Технология производства керамического кирпича
Общая характеристика строительной керамики, ее использование в строительстве. Сущность производства керамического кирпича. Анализ технологической схемы завода "MACON", особенности выпускаемой продукции: кирпич керамический, керамзитоблоки, керамзит.
Рубрика | Строительство и архитектура |
Вид | реферат |
Язык | русский |
Дата добавления | 25.03.2013 |
Размер файла | 59,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Технология производства керамического кирпича
строительный керамика кирпич керамзит
Введение
Строительная керамика - большая группа керамических изделий, применяющихся при строительстве жилых и промышленных зданий и сооружений. Керамические стеновые изделия - один из наиболее древних искусственных материалов, их возраст около 5 тыс. лет. Они отличаются своей долговечностью, высокими художественными характеристиками, кислотостойкостью и полным отсутствием токсичности. Применение глины для изготовления посуды и других керамических изделий было известно уже в глубокой древности, за несколько тысяч лет до нашей эры. Ассирийцы и египтяне уже были знакомы с обжигом керамических изделий и приготовлением цветной глазури. В древней Греции и Риме керамическое производство также было весьма развито. При археологических раскопках на территории Европы и Азии были найдены керамическая посуда, вазы, различные украшения, относящиеся к IV--V векам.
За всю свою долгую жизнь (а как уже было сказанно кирпич изобретён многие тысячи лет назад) технология изготовления керамического кирпича претерпела не так много изменений (к первоначальным ручному формованию и естественной сушке добавился обжиг) , но усовершенствований пережила множество. Так или иначе, кирпич глиняный пластического прессования был и остаётся самым распространённым стеновым керамическим материалом. Изготавливается он из чистых глин, либо с добавками выгорающих(молотый уголь, опилки, торф) и непластических материалов (крупнозернистый песок, шамот, шлак). Легкоплавкие глины, основное сырьё для производства кирпича, при нагревании до 800-1000 градусов приобретают свойства камня, что и делает их востребованными в строительном производстве.
Наряду с этим, технология кирпичной кладки предоставляет архитекторам и дизайнерам неограниченные возможности для воплощения творческих замыслов. Обеспечивая надежную защиту от воздействия внешних факторов, обладая высокой огнестойкостью и сравнительно низкой теплопроводностью, кирпич предопределяет высокий уровень безопасности и комфорта как жилых, так и промышленных зданий и сооружений. В данном отчете рассмотрено производство керамических кирпичей методом пластического формования.
Строительный керамический кирпич позволяет сэкономить при строительстве дефицитные металлы, цемент, а также транспортные средства. В общем балансе производства и применения стеновых материалов керамический кирпич занимает более 30%. Кирпич, накапливая солнечную энергию, медленно и равномерно отдает тепло, что защищает от чрезмерного нагревания летом и сохраняет тепло зимой. Кирпичная стена «дышит», пропуская испарения сквозь свою толщу.
В результате в помещениях поддерживается уровень равновесной влажности Способы производства кирпича изменялись с течением времени от столетия к столетию. До ХIX века эта процедура была весьма трудоемкой, так как кирпич формовался вручную. Его сушка возможна была только в летнее время, а формовка производилась в больших напольных печах, выложенных из высушенного кирпича-сырца. Примерно двести лет назад были изобретены кольцевая обжиговая печь и ленточный пресс, что весьма облегчило процесс производства. Также в XIX веке стали выпускаться и глинообрабатывающие машины. На сегодняшний день больше всего кирпича производится круглогодично на крупных заводах. Эти предприятия выпускают более 200 миллионов кирпичей в год. В производстве кирпича обычно применяются легкосплавные песчанистые и мергелистые глины. На сегодняшний день существуют две основные технологии производства этого стройматериала. Первая основана на обжиге глины, а вторая осуществляется без него.
Технология производства керамического кирпича
Технологическая схема производства изделий с пластическим способом подготовки массы, несмотря на свою сложность и длительность, наиболее распространена в промышленности стеновой керамики. Метод формования из пластических масс исторически сложился на основе пластических свойств глин и широко используется в керамической технологии. Способ пластического формования позволяет выпускать изделия в широком ассортименте, более крупных размеров, сложной формы и большей пустотности. В отдельных случаях предел прочности при изгибе и морозостойкость таких изделий выше, чем у изделий, полученных способом полусухого прессования из того же сырья.
Недостатком способа пластического формования является большая длительность технологического цикла за счет процесса сушки сырца, продолжающегося от 1 до 3 суток. Низкая прочность формованного сырца, особенно пустотелого, большая усадка материала при сушке и наличие отдельного процесса сушки затрудняет возможность механизации трудоемких операций при садке сырца на сушку, перекладке высушенного сырца для обжига и совмещения в одном агрегате процессов сушки и обжига.
Чтобы получить изделия требуемого качества необходимо из глины удалить каменистые включения, разрушить ее природную структуру, получить пластичную массу, однородную по вещественному составу, влажности и структуре, а также придать массе надлежащие формовочные свойства. Глиняный брус формуют в горизонтальных ленточных шнековых прессах часто с вакуумированием массы. Вакуумирование массы способствует повышению ее плотности, пластичности, улучшает формовочные и конечные свойства кирпича.
