностью сохранять или даже упрочнять структуру в эксплуатационный период. Условно ее можно определять испытанием образцов на морозостойкость и стойкость при увлажнении и высушивании. При более обстоятельных испытаниях определяют также плотность, пористость, водопоглощаемость, водонепроницаемость раствора, взаимосвязь этих свойств в соответствии с законом створа.

На первой стадии проектирования оптимального состава важно выбрать наилучший для данных условий вяжущий компонент, способный удерживать воду в тонких слоях, высококачественный песок, и, при необходимости, пластифицирующую добавку. Контроль качества раствора осуществляется путем систематической проверки качества применяемых материалов, а также точности дозирования тщательности перемешивания смеси, удобоукладываемости получаемой растворной смеси и прочности раствора. Строительные растворы имеют следующие показатели по пределу прочности при сжатии--марки4,10,25,50,75,100,150,200. Для конструкционных целей принимают и более высокие марки растворов 300 и выше. Такой высокопрочный раствор используют также для заполнения каналов в предварительно напряженных конструкциях уплотнения бетонных сооружений методом инъекции (инъекционные растворы). В них применяют портландцемент марок 400, 500. Марку строительного раствора устанавливают с помощью испытания образцов-кубов с размером стороны 7,07 см из смеси рабочей консистенции, отвердевающих на пористом или плотном основании при температуре 15--20 °С и испытываемых в возрасте 28 суток.

Вышеуказанные низкомарочные растворы изготовляют на основе извести, гипса или местных вяжущих веществ; используют кладки малоэтажных зданий, штукатурных работ и др. Растворы повышенных марок применяют при кладке наружных стен зданий более высокой этажности, устройства перемычек, карнизов, монтажа сборных стен из панелей и т. п.

3. Поликонденсанционные полимеры (реактопласты)

Поликонденсационные полимеры (реактопласты) получают в процессе реакции поликонденсации. При поликонденсации высокомолекулярное соединение образуется в результате последовательного взаимодействия молекул, содержащих две или несколько функциональных групп, способных вступить в реакцию (H2 --ОH2; C1=NH2; СООН и др.). Она протекает обычно при нагревании или под действием катализаторов. Кроме полимера выделяются побочные низкомолекулярные продукты (вода, хлористый водород, спирты и др.).

Схему синтеза конденсационных полимеров можно представить на примере взаимодействия фенола и формальдегида. Фенол C6H5OH при нагревании в водных растворах кислот или щелочей вступает в реакцию с формальдегидом, растворенным в воде, т. е. формалином, по схеме

Х(C6H5OH) +... + Y(CH2O)

фенол + формальдегид полимер + H2O

При реакции поликонденсации в зависимости от состава исходных продуктов могут образовываться как линейные цепи макромолекул, придающие полимеру термопластичные свойства, так и цепи пространственного строения -- термореактивные полимеры.

Из полимеров, полученных поликонденсацией, в строительстве чаще всего используют фенолоформальдегидные, карбамидные, полиэфирные, эпоксидные, полиамидные и некоторые другие полимеры.

Фенолоформальдегидные полимеры получаются путем поликонденсации фенола с формальдегидом. Фенол C6H5OH представляет собой бесцветные кристаллы игольчатого типа с характерным сильным запахом. Он токсичен, вдыхание его приводит к отравлению, а попадание на кожу вызывает ожоги. Формальдегид -- газ с резким удушливым запахом, 40%-ный раствор его в воде называют формалином (CH2O).

В зависимости от соотношения исходных продуктов поликонденсации, характера катализаторов получают различные виды фенолоформальдегидных полимеров. При избытке фенола и конденсации в кислой среде получают новолачные (термопластичные) полимеры с линейным строением молекул. При избытке формальдегида и конденсации в щелочной среде образуются резольные (термореактивные) полимеры с сетчатым (трехмерным) строением молекул. В процессе поликонденсации резольных полимеров можно выделить три основные стадии: А -- резолы, В -- резистолы и С -- резиты.

Полимер в стадии А растворяется в спирте, ацетоне и других органических растворителях и с большей или меньшей скоростью в зависимости от температуры переходит в неплавкое и нерастворимое состояние (процесс отверждения). Полимер в стадии В теряет способность плавиться при нагревании, растворяться в органческих растворителях и только набухает. Конечная стадия кондесациии, стадия С, характерна неплавкостью и нерастворимостью полимера.

Фенолоформальдегидные полимеры в твердом состоянии характеризуются высокой поверхностной твердостью и представляют собой хрупкие стеклообразные массы. Одним из достоинств фенолоформальдегидных полимеров является их способность хорошо совмещаться с наполнителями и давать материалы более прочные, теплостойкие и менее хрупкие, чем сами полимеры. Эти полимеры отличаются высокой адгезией к древесине, хлопчатобумажным тканям, бумаге. Фенолоформальдегидные полимеры и материалы на их основе обладают исключительно высокой химической стойкостью. Они используются для производства клеев, древесностружечных, древесноволокнистых и слоистых плит и пластиков, бумажнослоистых пластиков, водостойкой фанеры, сотопластов, минераловатных и стекловатных матов, спиртовых лаков.

