Усиление фундаментов объектов культурного наследия

Изучение порядка проведения инженерно-геологических изысканий при обследовании существующих фундаментов. Описание традиционной конструкции фундаментов зданий и сооружений старой постройки. Изучение традиционных и современных способов усиления фундаментов.

Рубрика Строительство и архитектура
Вид курсовая работа
Язык русский
Дата добавления 21.09.2012
Размер файла 850,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

КУРСОВАЯ РАБОТА

на тему: «Усиление фундаментов объектов культурного наследия»

Выполнил: студент гр. 7ПЗ 501

Степанов Т.Н.

Проверила: Сайфуллина Л.Ш.

Казань 2012

Содержание

Введение

1. Инженерно-геологические изыскания, обследование существующих фундаментов

2. Традиционные конструкции фундаментов зданий и сооружений старой постройки

3. Традиционные способы усиления фундаментов

4. Современные методы усиления фундаментов

Заключение

Литература

Введение

конструкция фундамент здание старая постройка

При проведении реконструкции, ремонтных работ и реставрации зданий и сооружений старой постройки, действующих предприятий и производств, одной из главных задач, стоящих перед строителями, является определение состояния существующих несущих конструкций, способность их воспринимать действующие и дополнительные, возникающие в ходе реконструкции нагрузки и, в конечном счете, выбор, в случае необходимости, способа их усиления.

В процессе эксплуатации зданий и сооружений, во многих случаях, происходят деформации несущих конструкций, вызываемые различными причинами. Одной из наиболее распространенных причин деформаций являются неравномерные осадки, которые, в свою очередь, вызывают деформации и разрушения несущих конструкций - стен, колонн, перекрытий, сводов, перемычек оконных и дверных проемов и др. Неравномерные осадки зданий и сооружений могут быть вызваны многими факторами. В связи с этим одной из основных проблем, решаемых при реконструкции зданий является выбор рационального метода усиления оснований и фундаментов.

Наряду с известными методами усиления несущих конструкций и, прежде всего, оснований и фундаментов существующих зданий и сооружений такими, как перекладка существующих и подведение новых фундаментов, устройство обойм для укрепления кладки фундаментов и уменьшения удельных давлений от сооружений на грунты основания, устройство вблизи существующих различных по конструкциям свайных фундаментов с передачей на них нагрузок от сооружений, применение различных методов химического закрепления грунтов основания и т.п.(1,2),все в больших объемах применяются инъекционные методы усиления, в том числе укрепительная цементации грунтов основания и фундаментов и буроинъекционные сваи. Для усиления надземных несущих конструкций - стен, колонн, перекрытий и др. - применяется инъекция кладки, в том числе с армированием, устройство инъекционных анкеров, инъекция кладки сводов перекрытий в сочетании с устройством тонкостенных железобетонных оболочек и другие способы усиления.

1. Инженерно-геологические изыскания, обследование существующих фундаментов

Решению вопроса о необходимости выполнения усиления фундаментов и выборе способа усиления должны предшествовать инженерно-геологические изыскания и обследование конструкций существующих фундаментов.

При проведении инженерно-геологических изысканий исследуют свойства грунтов основания непосредственно в пределах глубины заложения фундаментов и под их подошвой, а также на глубину сжимаемой толщи. Количество геологических выработок, скважин и шурфов, назначают в зависимости от размеров сооружения в плане, его типа, этажности, материала, протяженности и количества несущих стен и отдельно стоящих опор, наличия подвалов и подземных коммуникаций, сложности рельефа площадки, характера окружающей застройки, наличия архивных сведений о данном сооружении и проводившихся на площадке в предшествующие годы инженерно-геологических изысканиях. В общем случае количество разведочных скважин должно быть не менее трех, количество шурфов - не менее пяти, закладываемых в местах, наиболее характерных для определения конструкций обследуемых фундаментов и приуроченных к наиболее выраженным деформациям конструкций.