Производство керамики должно быть обеспечено непрерывной подачей однородного глинистого материала, лишенного каменистых включений имеющего разрушенную природную «структуру» для лучшего смачивания, сохраняющего достаточно постоянную влажность независимо от времени года и равномерно перемешенного с добавками. На керамических заводах сырьевые материалы подвергают грубому, среднему и мелкому дроблению грубому и тонкому помолу. Обычно тонким помолом завершается механическое измельчение материалов, что обеспечивает более интенсивное их спекание, содействует снижению температуры обжига. Измельчение глинистых материалов проводят последовательно на вальцах грубого и тонкого измельчения. Каменистые включения не могут быть полностью выделены из глины общепринятыми механическими приемами - дезинтеграторными ребристыми вальцами. Опыт показывает, что при пользовании этими машинами в глине может остаться около половины (а иногда и более) камней. В дальнейшем эти камни будут в значительном своем количестве перемолоты гладкими вальцами или бегунами, что, однако, вызывает быстрый износ бандажей и частые ремонты. Среднее и мелкое дробление, грубый помол непластичных материалов выполняется с помощью бегунов, молотковых дробилок, валковых мельниц.
Подача и дозировка сырья на большинстве кирпичных заводов происходит при помощи ящичных питателей.
Различают сушильные устройства для естественной и искусственной сушки сырца. В первом случае сырец высушивается атмосферным воздухом за счет солнечного тепла в летнее время, во втором - за счет тепла, получаемого от сгорания топлива. Преимущество искусственной сушки перед естественной в том, что она дает возможность заводам работать круглый год, а не только в течение летнего сезона. Продолжительность процесса сушки и качество высушенного кирпича-сырца в значительной степени зависят от плотности и системы садки сырца на сушильных вагонетках. Завершающей стадией технологии всех изделий строительной керамики является их обжиг. При обжиге изделия окончательно формируется структура материала, т.е. происходит спекание керамики, в результате чего сырец из конгломерата слабосвязанных частиц превращается в достаточно твердое тело.
Строительные материалы и изделия обжигают в промышленных печах. Промышленной печью называют установку технологического назначения, в которой посредством теплового воздействия при относительно высоких температурах изменяется агрегатное состояние обрабатываемого материала, его химический состав либо его кристаллическая структура.
Обжиг кирпича производят в печах периодического и непрерывного действия. В кирпичной промышленности из печей периодического действия применяют преимущественно камерные печи. Из печей непрерывного действия применяют главным образом кольцевые и туннельные.
Туннельные печи имеют значительные преимущества перед печами периодического действия и кольцевыми печами. Садка кирпича-сырца на вагонетки туннельных печей и выгрузка обоженного кирпича с этих вагонеток производится вне печи, в нормальных температурных условиях, что значительно облегчает труд обслуживающего персонала и дает возможность механизировать трудоемкие процессы садки и выгрузки кирпича.
В туннельных печах можно осуществить полную автоматизацию управления режимом обжига. К достоинствам туннельных печей относится и то, что у них температурный перепад в различных участках обжига незначителен.
Туннельные печи относятся к печам с подвижным составом. Они представляют собой прямой канал (туннель) различных размеров. Внутри туннеля проложен рельсовый путь, ширина которого зависит от ширины печи. Вагонетки по внутрицеховому рельсовому пути подаются к печи и одна за другой, через определенные промежутки времени, проталкиваются в печь толкателем. Каждая вагонетка, пройдя всю длину туннеля, выдается из печи с другого конца при каждом проталкивании.
Таким образом, создается непрерывное перемещение вагонеток в печи, постепенный подогрев, обжиг и охлаждение изделий, находящихся на поду вагонетки.
Зоны туннельных печей
Всю длину печи можно разделить на отдельные зоны, в которых протекают различные процессы. Печь имеет следующие три зоны : подогрева, обжига и охлаждения. Каждая зона печи имеет определенную длину, свои конструктивные особенности и свой режим.
Зона подогрева начинается от форкамеры и кончается на границе с зоной обжига. Длина этой зоны условно определяется графиком обжига и считается примерно до первых горелок по ходу движения вагонеток. Эта зона достаточно большой длины, необходимой для более полного использования тепла продуктов горения, поступающих из зоны обжига (от горелочных устройств). Основное назначение зоны подогрева - равномерный прогрев садки обжигаемых изделий до температур, соответствующих графику обжига.
Топливо сжигается в зоне обжига, расположенной в средней части печи, с помощью специальных горелочных устройств. В этой части печи поддерживаются максимальные температуры, необходимые для обжига. Продукты горения, проходя вдоль туннеля, попадают в зону подогрева, а затем выбрасываются в атмосферу через дымоходы. Таким образом, в туннеле происходит непрерывное движение воздуха (зона охлаждения) и дымовых газов (зоны обжига, подогрева) навстречу перемещающемуся составу вагонеток с изделиями (противоточное движение).
Зона охлаждения служит для охлаждения обожженных изделий до 60--80° перед выдачей вагонеток из печи и для утилизации тепла, отбираемого от разогретых изделий. В этой зоне охлаждается также и футеровка вагонеток, нагретая до высоких температур. Изделия и футеровка вагонеток охлаждаются холодным воздухом, подаваемым вентилятором в торцовую часть печи сверху и сбоку через несколько каналов, расположенных по длине зоны охлаждения ближе к выходному концу печи.
Воздуха для охлаждения изделий и пода вагонеток требуется в несколько раз больше, чем для горения топлива. Избыточный горячий воздух отбирается из зоны охлаждения печи и используется для сушки изделий в отдельно стоящих сушилах. Его также можно использовать для рециркуляции в зоне подогрева. Обычно эта часть воздуха считается отбираемой из печи на сторону.
