Теплоизоляционные материалы

Классификация теплоизоляционных материалов. Особенности укладки матов и плит из стекловолокна. Характеристика алюминиевой фольги, пенополистирола, пеностекло. Маты, прошивные маты, полужесткие плиты и жгуты - теплоизоляционные изделия из стеклянной ваты.

Рубрика Строительство и архитектура
Вид контрольная работа
Язык русский
Дата добавления 21.06.2011
Размер файла 980,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Теплоизоляция -- это элементы конструкции, уменьшающие передачу тепла. Также термин может означать материалы для выполнения таких элементов или комплекс мероприятий по их устройству.

Теплоизоляционные материалы характеризуются пористым строением и, как следствие этого, малой плотностью (не более 600 кг/м3) и низкой теплопроводностью (не более 0,18 Вт/(м*°С).

Использование теплоизоляционных материалов позволяет уменьшить толщину и массу стен и других ограждающих конструкций, снизить расход основных конструктивных материалов, уменьшить транспортные расходы и соответственно снизить стоимость строительства. Наряду с этим при сокращении потерь тепла отапливаемыми зданиями уменьшается расход топлива. Многие теплоизоляционные материалы вследствие высокой пористости обладают способностью поглощать звуки, что позволяет употреблять их также в качестве акустических материалов для борьбы с шумом.

Теплоизоляционные материалы классифицируют по виду основного сырья, форме и внешнему виду, структуре, плотности, жесткости и теплопроводности.

Теплоизоляционные материалы по виду основного сырья подразделяются на неорганические, изготовляемые на основе различных видов минерального сырья (горных пород, шлаков, стекла, асбеста), органические, сырьем для производства которых служат природные органические материалы (торфяные, древесноволокнистые) и материалы из пластических масс.

По форме и внешнему виду различают теплоизоляционные материалы штучные жесткие (плиты, скорлупы, сегменты, кирпичи, цилиндры) и гибкие (маты, шнуры, жгуты), рыхлые и сыпучие (вата, перлитовый песок, вермикулит).

По структуре теплоизоляционные материалы классифицируют на волокнистые ( минераловатные, стекло - волокнистые), зернистые (перлитовые, вермикулитовые), ячеистые (изделия из ячеистых бетонов, пеностекло).

По плотности теплоизоляционные материалы делят на марки: 15, 25, 35, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600.

В зависимости от жесткости (относительной деформации) выделяют материалы мягкие (М) - минеральная и стеклянная вата, вата из каолинового и базальтового волокна, полужесткие (П) - плиты из шпательного стекловолокна на синтетическом связующем и др., жесткие (Ж) -плиты из минеральной ваты на синтетическом связующем, повышенной жесткости (ПЖ), твердые (Т).

По теплопроводности теплоизоляционные материалы разделяются на классы: А - низкой теплопроводности до 0,06 Вт/(м-°С), Б - средней теплопроводности - от 006 до 0,115 Вт/(м-°С), В - повышенной теплопроводности -от 0,115 до 0,175 Вт/(м.°С).

По назначению теплоизоляционные материалы бывают теплоизоляционно-строительные (для утепления строительных конструкций) и теплоизоляционно-монтажные (для тепловой изоляции промышленного оборудования и трубопроводов).

Теплоизоляционные материалы должны быть биостойкими т. е. не подвергаться загниванию и порче насекомыми и грызунами, сухими, с малой гигроскопичностью так как при увлажнении их теплопроводность значительно повышается, химически стойкими, а также обладать тепло и огнестойкостью.

Очевидно, теплопроводность является ключевым свойством теплоизоляционных материалов. Хорошие показатели теплопроводности позволяют сократить толщину утеплителя, необходимую для обеспечения нужного уровня тепла, а значит, и затраты на сам материал.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».

§ для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.

Таблица

Материал стены

Коэф. теплопроводн.

Требуемая толщина в метрах

Вспененный пенополистирол

0, 039

0,12

Минеральная вата

0, 041

0,13

Железобетон

1,7

5,33

Кладка из силикатного полнотелого кирпича

0,76

2, 38

Кладка из дырчатого кирпича

0,5

1,57

Клееный деревянный брус

0,16

0,5

Керамзитобетон

0,47

1,48

Газосиликат

0,5

0,47

Пенобетон

0,3

0,94

Шлакобетон

0,6

1,88

Органические теплоизоляционные материалы

Органические теплоизоляционные материалы в зависимости от природы исходного сырья можно условно разделить на два вида: материалы на основе природного органического сырья (древесина, отходы деревообработки, торф, однолетние растения, шерсть животных и т. д.), материалы на основе синтетических смол, так называемые теплоизоляционные пластмассы.