Целью инженерно-геологических изысканий является определение физико-механических и деформативных характеристик грунтов основания, а также определение положения уровня подземных вод, в том числе, с учетом его сезонных колебаний и химического состава для уточнения характера и степени агрессивности по отношению к материалу фундаментов.

Обследование фундаментов включает выявление конструкции, определение геометрических размеров и формы, характера и материала кладки фундаментов, а также механической прочности материала кладки и связующего раствора, определение наличия, типа и материала гидроизоляции - горизонтальной и вертикальной. Подлежит расчету и величина фактического давления сооружения в отдельных его частях и в целом на грунты основания /5,9/.

В России, несмотря на довольно большой опыт, до настоящего времени не существует норм и правил по проектированию фундаментов при реконструкции и реставрации зданий и сооружений. Нет также документов, регламентирующих объем и характер изысканий, выполняемых в комплексе работ по обследованию эксплуатируемых зданий и сооружений.

Фактическое давление на грунты основания, уплотнившиеся под воздействием длительной нагрузки от здания рассчитывали по допускаемому давлению, принимаемому для нового строительства, с повышающими коэффициентами 1.1-1.5, в зависимости от вида грунта. Давление под подошвой фундаментов для всех случаев реконструкции разрешалось увеличивать до значений, превышающих допустимое по нормам нового строительства на 40%, но лишь в том случае, если в несущих конструкциях реконструируемого здания отсутствуют трещины от неравномерных осадок. СниП II-Б.I-62* разрешалось повышать допускаемое давление на грунты под существующими фундаментами, при их достаточной прочности, до 20%. Для предварительных расчетов, новое допускаемое давление на уплотненные грунты основания R" рекомендовалось определять по формуле

R = k.R ,

где R" - нормативное сопротивление грунта основания, определяемое для нового строительства

k - коэффициент увеличения сопротивления грунта, зависящий от соотношения p/R ;

р - фактическое давление на грунты основания до реконструкции, МПа

Значения коэффициента "k"

p/Rn

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 

1.5

1.45

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.05

Коэффициент "k" применим при следующих условиях:

- срок службы реконструируемого здания не менее 3 лет для песчаных грунтов, 5 лет для суглинков и супесей, 8 лет для глин;

- здание не должно иметь трещин, деформаций и прочих свидетельств неравномерных осадок;

Если фактическое давление р оказывается больше R , то необходимо увеличение площади подошвы фундаментов, дополнительное заглубление или другой вид усиления фундаментов или искусственное улучшение строительных свойств грунтов основания. Введение повышающего коэффициента к величине допускаемого давления исходя только из срока службы здания и фактического давления на грунты основания тем не менее не решают полностью проблему дальнейшей безопасности эксплуатации зданий, так как при этом не учитываются возможные деформации. Кроме того, не принимаются в расчет предельно допустимые для данного сооружения осадки и его способность противодействовать развитию неравномерных осадок /1,2/.

При этом следует иметь в виду, что наряду с решением многих задач, связанных с усилением фундаментов, правильному решению проблемы в значительной степени способствует выявление конструктивной схемы здания и определение действующих в уровне фундаментов нагрузок.

В конечном счете, решение вопроса о возможности передачи дополнительных нагрузок на существующие фундаменты и грунты основания, а также необходимость их усиления остается за проектировщиком и зависит от его опыта и интуиции.

2. Традиционные конструкции фундаментов зданий и сооружений старой постройки

В течение многих столетий и до начала ХХ века конструкции фундаментов зданий и сооружений различного назначения почти не претерпели существенных изменений. Как правило, это были бутовые, валунные и кирпичные ленточные и столбчатые фундаменты, кладка которых осуществлялась в траншеях или котлованах с использованием для скрепления отдельных элементов конструкции известковых растворов различного состава. В ряде случаев применялись глиносодержащие растворы, играющие одновременно роль горизонтальной гидроизоляции, а иногда кладка фундаментов, в основном в подошвенной их части, выполнялась из валунов или блоков рваного естественного камня насухо, без скрепляющего раствора.