Масса кирпича и камней должна удовлетворять требованиям ГОСТ 22951-78.
По прочности кирпич и камни подразделяют на марки 300,250, 200, 175, 150, 125, 100, 75.
По морозостойкости кирпич и камни подразделяются на марки Мрз 15, Мрз 25, Мрз 35 и Мрз 50.
Технические требования: Кирпич и камни должны удовлетворять требованиям настоящего стандарта и изготовляться по технологическим регламентам, утверждённым в установленном порядке.
Выбор сырьевой базы
Кирпич изготовляют из чистых глин либо из глин с добавкой непластичных материалов. В ряде случаев в состав шихты вводят выгорающие добавки.
Основным сырьём для производства кирпича являются легкоплавкие глины - горные землистые породы, способные при затворении водой образовывать пластическое тесто, превращающееся после обжига при 800- 10000С в камнеподобный материал.
Легкоплавкие глины относятся к остаточным и осадочным породам. Для производства кирпича наибольшее применение нашли элювиальные, ледниково-моренные, гумидные, аллювиальные, морские и некоторые другие глины и суглинки.
Для определения возможности использования глин и суглинков для производства стеновых материалов необходимо знать их зерновой, химический и минералогический состав, пластичность и технологические свойства.
Наиболее ценной для производства кирпича является глинистая фракция, содержание которой не должно быть менее 20%.
Примерный химический состав кирпичных глин и суглинков, %.
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O+K2O |
60-75 | 10-15 | 2-12 | 2-15 | 1-6 | 2-6 |
Глинообразующие минералы, определяющие основные свойства глин, представляют собой в основном гидросиликаты алюминия, содержащие кремнезем и оксиды железа, а также сульфаты, карбонаты и растворимые в воде соли различных металлов.
Наиболее важным свойством глины является ее пластичность, т.е. способность при добавлении к ней воды образовывать тесто, которое под воздействием внешних усилий может принимать любую форму и сохранять ее после прекращений действия внешних усилий.
Технологическая схема производства:
Глина
Песок
Бой и брак изделий (шамот)
Транспортировка (автотранспорт)
Добыча (многоковшовый экскаватор)
Хранение (бункер)
Дозировка (ленточный питатель)
Прием и хранение (бункер)
Транспортировка (автотранспорт)
Хранение (глинозапасник)
Транспортировка (ленточный конвейер)
Дробление и помол (щековая дробилка)
Приемка и рыхление (глинорыхлитель)
Транспортировка (ленточный конвейер)
Дозирование (ящичный питатель)
Дробление (молотковая дробилка)
Просев (сито-бурат)
? 5 мм
? 5 мм
Хранение (бункер запаса)
Дозирование (ленточный питатель)
Сортировка (автотранспорт)
Дозирование (ленточный питатель)
Транспортировка и смешение компонентов (ленточный конвейер)
Электромагнитная сепарация (подвесной электромагнит)
Камни в отвал
Камневыделение (камневыделительные вальцы, зазор между вальцами не более 16мм по впадинам, 4мм по выступам)
Транспортировка (ленточный конвейер)
Измельчение и перемешивание (бегуны мокрого помола, зазор между катками и плитами не более 5-8мм)
Транспортировка (ленточный конвейер)
Помол (вальцы с гладкими валками, зазор 5-10 мм)
ПАР
Перемешивание шихты с пароувлажнением (глиносмеситель с фильтрующей решёткой, зазор между лопастями и корпусом не более 6-10мм)
Транспортировка (ленточный конвейер)
Вылеживание (шихтозапасник, 7-10 дней, 2 многоковшовых экскаватора)
Дозирование (ящичный питатель)
Промин и измельчение (вальцы тонкого помола, зазор между вальцами не боле 2,5мм)
Транспортировка (ленточный конвейер)
Перемешивание и пароувлажнение (лопастной двухвальный смеситель, зазор между лопастями и корпусом не более 6-10мм)
ПАР
Транспортировка (ленточный конвейер)
Формование бруса (ленточный вакуумный пресс)
Отгрузка потребителю
Бой и брак изделий на переработку
Сортировка
Выгрузка кирпича (выставочная площадка, козловой кран, поддоны деревянные, автопогрузчик)
Транспортировка обожженного кирпича из печи
Горячий воздух на сушку
Воздух
Газ
Обжиг (туннельная печь, 960оС)
Съем с сушильных вагонеток и садка на обжиговые вагонетки
Транспортировка высушенного кирпича из сушила (электропередаточная тележка)
Горячий воздух из туннельной печи
Воздух из цеха
Газ
Укладка кирпича-сырца на сушильные вагонетки
Сушка кирпича-сырца (туннельное сушило)
Брак формования
Транспортировка сушильных вагонеток (электропередаточная тележка)
Отбор кирпича-сырца
Резка кирпича-сырца (струнный резательный автомат)
Описание технологической схемы завода «MACON»
Посетив завод «MACON» и ознакомившись с технологическим производством керамического кирпича, я могу отметить следующие этапы его производства.
Глину добывают на карьере многоковшовым экскаватором и автотранспортом отвозят на хранение в глинозапасник завода. Из глинозапасника глина подается в бункер глинорыхлителя, а после рыхления направляется на дозирование, осуществляемое ящичным питателем.
Песок, также добываемый в карьере, подается в бункер глинорыхлителя,затем они подаются на дозирование, осуществляемое ленточным питателем.