Карбамидные (мочевиноформальдегидные) полимеры--- продукты реакции поликонденсации мочевины и ее производных (тиомочевины, меламина) с формальдегидом.

Мочевина -- карбамид [СО--(NH2 )2] в чистом виде представляет собой кристаллы без цвета и запаха, хорошо растворимые в воде и хлороформе; получают нагреванием под давлением смеси аммиака и углекислого газа.

В результате взаимодействия мочевины с формальдегидом в процессе поликонденсации могут быть получены термопластичные и термореактивные полимеры. По сравнению с фенолоформальдегидньми полимерами стоимость их ниже. Они светостойки, но вместе с тем менее водостойки, имеют пониженную химическую стойкость и большую хрупкость.

Мочевиноформальдегидные полимеры применяют для изготовления отделочных материалов -- слоистых пластиков, а также древесностружечных плит и пенопластов. Изделия на основе этих полимеров отличаются светлым тоном и хорошо окрашиваются в любой цвет.

Меламиноформалъдегидные полимеры --- продукты поликонденсации меламина и формальдегида. Меламин -- кристаллическое вещество, растворимое в воде, амид циануровой кислоты. Процесс конденсации этих полимеров сходен с процессом конденсации мочевины с формальдегидом. Однако меламиноформальдегидные полимеры вследствие большего числа связей ("сшивок") обладают повышенной прочностью, твердостью и теплостойкостью. Обычные продукты конденсации меламина и формальдегида имеют ограниченное применение в строительстве и вследствие растворимости в воде используются в виде водных растворов.

Полиуретан -- продукт взаимодействия диизоцианатов и многоатомных спиртов, т. е. веществ, в молекулы которых входят две изоцианатные группы (О=C=N) и две или более гидроксильные трупп.

Полиуретаны чаще всего бывают линейными микрокристаллическими высокополимерами. Однако при применении веществ с полиреактивностью более двух (трехатомных спиртов или триизоцианатов) могут быть получены и термореактивные разновидности.

Полиуретаны применяют для изготовления волокон, лакокрасочных покрытий, гидроизоляционных пленок и клеев. Большое значение приобретает этот полимер для производства газонаполненных пластмасс малой плотности (до 30 кг/куб.м), обладающих хорошими тепло- и звукоизоляционными свойствами.

Полиэфирные полимеры -- высокомолекулярные соединения, получаемые в результате поликонденсации многоосновных кислот со спиртами. Широкое применение получили главным образом глифталевые полимеры, синтезируемые путем взаимодействия глицерина с ангидритом фталевой кислоты. Глицерин -- простейший трехатомный спирт -- С3H5(ОН)3 и фталевый ангидрит (С6H4СО)2О в результате реакции поликонденсации образуют глифталевый полимер ф трехмерными сетчатыми молекулами.

В промышленности строительных материалов глифталевые полимеры используют при изготовлении лаков, эмалей и грунтовок для внутренней отделки помещений.

Полиэфиры, полученные конденсацией малеинового ангидрида и этиленгликолей, называют полиэфирмалеинатами. Полиэфирмалеинатные полимеры выпускают марок ПН-1, ПН-2 и др.

Полиэфиры вследствие относительной дешевизны, а также развитой сырьевой базы для их получения имеют широкое применение в качестве прочных и теплостойких лакокрасочных покрытий.

Эпоксидные полимеры (полиэпоксиды) -- продукты поликонденсации двух органических низкомолекулярных соединений, из которых одно должно содержать =С - С= эпоксигруппу. а другое иметь подвижный атом водорода (фенолы, спирты и др).

Одной из типичных разновидностей этих полимеров является полиэпоксид, получаемый конденсацией эпихлоргидрина и диоксидифенолпропана. Эпоксидные полимеры могут быть получены как в твердом, так и в жидком состоянии. Для отверждения эпоксидных полимеров (смол) используют два вида отвердителей -- каталитического и сшивающего" действий. К отвердителям каталитического действия относят диметиламинометилфенол, фтористый бор и др., к отвердителям второго вида -- полиамины, полисульфиды и др. При отверждении эпоксидных полимеров не выделяются побочные продукты реакции, что способствует изготовлению изделий на этих полимерах.

Эпоксидные полимеры обладают исключительно высокой адгезией почти ко всем материалам, в том числе к металлам, бетону, древесине, стекловолокну, хлопчатобумажным тканям. Они хорошо совмещаются со многими полимерами и после отверждения характеризуются высокой химической стойкостью, а также относительно высокой теплостойкостью -- до 140--150 °С. Промышленность выпускает следующие марки эпоксидных полимеров: ЭД-8, ЭД-10, ЭД-14, ЭД-20 и др. При добавлении к эпоксидным полимерам некоторых наполнителей и пластификаторов получают хорошо цементирующий материал для герметизации стыков и ремонта труб.

Полиамидные полимеры -- продукты реакции поликонденсации двухосновных кислот и диаминов. По своему строению и способу получения они сходны с полиэфирами. Полиамидные полимеры представляют собой твердые, высокоплавкие вещества с микрокристаллической структурой и термореактивными свойствами. В строительстве они нашли применение для изготовления влагоизолирующих пленок, используемых при производстве бетонных работ.