До ХХ столетия здания возводились без сколько-нибудь серьезного изучения свойств грунтов основания ниже глубины заложения фундаментов. Неполными были также сведения о грунтовых водах, их свойствах и колебаниях уровней. Лишь в конце ХIХ, начале ХХ в.в. произошло становление как науки механики грунтов и грунтоведения.

Как правило, основанием зданий старой постройки служили естественные грунты, без какой-либо их обработки. Во многих случаях основанием фундаментов зданий, особенно в городской застройке, служили насыпные грунты культурного слоя или насыпные грунты, использованные для выравнивания площадки застройки, засыпки колодцев, ям, оврагов и других неровностей рельефа.

При высоком уровне подземных вод или заведомо слабых грунтах основания применялись свайные фундаменты. Чаще всего это были короткие, клиновидной формы сваи из хвойных и лиственных пород древесины диам. 100-150 мм, грубо обработанные и даже неошкуренные, забивавшиеся по всей по всей площади подошвы фундамента и за ее пределами с целью уплотнения грунтов основания. Примером такого типа фундаментов могут служить фундаменты звонницы московского Кремля, Успенского собора в г.Дмитрове и многих других памятников архитектуры ХVI-XVIII в.в.

Вместе с тем применялись и свайные фундаменты, которые по характеру работы в грунте соответствуют современному пониманию свайных фундаментов. Это сваи длиной до нескольких метров, изготавливавшиеся из цельных стволов деревьев твердых пород, например дуба, диаметром до 250-300 мм, забивавшиеся в пределах площади опирания фундаментов, как в виде лент, так и кустов под ленточные и отдельно стоящие фундаменты. По сваям обычно устраивался деревянный ростверк из лежней бревенчатых или досчатых, располагаемых как вдоль, так и поперек направления фундаментной ленты, на которых затем выполнялась кладка фундаментов. Примерами таких конструкций могут служить фундаменты мостов, крепостных и монастырских стен, массивных каменных сооружений - колоколен, соборов и т.п. Эффективность таких фундаментов определялась положением уровня подземных вод, так как известно, что находящаяся ниже уровня воды древесина может сохраняться веками, тогда как в зоне переменного уровня воды разрушение ее идет весьма интенсивно. Этим обстоятельством объясняется наличие значительных деформаций и неравномерных осадок зданий старой постройки.

Кладка фундаментов выполнялась, главным образом, из бута, валунного камня или крупных блоков и плит естественного камня. Устраивались они в виде столбов или лент с различной площадью поперечного сечения, симметричной и несимметричной, сплошными или, с целью экономии материала, с разгрузочными арками по длине ленты.

С начала ХХ века с развитием техники и изобретением новых строительных материалов в качестве материала фундаментов стали применять хорошо обожженный кирпич и естественный камень на цемента содержащих растворах, бутобетон из бетонной массы с заполнением ее камнем средних размеров и монолитный бетон /3,4/.

На рис.1 представлены наиболее характерные типы фундаментов традиционных конструкций зданий старой постройки: бутовые фундаменты, в том числе с использованием лежней и деревянных свай /рис.1а-е/, ступенчатой формы с расширением к нижней части при угле не менее 60 . Бутобетонные и бетонные фундаменты имеют примерно такую же форму и габариты. При наличии в зданиях подвальных помещений их лицевые поверхности выполнялись из обработанных блоков естественного камня, уложенного в перевязку или заанкеренных в кладку фундаментов.

Рис.1

При проведении обследования состояния зданий старой постройки во многих случаях наблюдаются различные дефекты и разрушения в кладке фундаментов, связанные с деформациями основания и, прежде всего, с неравномерными осадками, влияние которых сказывается на состоянии здания в целом /11,12/.