К глине и пескум также могут добавляться и другие компоненты. Такие как зола ,опилки и шамот. Брак обжига из бункера хранения дозируют, подают в щековую дробилку и дробят. Далее измельченный шамот транспортируют ленточным конвейером и элеватором на измельчение в молотковую дробилку. После измельчения в молотковой дробилке шамот просеивают на виброгрохоте. Фракцию с размером частиц более 5 мм отправляют на домол, а фракцию с размером частиц менее 5 мм отправляют на хранение в бункер запаса. Из бункера шамот подается на дозирование, осуществляемое ленточным питателем.
Смешение компонентов (глина, опилки, шамот) осуществляют на ленточном конвейере. Данная смесь поступает в камневыделительные вальцы для удаления каменистых включений, после чего она транспортируется на измельчение и перемешивание в бегуны мокрого помола. Далее шихта поступает на помол в вальцы с гладкими валками.
После помола шихта отправляется на перемешивание с пароувлажнением в глиносмеситель с фильтрующей решёткой, которая служит для удаления из глины остатков растительного происхождения. Переработанную массу отправляют на вылеживание в течение 7-10 дней в шихтозапасник. Здесь происходят различные физико-химические процессы, и свойства формовочной массы меняются. Масса усредняется по влажности, но также происходит её тиксотропное упрочнение. Такую массу нельзя подавать сразу на формование.
Поэтому вылежавшуюся шихту многоковшовыми экскаваторами подают по ленточному конвейеру на промин и измельчение в вальцы тонкого помола. После чего шихта вновь поступает по ленточному конвейеру на перемешивание и пароувлажнение в лопастной двухвальный смеситель.
Готовую шихту транспортируют ленточным конвейером на формование бруса. Для формования используется ленточный вакуумный пресс. Вакуумированию массу подвергают для улучшения ее формовочных свойств. Обезвоздушивание глиняной массы способствует более прочному сцеплению глиняных частиц между собой. При удалении рис. Вакуумный пресс.
воздуха из глиняной массы ее пластичность значительно повышается. После вакуумирования влажность керамической массы снижается на 2-3%, а, следовательно, уменьшается воздушная усадка.
Формованный глиняный брус разрезается на отдельные кирпичи струнным резательным автоматом, затем сырец укладывается на рамки, которые подаются к горизонтальному ленточному конвейеру. Далее укладчик укладывает кирпич-сырец на сушильные вагонетки, транспортировка которых осуществляется с помощью электропередаточной тележки. Свежесформованный сырец транспортируют осторожно во избежание его деформации. Кроме того, стремятся к наиболее рациональной укладке изделий в сушилке.
Кирпич-сырец поступает на сушку в туннельное сушило. Для сушки используется горячий воздух из туннельной печи, атмосферный воздух и рециркулят, а также дымовые газы из топки. После завершения процесса сушки с помощью электропередаточной тележки осуществляется транспортировка высушенного кирпича из сушила. Сушильные вагонетки поступают к перекладчику, который осуществляет садку полуфабриката на обжиговые вагонетки для последующего обжига в печи.
Обжиг проводят в туннельной печи при температуре 960оС. В качестве теплоносителя используются продукты сгорания газа. При обжиге за счет удаления влаги и сближения в результате этого частиц, вследствие фазовых и химических превращений, частичного получения жидкой фазы протекают структурообразующие процессы. Из печи забирается горячий воздух на сушку в туннельное сушило Пакеты кирпича сгружаются с помощью крана на выставочную площадку. Затем производится сортировка кирпича и садка его на европоддоны. Изделия соответствующего качества на рис. Туннельная печь поддонах с помощью электропогрузчика отгружаются потребителю согласно графика, а бой и брак изделий отправляется на переработку в производство.
История завода
Кишиневский комбинат стройматериалов - старейшее предприятие Молдовы. Его история началась в конце XIX века и идет от небольшого кирпично-черепичного завода, располагавшегося на северной окраине Кишинева. За прошедшие 108 лет предприятие пережило несколько этапов в своем развитии и превратилось в многоплановое производство, ориентированное на удовлетворение нужд строительного комплекса и населения страны в строительных материалах.
В настоящее время АО «Макон» является крупнейшим в Молдове производителем строительных и теплоизоляционных материалов, сохранив традиции и высокопрофессиональный коллектив.
АО "Макон" производит: кирпич керамический, блоки из керамзитобетона, плитку тротуарную, архитектурно-строительную керамику, майолику. Основную долю товарооборота составляет производство кирпича. Поэтому этой продукции уделяется особое внимание в плане улучшения качества, выпуска новых видов кирпича, ориентированное на запросы покупателей.
Все годы на рынке строительных материалов предприятие присутствует как крупный поставщик качественной продукции и надежный партнер. Производство ориентируется на маркетинговые прогнозы и запросы рынка, в конкурентной борьбе предприятие определило стратегические цели в основе которых лежит удовлетворение потребности клиента и определяется следующими направлениями:
удовлетворение внутреннего рынка в современных строительных материалах;
повышение эффективности их производства;
развитие мощностей по выпуску конкурентоспособной импортозамещающей продукции;
комплексное использование природного сырья, вторичных ресурсов и отходов промышленности;
обеспечение строительства качественными экологическими современными материалами, отвечающими по ассортименту и номенклатуре платежеспособному спросу различных слоев населения;
организация подготовки и переподготовки специалистов и рабочих всех уровней.