Кремнийорганические полимеры (полиорганосилоксаны) -- высокомолекулярные соединения, главные цепи макромолекул которых состоят из чередующихся атомов кремния и кислорода (кремнеземистый остов молекулы), а углерод входит в состав групп, обрамляющих главную цепь (R -- радикал типа СH3).

Эти полимеры, получаемые из низкомолекулярных соединений -- алкилхлорсиланов и др., отличаются повышенными жесткостью и теплостойкостью. В этом смысле они как бы обладают свойствами, присущими как силикатным материалам (прочность, твердость, теплостойкость), так и органическим полимерам (эластичность, гидрофобность, морозостойкость). Кремнийорганические полимеры в зависимости от строения исходных мономеров могут иметь линейное и пространственное строение молекул. Низкомолекулярные разновидности кремнийорганических полимеров в виде жидкостей ГКЖ-10, ГКЖ-11, ГКЖ-94 применяют для приготовления водоотталкивающих красок и придания бетонам и растворам гидрофобных свойств. Высокомолекулярные кремнийорганические полимеры используют: линейные -- в герметиках, так как являются каучуками; химически "сшитые" -- в пластиках для склеивания волокон и в жароупорных эмалях и лаках.

Основные физико-механические свойства поликонденсационных полимеров приведены в табл. 1.

Таблица 1 - Физико-механические свойства поликонденсатов

Наименование полимеров

Плотность, г/куб.см

Теплостойкость по Мартенсу, °С

Предел прочности, МПа

Ударная вязкость, Дж/кв.м

При растяжении

При сжатии

Фенолоформальдегидные (резольные)

1,28

80-110

25-50

70-150

2.-6

Мочевиноформальдегидные

1,45

70-100

12.-50

80-110

0,6-0,7

Эпоксидные

1,2

60-140

40-80

70-160

10.-25

Кремнийорганические

1,8

250-350

-

400-600

-

Литература

1. Рыбаков И.А. Строительное материаловедение: /учебник. -2008.

Размещено на Allbest.ru


Подобные документы

  • Разновидности и особенности древесных пород. Характеристика строения древесного ствола. Описание наиболее распространенных пороков древесины. Загнивание и возгорание древесины, способы защиты. Область применения полуфабрикатов и конструкций из древесины.

    реферат [2,6 M], добавлен 07.06.2011

  • Сведения о древесине: достоинства, недостатки, качество, область применения. Физические и механические свойства древесины, методы повышения ее долговечности. Свойства модифицированной древесины; полимеры-модификаторы. Строительные изделия из древесины.

    реферат [202,9 K], добавлен 01.05.2017

  • Строительный раствор - искусственный каменный материал. Классификация строительных растворов. Свойства строительных растворов. Виды и применение строительных растворов. Подбор, приготовление и транспортирование растворов.

    контрольная работа [13,8 K], добавлен 24.01.2007

  • Виды санитарно-технической керамики. Сырьё, технология ее изготовления. История возникновения и производства стекла. Свойства акустических материалов и применение их в строительстве. Основные свойства строительных растворов. Физические свойства древесины.

    контрольная работа [41,7 K], добавлен 12.09.2012

  • Пиломатериалы из древесины хвойных пород, отборного сорта. Изготовление клееной массивной древесины. Типы столярных плит. Получение и применение фенолоформальдегидных смол. Характеристика гитары как изделия из древесины. Свойства лакокрасочных материалов.

    контрольная работа [396,2 K], добавлен 17.06.2009

  • Значение древесины в обыденной жизни и технике. Механические, физические, химические свойства древесины. Прочность, твёрдость и износостойкость. Абсолютная и относительная влажность древесины. Разбухание древесины, усушка, гигроскопичность, коробление.

    презентация [1,9 M], добавлен 03.05.2015

  • Специальные виды цементов, их особые свойства и сферы применения. Физические, механические и технологические свойства древесины. Виды бетонов и их составляющие. Бетон и железобетон: их качества, технологические схемы производства и область применения.

    контрольная работа [50,0 K], добавлен 22.02.2012

  • Естественные и искусственные строительные материалы. Материалы из древесины, сохранившие ее природную физическую структуру и химический состав (лесоматериалы), их разделение на обработанные и необработанные. Основные свойства и пороки древесины.

    курсовая работа [8,9 M], добавлен 16.12.2010

  • Характеристика свойств строительных материалов. Минеральный состав магматических горных пород. Гипсовые вяжущие вещества, их свойства. Гниение и антисептирование древесины. Рулонные кровельные материалы. Технология получения цемента по "мокрому" способу.

    контрольная работа [87,0 K], добавлен 25.07.2010

  • Области применения литых, подвижных и жестких бетонных смесей. Способы зимнего бетонирования. Классификация качественных углеродистых сталей по назначению и их маркировке. Основные технические свойства битумов. Влияние влаги на свойства древесины.

    контрольная работа [49,7 K], добавлен 30.04.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.