Причины таких деформаций многообразны, и в частности: погрешность в оценке несущей способности грунтов основания вследствие ошибочной интерпретации данных при определении свойств грунтов, особенно таких как просадочные, пучинистые, набухающие и др.; просчеты в выборе конструкции фундаментов, их размеров и глубины заложения; отсутствие деформационных швов на стыках разнонагруженных частей зданий; изменение прочностных характеристик грунтов вследствие изменения их влажности, например, при отсутствии или нарушениях вертикальной планировки, нарушении поверхностного водоотвода и дренажных систем; разрушения кладки фундаментов под воздействием агрессивных грунтовых вод; гниение деревянных конструкций фундаментов при изменении положения или колебаниях уровня подземных вод; увеличение нагрузок на фундаменты в здании в целом или в отдельных его частях за счет надстроек и перестроек; систематическая откачка вод из подвальных помещений, вызывающая ослабление грунтов основания при их суффозии; устройство различных раскопов рядом с существующим зданием; понижение пола подвального помещения; использование некачественного материала при устройстве фундаментов; воздействие природных и климатических факторов, например многократного замораживания и размораживания переувлажненной кладки фундаментов в пределах глубины промерзания и многих других причин и их сочетаний /10,12/.

По данным МосжилНИИпроекта износ фундаментов зданий идет интенсивно в первые 20-30 лет эксплуатации и затем после 90-100 лет службы здания. Вместе с тем, в последнее время отмечается увеличение интенсивности разрушения конструкций фундаментов старых зданий, которое связывается с увеличением динамического воздействия за счет интенсификации движения транспорта, вибрации механизмов и ударных нагрузок промышленного оборудования, строительства рядом с существующими зданиями новых с использованием забивки свай или шпунта, строительства подземных сооружений метрополитена и прокладки городских коммуникаций, резкого возрастания степени агрессивности подземных вод /1,3/.

Таким образом, при выборе способа усиления фундаментов существующего здания должно быть учтено все многообразие факторов, влияющих на их состояние и выбран такой способ усиления, который смог бы нейтрализовать или свести к минимуму воздействие неблагоприятных факторов и способствовать надежной и длительной эксплуатации реконструируемого или реставрируемого здания или сооружения.

3. Традиционные способы усиления фундаментов

Усиление фундаментов существующих зданий применяется так же давно, как и само строительство. Методы и способы усиления до середины текущего столетия были столь же традиционны, как и конструкции фундаментов. Изменения происходили лишь в части применяемых материалов и преследовали главную цель - наряду с восстановлением прочности кладки, увеличение площади опирания существующих фундаментов, снижение удельных величин давления от сооружения на грунт и уменьшение величин осадок.

Чаще всего такое усиление включает полную или частичную замену разрушенной кладки фундаментов, а также увеличение площади его опирания путем прикладки обойм или банкетов к телу существующего фундамента, а также устройство дополнительных фундаментов или опор рядом с существующими. Для лучшей связи с существующими фундаментами прикладка осуществляется "вперевязку" со старой кладкой. Опирание прикладок на грунты основания могло быть осуществлено на разных уровнях относительно подошвы усиляемого фундамента, выше ее, на одном уровне, а нередко, при низком уровне грунтовых вод и ниже подошвы существующих фундаментов. Как правило, прикладки выполнялись из естественного камня, аналогично материалу усиляемого фундамента. Прикладки могли также опираться на забитые рядом с существующим фундаментом деревянные сваи.

В конце XIX в., с внедрением в строительную практику цемента, обоймы и банкеты начали выполнять из бутобетона, бетона и затем железобетона, в основном монолитными, но в последние годы, иногда, и сборно-монолитными. Кроме обойм и банкетов применяется также введение ниже подошвы усиляемых фундаментов железобетонных плит и балок (лежней).

На рис.2 представлены наиболее распостраненные традиционные конструкции усиления фундаментов.

Рис.2

Рис.2 (а-в) иллюстрирует устройство расширяющих обойм, рис.2г - применение банкетов, с предварительным обжатием грунта под подошвой уширяющей части. В ряде случаев увеличение площади опирания фундаментов может быть достигнуто подводкой монолитных железобетонных плит различных конструкций под всей или частью площади здания.