Продукция АО «Макон» пользуется спросом не только во всех регионах Молдовы, но и за рубежом (Румыния, Болгария, Украина).
Проведенный в мае 2003 г. и июне 2004 г. международный аудит подтвердил соответствие системы Управления Качеством на «Макон» стандарту UNI EN ISO 9001:2000.
АО «Макон» дипломант и Лауреат Государственных премий в области Качества Производительности и Конкурентоспособности за 2000, 2002, 2004, 2005, 2007 г.г. В течение 2002, 2003, 2004 г.г. АО «Макон» присуждается звание Лучшего налогоплательщика „Cel mai bun contribuabil».
Участвуя в республиканском конкурсе «Торговая Марка Года», по итогам 2003, 2005, 2006 и 2007 г.г. АО «Макон» награжден Правительственной наградой «Золотой Меркурий», за 2004 г.- «Почетной Медалью».
Продукция завода «MACON»
Кирпич керамический
Основные характеристики кирпича керамического А.О."Макон":
- Прочность на сжатие соответствует марке М-100-125
- Морозостойкость не менее 25 циклов
- Теплопроводность 0,6 Вт/ м К
- Плотность - 1550....1800 кг/см3 Вид кирпича,
Керамзит - это исскуственный пористый материал, получаемый путем термической обработки силикатного сырья (глин, сланцев, суглинков и т.п.). Особенностью керамзита является мелкопористое строение зерен округлой или продолговатой цилиндрической формы с оплавленной (спекшейся) поверхностью.
Структура керамзитовой гранулы в разрезе представляет множество воздушных пор, отгороженных друг от друга тонкими стеночками. Благодоря ячеистому строению и форме зерен с плотной спекшейся корочкой керамзит, несмотря на значительную пористость, характеризуется повышенной прочностью при сравнительно малой насыпной плотности (обьемном весе) материала - свойство, предопределившее его исключительную высокую эффективность.
Керамзитобетон с плотной структурой
Легкий бетон всех классов прочности для легкого стального и предварительно напряженного бетона в общем высотном и инженерном строительстве, готовые детали для крыш и стен в жилом и промышленном строительстве
Изделия из керамзита на основе связующего
Камни и блоки всех форматов, элементы стен, выстой в этаж, каминный кирпич, бетон для заполнения и вырвнивания, прочные уплотняющие и защитные слои.
Засыпки натуральным керамзитовым гравием
Подсыпки фундаментов, полов, утепление крыш новостроек и старых зданий, ремонт. Наполнение для дамб, выравнивание и дренаж в высотных и подземных строениях, для очистки использованных и сточных вод, озеленения крыш, гидрокультур, разрызления почв, и несущих слоев газонов.
Эффективность использования керамзита и керамзитобетона:
* Экологическая безопасность при производстве и эксплуатации.
* Высокая прочность и долговечность.
* Сочетаемость с другими видами материалов.
* Простота и технологичность применения, обеспечивающие экономию на 20-40%.
* Сокращение сроков строительства.
* Снижение общей стоимости строительства зданий при сокращении трудозатрат до 20%, расхода метлалла до 25%, а так же расхода на транспорт.
Керамзитоблоки
Керамзитобетонные блоки "Macon-Ecoterm" изготавливают методом вибропрессования с использованием современной технологии и опыта ведущих европейских производителей. Основной составляющей этого материала служит керамзит - экологически чистый материал.
Технические характеристики
Объёмная плотность - от 700 кг/м3
Прочность на сжатие - 35-50 кг/см3
Коэффициент теплопроводности - 0,16-0,18 Вт/мК0
Морозостойкость - 25 циклов
Водопоглощение - 14,5% |
Тротуарная плитка
Тротуарная плитка и тротуарный бордюр изготавливаются из тяжёлого конструкционного бетона, состоящего из специально подобранной смеси, методом вибропрессования.
Технические характеристики:
- класс по прочности на сжатие В22,5 - В35
- морозостойкость 150 циклов
- водопоглощение - 5%
- истираемость бетона - 0,72 д/см2 |
Товарный бетон, керамзитовая смесь
Керамзитобетон представляет собой затвердевший исскуственный конгломерат, образованный из специально подобранной смеси керамзита , песка, вяжущего и воды. Керамзит составляет основную часть его обьемов 1.
Майолика
Майоликовые изделия АО "Макон" изготавливают из красножгущихся глин и являются экологически чистым и жаропрочным материалом. Каждое изделие, созданное на нашем предприятии в национальном стиле может украсить интерьер и обогатить стиль Вашего офиса, бара, ресторана, квартиры. В ассортименте блюда, наборы для вина, фруктовницы, разная декоративная керамика.
Технология производства керамзита
Сущность технологического процесса производства керамзита состоит в обжиге глиняных гранул по оптимальному режиму. Для вспучивания глиняной гранулы нужно, чтобы активное газовыделение совпало по времени с переходом глины в пиропластическое состояние. Между тем в обычных условиях газообразование при обжиге глин происходит в основном при более низких температурах, чем их пиропластическое размягчение. Например, температура диссоциации карбоната магния -- до 600°С, карбоната кальция -- до 950 °С, дегидратация глинистых минералов происходит в основном при температуре до 800 °С, а выгорание органических примесей еще ранее, реакции восстановления окислов железа развиваются при температуре порядка 900 °С, тогда как в пиропластическое состояние глины переходят при температурах, как правило, выше 1100 °С.