 Все рассмотренные выше способы усиления фундаментов применяются достаточно широко до настоящего времени, особенно в реставрационной практике, несмотря на ряд существенных отрицательных моментов, связанных с низкой эффективностью такого усиления и производством работ при его реализации. К таким моментам можно отнести большой объем земляных работ по откопке усиляемых фундаментов, часто выполняемых вручную, причем, во избежание развития дополнительных деформаций усиляемых зданий, эти работы должны выполняться захватками определенной длины. Бетонирование обойм, банкетов и подводка лежней под подошву усиляемого фундамента также выполняется вручную; необходимость предварительного обжатия грунтов основания под уширяющими элементами для включения их в работу фундамента, что, как правило, в силу как объективных, так и субъективных причин,качественно выполнить не представляется возможным; невозможность выполнить усиление этими способами при высоком уровне подземных вод, сезонные ограничения производства работ, позволяющие их проведение только при общих положительных температурах наружного воздуха, и, наконец, необходимость изменения конструкций существующих фундаментов и их внешнего вида при усилении, что недопустимо при реставрации памятников архитектуры, так как фундаменты являются их неотъемлемым элементом и также могут рассматриваться как памятники инженерного искусства. Перечисленные недостатки рассмотренных способов усиления фундаментов практически сводят к минимуму возможный положительный эффект их применения. При современном подходе к решению проблемы увеличения несущей способности фундаментов реконструируемых и реставрируемых зданий старой постройки эти методы, за редким исключением, являются анахронизмом, который может быть объяснен лишь отсутствием необходимой техники и оборудования для применения современных способов и конструкций усиления, получивших широкое распостранение в мировой практике /9,10,13/.

4. Современные методы усиления фундаментов

В практике реконструкции и реставрации в настоящее время находят применение как методы усиления фундаментов, базирующиеся на традиционных, так и принципиально новые, разработанные в течение последних 50 лет. Все эти методы рассчитаны на высокую степень механизации работ, при сведении к минимуму ручного труда, и новые технологии. Далее рассмотрены некоторые из многочисленных способов усиления.

На рис.3 представлены способы усиления фундаментов, представляющие собой развитие традиционных схем, с применением современных материалов и технологий.

Рис.3

На рис.3а показано увеличение площади опирания усиляемых фундаментов с помощью обойм по методу Н.И. Страбахина. Он заключается в установке с обеих сторон усиляемого фундамента сборных железобетонных блоков, нижняя часть которых стянута анкерами, пропущенными через существующий фундамент и блоки усиления. В верхней части блоки разжимают забивными клиньями или домкратами, в результате чего блоки, поворачиваясь вокруг нижней точки, в уровне закрепления анкеров, обжимают грунт под подошвой блоков. После обжатия грунтов основания щели между существующим фундаментов и блоками усиления заполняют бетонной смесью. Рассмотренный способ имеет присущие традиционным способам усиления недостатки, требует выполнения значительного объема земляных работ и ручного труда, однако более надежен, так как позволяет выполнить обжатие грунтов основания под подошвой уширяемой части фундаментов и тем самым способствовать включению их в работу уже в процессе выполнения усиления.

На рис.3б,в представлены способы увеличения площади опирания существующих фундаментов. Их применение позволяет свести к минимуму земляные работы, которые сводятся к устройству песчано-гравийной подушки толщиной 40-60см, отсыпаемой с уплотнением взамен насыпных грунтов в пределах площади уширяющих элементов. Суть способа состоит в устройстве в уровне отметки земли, пола I-го этажа или подвала консольной железобетонной конструкции, заанкеренной в кладку несущей стены здания и позволяющей увеличить площадь опирания фундаментов, воспринимающего нагрузку от существующего здания. Применение рассматриваемого способа позволяет совмещать конструкцию усиления с отмостками здания, полами I-го этажа или подвала. Элементы конструкции усиления выполняются в монолитном, сборно-монолитном и сборном железобетоне с армированием жесткой арматурой. В ряде случаев, при значительном вылете консоли конструкции усиления, целесообразно ее применение в сочетании с предварительно напряженным анкером, заделываемым в тело существующего фундамента /рис.3в/. Отверстия для анкерования конструкций усиления в несущие стены, опоры и фундаменты реконструируемого здания выполняются буровым способом с использованием стандартного бурового оборудования. Производство работ ведется с применением различных механизмом, ручной труд используется минимально. Рассмотренные способы предложены автором /6/.