Схема вращающейся печи для производства керамзита:
1--загрузка сырцовых гранул; 2-- вращающаяся печь; 3-- форсунка; 4-- вспученный керамзитовый гравий; 5--поток горячих газов
В связи с этим при обжиге сырцовых гранул в производстве керамзита необходим быстрый подъем температуры, так как при медленном обжиге значительная часть газов выходит из глины до ее размягчения и в результате получаются сравнительно плотные маловспученные гранулы. Но чтобы быстро нагреть гранулу до температуры вспучивания, ее сначала нужно подготовить, т. е. высушить и подогреть. В данном случае интенсифицировать процесс нельзя, так как при слишком быстром нагреве в результате усадочных и температурных деформаций, а также быстрого парообразования гранулы могут потрескаться или разрушиться (взорваться).
Оптимальным считается ступенчатый режим термообработки по С. П. Онацкому: с постепенным нагревом сырцовых гранул до 200--600 °С (в зависимости от особенностей сырья) и последующим быстрым нагревом до температуры вспучивания (примерно 1200 °С).
Обжиг осуществляется во вращающихся печах (рис.), представляющих собой цилиндрические металлические барабаны диаметром до 2,5--5 м и длиной до 40-- 75 м, футерованные изнутри огнеупорным кирпичом. Печи устанавливаются с уклоном примерно 3% и медленно вращаются вокруг своей оси. Благодаря этому сырцовые гранулы, подаваемые в верхний конец печи, при ее вращении, постепенно передвигаются к другому концу барабана, где установлена форсунка для сжигания газообразного или жидкого топлива. Таким образом, вращающаяся печь работает по принципу противотока: сырцовые гранулы перемещаются навстречу потоку горячих газов,подогреваются и, наконец, попав в зону непосредственного воздействия огненного факела форсунки,вспучиваются. Среднее время пребывания гранул в печи -- примерно 45 мин.
Чтобы обеспечить оптимальный режим термообработки, зону вспучивания печи, непосредственно примыкающую к форсунке, иногда отделяют от остальной части (зоны подготовки) кольцевым порогом. Применяют также двухбарабанные печи, в которых зоны подготовки и вспучивания представлены двумя сопряженными барабанами, вращающимися с разными скоростями.
В двухбарабанной печи удается создать оптимальный для каждого вида сырья режим термообработки. Промышленный опыт показал, что при этом улучшается качество керамзита, значительно увеличивается его выход, а также сокращается удельный расход топлива. В связи с тем, что хорошо вспучивающегося глинистого сырья для производства керамзита сравнительно мало, при использовании средне- и слабовспучивающегося сырья необходимо стремиться к оптимизации режима термообработки.
Из зарубежного опыта известно, что для получения заполнителей типа керамзита из сырья (промышленных отходов), отличающегося особой чувствительностью к режиму обжига, используют трехбарабанные вращающиеся печи или три-четыре последовательно располагаемые печи, в которых обеспечиваются не только оптимальные скорость и длительность нагрева на каждом этапе термообработки, но и различная газовая среда.
Значение характера газовой среды в производстве керамзита обусловлено происходящими при обжиге химическими реакциями. В восстановительной среде окись железа Fe2O3 переходит в закись FeO, что является не только одним из источников газообразования, но и важнейшим фактором перехода глины в пиропластическое состояние. Внутри гранул восстановительная среда обеспечивается за счет присутствия органических примесей или добавок, но при окислительной среде в печи (при большом избытке воздуха) органические примеси и добавки могут преждевременно выгореть. Поэтому окислительная газовая среда на стадии термоподготовки, как правило, нежелательна, хотя имеется и другая точка зрения, согласно которой целесообразно получать высокопрочный керамзитовый гравий с невспученной плотной корочкой. Такая корочка толщиной до 3 мм образуется (по предложению Северного филиала ВНИИСТ) при выгорании органических примесей в поверхностном слое гранул, обжигаемых в окислительной среде.
По мнению автора, при производстве керамзита следует стремиться к повышению коэффициента вспучивания сырья, так как невспучивающегося или маловспучивающегося глинистого сырья для получения высокопрочного заполнителя имеется много, а хорошо вспучивающегося не хватает. С этой точки зрения наличие плотной корочки значительной толщины на керамзитовом гравии свидетельствует о недоиспользовании способности сырья к вспучиванию и уменьшении выхода продукции.
В восстановительной среде зоны вспучивания печи может произойти оплавление поверхности гранул, поэтому газовая среда здесь должна быть слабоокислительной. При этом во вспучивающихся гранулах поддерживается восстановительная среда, обеспечивающая пиропластическое состояние массы и газовыделение, а поверхность гранул не оплавляется.
Характер газовой среды косвенно, через окисное или закисное состояние железистых примесей, отражается на цвете керамзита. Красновато-бурая поверхность гранул говорит об окислительной среде (Fe2O3), темно-серая, почти черная окраска в изломе -- о восстановительной (FeO).
Различают четыре основные технологические схемы подготовки сырцовых гранул, или четыре способа производства керамзита: сухой, пластический, порошково-пластический и мокрый.
Сухой способ используют при наличии камнеподобного глинистого сырья (плотные сухие глинистые породы, глинистые сланцы). Он наиболее прост: сырье дробится и направляется во вращающуюся печь. Предварительно необходимо отсеять мелочь и слишком крупные куски, направив последние на дополнительное дробление. Этот способ оправдывает себя, если исходная порода однородна, не содержит вредных включений и характеризуется достаточно высоким коэффициентом вспучивания.