Аналогичным образом решается задача увеличения площади опирания фундаментов существующего здания с помощью фундаментных плит по способу ЦНИИСК им.Кучеренко /рис.3г/,(1). Сборные железобетонные плиты дополнительного фундамента укладывают на уплотненную щебеночную подготовку. Плиты располагаются рядами в виде лент, уложенных в направлении продольной оси здания. По ним выполняют монолитную железобетонную конструкцию нажимных рам, которые состоят из нижних горизонтальных ригелей сечением 40х60см и наклонных стоек-упоров такого же сечения. Рамы передают усилия на пояса-обвязки поперечных стен, устраиваемые в их кладке. Для образования замкнутого контура нажимных рам, над ними, в плоскости перекрытия, выполняют монолитные железобетонные участки в виде полос шириной 60см и высотой, равной толщине плит перекрытий.

Другая группа методов служит для усиления конструкций существующих фундаментов без изменения их геометрических размеров при достаточной несущей способности грунтов основания. К ним относится, в частности, метод укрепительной цементации /рис.4а/. При неудовлетворительном состоянии материала фундаментов /наличие механических повреждений, осадочных трещин, расслоения и разрушения кладки в результате размораживания и т.п./, целесообразно выполнять их укрепление следующим образом. В теле фундамента разбуриваются или пробиваются отверстия для установки инъекторов диаметром 25-30мм. Шаг таких отверстий по длине ленточного фундамента определяют эмпирически и, как правило, он равен 50-100см. В отверстие вводят инъектор, через который под давлением 0.2-0.6МПа нагнетают жидкий цементный раствор, заполняющий объем пустот и неплотностей в кладке фундамента в радиусе 0.6-1.2м вокруг инъектора.

Укрепительная цементация выполняется с использованием различных технологий, специального оборудования, оснастки и т.п.

Метод укрепительной цементации часто применяют в сочетании с торкретированием поверхности усиляемого фундамента, в том числе, по металлической сетке. Слой торкретбетона защищает боковую поверхность усиляемого фундамента от неблагоприятного воздействия подземных вод и служит в качестве вертикальной гидроизоляции /1,5/.

В ряде случаев, по подобной технологии выполняют усиление конструкций существующих фундаментов с помощью силикатизации, смолизации, битумизации и инъекции в них других химических составов, часто с одновременным усилением этими способами грунтов основания.

Когда несущая способность грунтов основания недостаточна, а реконструируемое здание получило деформации за счет значительных по величине неравномерных и часто нестабилизировавшихся осадок, а также при наличии высокого уровня подземных вод, затрудняющих выполнение уширения или дополнительного заглубления фундаментов, целесообразно проводить усиление фундаментов конструкциями, позволяющими передавать нагрузку от сооружения на расположенные ниже подошвы фундаментов плотные, малосжимаемые грунты основания. Такими конструкциями могут служить свайные фундаменты. В практике реконструкции и реставрации находят применение сваи разных типов, при выборе которых в каждом конкретном случае определяющим является состояние и вид усиляемого сооружения, наличие специального оборудования для устройства свай и, наконец, опыт и "традиции" организаций, выполняющих работы /8,9/.

Усиление существующих фундаментов с помощью свай осуществляется по различным схемам. На рис.4в приведен способ усиления "выносными сваями", располагаемыми с одной или двух сторон усиляемого фундамента. Чаще всего это буронабивные и набивные сваи. Технология устройства таких свай включает бурение тем или иным способом вертикальных скважин с защитой их стенок от обрушения обсадными трубами, извлечение из скважины разрабатываемого грунта и последующее заполнение готовой скважины бетонной смесью и армированием ее. В зависимости от типа свай последовательность выполнения технологических операций может быть иной /8,13/. В качестве свай усиления применяют различные типы свай, включая буронабивные сваи большого диаметра типа "Беното", сваи Страуса, винтонабивные, пневмонабивные и другие /7/.