Наибольшее распространение получил пластический способ. Рыхлое глинистое сырье по этому способу перерабатывается в увлажненном состоянии в вальцах, глиномешалках и других агрегатах (как в производстве кирпича). Затем из пластичной глиномассы на дырчатых вальцах или ленточных шнековых прессах формуются сырцовые гранулы в виде цилиндриков, которые при дальнейшей транспортировке или при специальной обработке окатываются, округляются.
Качество сырцовых гранул во многом определяет качество готового керамзита. Поэтому целесообразна тщательная переработка глинистого сырья и формование плотных гранул одинакового размера. Размер гранул задается исходя из требуемой крупности керамзитового гравия и установленного для данного сырья коэффициента вспучивания.
Гранулы с влажностью примерно 20% могут сразу направляться во вращающуюся печь или, что выгоднее, предварительно подсушиваться в сушильных барабанах, в других теплообменных устройствах с использованием тепла отходящих дымовых газов вращающейся печи. При подаче в печь подсушенных гранул ее производительность может быть повышена.
Таким образом, производство керамзита по пластическому способу сложнее, чем по сухому, более энергоемко, требует значительных капиталовложений, но, с другой стороны, переработка глинистого сырья с разрушением его естественной структуры, усреднение, гомогенизация, а также возможность улучшения его добавками позволяют увеличить коэффициент вспучивания.
Порошково-пластический способ отличается от пластического тем, что вначале помолом сухого глинистого сырья получают порошок, а потом из этого порошка при добавлении воды получают пластичную глиномассу, из которой формуют гранулы, как описано выше. Необходимость помола связана с дополнительными затратами. Кроме того, если сырье недостаточно сухое, требуется его сушка перед помолом. Но в ряде случаев этот способ подготовки сырья целесообразен: если сырье неоднородно по составу, то в порошкообразном состоянии его легче перемешать и гомогенизировать; если требуется вводить добавки, то при помоле их легче равномерно распределить; если в сырье есть вредные включения зерен известняка, гипса, то в размолотом и распределенном по всему объему состоянии они уже не опасны; если такая тщательная переработка сырья приводит к улучшению вспучивания, то повышенный выход керамзита и его более высокое качество оправдывают произведенные затраты.
Мокрый (шликерный) способ заключается в разведении глины в воде в специальных больших емкостях -- глиноболтушках. Влажность получаемой пульпы (шликера, шлама) примерно 50%. Пульпа насосами подается в шламбассейны и оттуда -- во вращающиеся печи. В этом случае в части вращающейся печи устраивается завеса из подвешенных цепей. Цепи служат теплообменником: они нагреваются уходящими из печи газами и подсушивают пульпу, затем разбивают подсыхающую «кашу» на гранулы, которые окатываются, окончательно высыхают, нагреваются и вспучиваются. Недостаток этого способа -- повышенный расход топлива, связанный с большой начальной влажностью шликера. Преимуществами являются достижение однородности сырьевой пульпы, возможность и простота введения и тщательного распределения добавок, простота удаления из сырья каменистых включений и зерен известняка. Этот способ рекомендуется при высокой карьерной влажности глины, когда она выше формовочной (при пластическом формовании гранул). Он может быть применен также в сочетании с гидромеханизированной добычей глины и подачей ее на завод в виде пульпы по трубам вместо применяемой сейчас разработки экскаваторами с перевозкой автотранспортом.
Керамзит, получаемый по любому из описанных выше способов, после обжига необходимо охладить. Установлено, что от скорости охлаждения зависят прочностные свойства керамзита. При слишком быстром охлаждении керамзита его зерна могут растрескаться или же в них сохранятся остаточные напряжения, которые могут проявиться в бетоне. С другой стороны, и при слишком медленном охлаждении керамзита сразу после вспучивания возможно снижение его качества из-за смятия размягченных гранул, а также в связи с окислительными процессами, в результате которых FeO переходит в Fe2O3, что сопровождается деструкцией и снижением прочности.
Сразу после вспучивания желательно быстрое охлаждение керамзита до температуры 800--900 °С для закрепления структуры и предотвращения окисления закисного железа. Затем рекомендуется медленное охлаждение до температуры 600--700 °С в течение 20 мин для обеспечений затвердевания стеклофазы без больших термических напряжений, а также формирования в ней кристаллических минералов, повышающих прочность керамзита. Далее возможно сравнительно быстрое охлаждение керамзита в течение нескольких минут.
Первый этап охлаждения керамзита осуществляется еще в пределах вращающейся печи поступающим в нее воздухом. Затем керамзит охлаждается воздухом в барабанных, слоевых холодильниках, аэрожелобах.
Для фракционирования керамзитового гравия используют грохоты, преимущественно барабанные -- цилиндрические или многогранные (бураты).
Внутризаводской транспорт керамзита -- конвейерный (ленточные транспортеры), иногда пневматический (потоком воздуха по трубам). При пневмотранспорте возможно повреждение поверхности гранул и их дробление. Поэтому этот удобный и во многих отношениях эффективный вид транспорта керамзита не получил широкого распространения.
Фракционированный керамзит поступает на склад готовой продукции бункерного или силосного типа.
Заключение
При производстве керамического кирпича используется метод полусухого прессования и метод пластического формования, каждый из которых имеет свои достоинства и недостатки. При наличии рыхлых глин и глин средней плотности с влажностью не свыше 23-25% применяют пластический способ переработки глин; для слишком плотных глин, плохо поддающихся увлажнению и обработке с низкой карьерной влажностью (менее 14-16%) - полусухой способ переработки. Метод полусухого прессования предусматривает предварительное высушивание сырья, последующее измельчение его в порошок, прессование сырца в пресс-формах при удельных давлениях, в десятки раз превышающих давление прессование на ленточных прессах.
Преимущества технологии полусухого прессования заключается в том, что спрессованный кирпич-сырец укладывается непосредственно на печные вагонетки и на них высушивается в туннельных сушилках, или же, минуя предварительную досушку, непосредственно поступает на обжиг. Комплексная механизация производства осуществляется проще, чем при методе пластического формования.
Технологическая схема производства изделий с пластическим способом подготовки массы, несмотря на свою сложность и длительность, наиболее распространена в промышленности стеновой керамики. Метод формования из пластических масс исторически сложился на основе пластических свойств глин и широко используется в керамической технологии. Способ пластического формования позволяет выпускать изделия в широком ассортименте, более крупных размеров, сложной формы и большей пустотности. В отдельных случаях предел прочности при изгибе и морозостойкость таких изделий выше, чем у изделий, полученных способом полусухого прессования из того же сырья. При переработке глин в сыром виде схема подготовки сырья несколько проще и экономичней, поскольку нужно меньше перерабатывающего оборудования, следовательно, меньше энергоемкость. Все оборудование более надежно и просто в обслуживании. Температура обжига изделий примерно на 500С ниже, чем у изделий полусухого прессования, что позволяет также снизить энергозатраты на обжиг и в какой-то мере компенсируют высокие затраты на сушку.
Недостатком способа пластического формования является большая длительность технологического цикла за счет процесса сушки сырца, продолжающегося от 1 до 3 суток. Низкая прочность формованного сырца, особенно пустотелого, большая усадка материала при сушке и наличие отдельного процесса сушки затрудняет возможность механизации трудоемких операций при садке сырца на сушку, перекладке высушенного сырца для обжига и совмещения в одном агрегате процессов сушки и обжига.
Из всего вышесказанного можно сделать вывод: В современных условиях производство строительных материалов является одним из важнейших направлений нашей отечественной промышленности. Это объясняется ежегодно повышающимися темпами строительства и дефицитом высококачественных стройматериалов. Недостатки, низкое качество и дороговизна многих стройматериалов, заставляют искать более совершенные и инновационные методы их производства.
строительный керамика кирпич керамзит
Размещено на Allbest.ru
Подобные документы
Характеристика основных видов сырья. Ассортимент и требования к выпускаемой продукции. Выбор способа производства кирпича. Технологическая линия производства лицевого керамического кирпича полусухого прессования. Тепловой баланс зон подогрева и обжига.
курсовая работа [116,9 K], добавлен 20.11.2009Описание свойств керамического кирпича. Характеристика сырья для производства керамического кирпича на базе месторождений пластичной глины с нанесением ангоба. Материальный баланс технологического комплекса по производству керамического кирпича.
курсовая работа [803,9 K], добавлен 12.02.2011Технологический процесс производства керамического кирпича. Механизация процессов вскрыши карьера и добычи глины. Формовка сырца, процесс сушки, обжиг кирпича. Применение туннельной печи для обжига кирпича. Внедрение автоматизированной системы управления.
презентация [5,5 M], добавлен 29.03.2016Технические характеристики керамического кирпича, области его применения, конкурентные преимущества и анализ рынка. Потенциальные риски и пути их минимизации. Организационный, производственный и маркетинговый планы, финансово-экономическое обоснование.
дипломная работа [350,1 K], добавлен 18.03.2010Определение сопротивления теплопередаче теплоэффективного трехслойного блока. Расчет коэффициента теплопроводности кирпича керамического (полнотелого и пустотелого) и кирпича керамического одинарного. Особенности использования пирометра Testo 830-T1.
дипломная работа [800,8 K], добавлен 09.11.2016Эффективное применение кирпичной кладки в строительстве. "Проветривание" комбинированных стен. Теплоэффективные ограждающие конструкции жилых и гражданских зданий. Физические основы нормирования теплотехнических свойств керамического кирпича и камня.
курсовая работа [423,5 K], добавлен 04.02.2012Описание продукции и области её применения. Классификация лицевых керамических кирпичей. Сырьевые материалы для производства керамических кирпичей, предъявляемые требования. Технологическая схема производственного процесса, контроль качества и испытания.
курсовая работа [183,4 K], добавлен 28.01.2011Описание и область использования продукции, сырьевые материалы. Керамика — изделия из неорганических, неметаллических материалов и их смесей с минеральными добавками. Производство керамического кирпича пластического формования с щелевидными пустотами.
реферат [31,9 K], добавлен 16.11.2011Керамическими изделия и материалы, получаемые из глиняных масс или из смесей с минеральными добавками путем формования и обжига. Виды керамического кирпича, классификация. Добавки природного происхождения: кварциты, магнезиты, хромистые железняки.
презентация [29,8 M], добавлен 06.04.2014Технологическая схема производства силикатного кирпича. Расчет удельного расхода сырьевых материалов. Процентное содержание пустот в кирпиче. Расчет потребности воды на изготовление силикатной смеси. Формование и автоклавирование силикатного камня.
курсовая работа [619,6 K], добавлен 09.01.2013