Другим, достаточно широко используемым при усилении существующих фундаментов,типом свайных конструкций являются задавливаемые сваи. На рис.4б представлена схема производства работ при задавливании свай. Технология работ по задавливанию свай описана в соответствующей технической литературе /2,3/.

Обычно сваи усиления располагают с двух сторон усиляемого фундамента и передают на них нагрузку от сооружения через поперечные балки, устанавливаемые в пробиваемые в фундаменте (рис.4в), но в случае отсутствия доступа для оборудования с одной из сторон фундамента, они могут быть выполнены и с одной (наружной) стороны здания в два ряда с консольной поперечной балкой. При этом сваи первого от усиляемого фундамента ряда воспринимают вдавливающую нагрузку от веса здания, а сваи второго ряда - выдергивающую.

При всех достоинствах способов усиления существующих фундаментов сваями, они обладают рядом существенных недостатков. Общими из них являются необходимость выполнения большого объема земляных работ, связанных с обнажением усиляемых фундаментов до подошвы, а часто, и ниже ее на время работ, что само по себе достаточно рисковано, большая трудоемкость, необходимость частичного разрушения существующих фундаментов, неуниверсальность применения по грунтовым условиям, высокая стоимость работ и большие затраты времени, в том числе на предварительные работы.

Этих недостатков в значительной мере лишены нашедшие широкое применение в России и зарубежом методы "струи" и буроинъекционных или "корневидных" свай (рис.4г,д;5а,б).

Заключение

Усиление инъекционными методами имеет по сравнению с другими известными методами, применяемыми при реставрации и реконструкции существующих зданий и сооружений ряд преимуществ, в том числе:

1.Возможность выполнения усиления без нарушения внешнего вида и конструктивных особенностей здания, что особенно актуально при реставрации памятников архитектуры и, в частности их фундаментов, могущих представлять собой особый интерес как памятник инженерного искусства.

2.Возможность выполнения усиления грунтов основания и фундаментов в сочетании с увеличением полезного объема здания за счет устройства под ним дополнительных подвальных помещений, что особенно важно при реконструкции районов старинной застройки, где по условиям охраны памятников архитектуры невозможна надстройка зданий, а увеличение их эксплуатируемой площади возможно лишь за счет освоения подземного пространства.

3.Возможность ведения работ по усилению оснований и подземных конструкций из подвалов зданий, а надземных- с перекрытий, лесов и верха стен зданий.

4.Возможность проведения усиления практически в любых грунтовых условиях.

5.Возможность проведения усиления грунтов основания и фундаментов без прекращения или остановки выполнения других работ по реставрации или реконструкции объекта.

6.Высокая надежность инъекционных методов в сочетании с возможностью применения современных эффективных методов контроля качества работ.

7.Высокая экономическая эффективность инъекционных методов усиления, низкий расход материалов на единицу воспринимаемой нагрузки, минимальные объемы земляных работ и затраты ручного труда (5,6,7,8).

Литература

1. П.А.Коновалов "Основания и фундаменты реконструируемых зданий", М., Стройиздат,1988.

2. Э.М.Гендель "Инженерные работы при реставрации памятников архитектуры", М., Стройиздат,1980.

3. В.К.Соколов "Реконструкция жилых зданий", М., Стройиздат,1986.

4. В.Н. Кутуков "Реконструкция зданий", М.,"Высшая школа",1981.

5. "Рекомендации по применению буроинъекционных свай", М., НИИОСП,1984.

6. "Методические рекомендации по проектированию и производству работ при усилении оснований и фундаментов памятников истории и культуры", М.,"Росреставрация",1984.

7. "Основания и фундаменты". Справочник строителя под ред. М.И. Смородинова, М., Стройиздат,1983.

8. Егоров А.И., Львович Л.Б., Мирочник Н.С. "Опыт проектирования и строительства фундаментов из буроинъекционных свай", "Основания, фундаменты и механика грунтов",1982,N6,стр.18-21.

9. Е.М. Пашкин, Г.Б. Бессонов "Диагностика деформации памятников архитектуры", М., Стройиздат,1984.

10. Г.Т.Попов, Л.Я.Бурак "Техническая экспертиза жилых зданий старой постройки", Л-д, Стройиздат,1986.

11. С.Н. Сотников, В.Г.Симагин, В.П. Вершинин "Проектирование и возведение фундаментов вблизи существующих сооружений", М., Стройиздат,1986.

12. И.А. Физдель "Дефекты в конструкциях, сооружениях и методы их устранения", М., Стройиздат,1987.

13. С.С. Подъяпольский, Г.Б.Бессонов, Л.А.Беляев, Т.М.Постникова "Реставрация памятников архитектуры", М., Стройиздат,1988.

14. "Свайные работы". Справочник строителя под ред. М.И. Смородинова, М., Стройиздат, 1979.

Размещено на Allbest.ru


Подобные документы

  • Методы усиления оснований и фундаментов при реконструкции сооружений. Введение дополнительных опор. Повышение прочности конструкций фундаментов. Усиление фундамента корневидными сваями. Подведение свайных фундаментов под реконструируемое здание.

    реферат [1,8 M], добавлен 03.11.2014

  • Дефекты каменных конструкций, причины их возникновения. Характеристика способов усиления фундаментов, стен, перекрытий. Увеличение несущей площади фундамента и несущей способности грунта. Методы усиления каменных конструкций угле- и стеклопластиками.

    реферат [1,0 M], добавлен 11.05.2019

  • Анализ результатов инженерно-геологических изысканий на строительной площадке. Изучение физико-механических характеристик грунтов в порядке их залегания. Принципы сбора нагрузок на фундаменты. Расчет фундаментов мелкого заложения. Выбор несущего слоя.

    курсовая работа [1,6 M], добавлен 18.05.2015

  • Оценка инженерно-геологических условий площадки строительства. Проектирование фундаментов мелкого заложения по 2 группе предельных состояний. Расчет и проектирование свайных фундаментов, краткое описание технологии работ по их устройству, гидроизоляция.

    курсовая работа [1,6 M], добавлен 20.09.2014

  • Виды контроля технического состояния зданий. Порядок проведения работ по сплошному техническому обследованию городской застройки. Ремонт и усиление оснований и фундаментов, характеристика основных методов. Особенности электроразрядной технологии.

    реферат [4,3 M], добавлен 29.08.2012

  • Способ ремонта ослабленных бутовых фундаментов, предотвращающий дальнейшее разрушение кладки и обеспечивающий снижение напряжения в грунте под их подошвой. Укрепление кладки фундаментов железобетонными обоймами с последующим инъецированием раствора.

    контрольная работа [29,5 K], добавлен 29.10.2009

  • Оценка инженерно-геологических и грунтовых условий строительной площадки. Проектирование фундаментов мелкого заложения и свайных фундаментов, определение размеров подошвы и конструирование грунтовой подушки. Земляные работы и крепление стенок котлована.

    курсовая работа [531,9 K], добавлен 03.11.2010

  • Оценка инженерно-геологических условий строительной площадки. Выбор глубины заложения фундаментов, сооружаемых в открытом котловане. Определение размеров подошвы фундаментов мелкого заложения (на естественном основании). Расчет свайного фундамента.

    курсовая работа [336,3 K], добавлен 13.12.2013

  • Оценка инженерно-геологических условий площадки строительства. Разработка видов фундаментов. Проектирование фундамента мелкого заложения на искусственном основании. Проектирование свайного фундамента. Определение влияний рядом стоящих фундаментов.

    курсовая работа [384,3 K], добавлен 21.10.2008

  • Традиционные конструкции фундаментов зданий и сооружений старой постройки. Особенности проектирования устройства буроинъекционных свай в слабых глинистых грунтах. Проектирование инъекционного укрепления несущей конструкции. Определение сбора нагрузок.

    дипломная работа [2,9 M], добавлен 18.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.