Теплоизоляционные материалы из органического сырья могут быть жесткими и гибкими. К жестким относят древесносткужечные, древесноволокнистые, фибролитовые, арболитовые, камышитовые и торфяные, к гибким - строительный войлок и гофрированный картон. Эти теплоизоляционные материалы отличаются низкой водо - и биостойкостью.

Древесноволокнистые теплоизоляционные плиты получают из отходов древесины, а также из различных сельскохозяйственных отходов (солома, камыш, костра, стебли кукурузы и др.). Процесс изготовления плит состоит из следующих основных операций: дробление и размол древесного сырья, пропитка волокнистой массы связующим, формование, сушка и обрезка плит.

Древесноволокнистые плиты выпускают длиной 1200-2700, шириной 1200-1700 и толщиной 8-25 мм. По плотности их делят на изоляционные (150-250 кг/м3) и изоляционно-отделочные (250-350 кг/м3). Теплопроводность изоляционных плит 0,047-0,07, а изоля-ционно-отделочных-0,07-0,08 Вт/(м-°С). Предел прочности плит при изгибе составляет 0,4-2 МПа. Древесноволокнистые плиты обладают высокими звукоизоляционными свойствами.

Изоляционные и изоляционно-отделочные плиты применяют для тепло- и звукоизоляции стен, потолков, полов, перегородок и перекрытий зданий, акустической изоляции концертных залов и театров (подвесные потолки и облицовка стен).

Арболит изготовляют из смеси цемента, органических заполнителей, химических добавок и воды. В качестве органических заполнителей используют дробленые отходы древесных пород, сечку камыша, костру конопли или льна и т. п. Технология изготовления изделий из арболита проста и включает операции по подготовке органических заполнителей, например дробление отходов древесных пород, смешивание заполнителя с цементным раствором, укладку полученной смеси в формы и ее уплотнение, отвердение отформованных изделий.

Теплоизоляционные материалы из пластмасс. В последние годы создана довольно большая группа новых теплоизоляционных материалов из пластмасс. Сырьём для их изготовления служат термопластичные (полистирольные;

поливинилхлоридные, полиуретановые) и термореактивные (мочевино - формальдегидные) смолы, газообразующие и вспенивающие вещества, наполнители, пластификачоры, красители и др. В строительстве наибольшее распространение в качестве тепло- и звукоизоляционных материалов получили пластмассы пористо-ячеистой структуры. Образование в пластмассах ячеек или полостей, заполненных газами или воздухом, вызвано химическими, физическими или механическими процессами или их сочетанием.

В зависимости от структуры теплоизоляционные пластмассы могут быть разделены на две группы: пенопласты и поропласты. Пенопластами называют ячеистые пластмассы с малой плотностью и наличием несообщающихся между собой полостей или ячеек, заполненных газами или воздухом. Поропласты-пористые пластмассы, структура которых характеризуется сообщающимися между собой полостями. Наибольший интерес для современного индустриального строительства представляют пенополистпрол, пенополивинилхлорид, пенополиуретан и мипора .

Пенополистирол - материал в виде белой твердой пены с равномерной замкнутопористой структурой . Пенополистирол выпускают марки ПСБС в виде плит размером 1000х500х100 мм и плотностью 25-40 кг/м3. Этот материал имеет теплопроводность 0,05 Вт/(м-°С), максимальная температура его применения 70 °С.

Применение вспененного пенополистирола в строительстве предписывает использовать вспененный пенополистирол как «в качестве среднего слоя строительной ограждающей конструкции».

Утепление фасада по кирпичу. Один из самых распространенных методов наружного утепления в Германии (более 200 млн.кв.м. утеплены таким способом).

В течение более чем 40 лет вспененный пенополистирол активно применяется при утеплении фасадов как часть фасадных теплоизоляционных композиционных систем с наружным штукатурным слоем (сокр. СФТК (рус.), ETICS (англ.), WDVS (нем.). Применение таких систем изначально получило широкое распространение в Германии, Австрии, Польше и Италии, где такие системы позволили существенно снизить энергозатраты на отопление зданий. Мартин Берниггер, архитектор Sunpor Kunstoff GemsBH: « Если раньше мы тратили 180 киловатт энергии, то теперь около 50». Фасадные системы с пенополистиролом сертифицированы и выпускаются известными строительными компаниями: KNAUF, STO, Baumit, Saint-Gobain и др.

Качественный пенополистирол типа ПСБ. В изломе -- многогранники одинакового размера прочно соединённые друг с другом, местами разлом проходит по живому.

Некачественный пенополистирол типа ПСБ. В изломе -- округлые шарики разного размера. Разлом идет по зоне контакта между ними.

Широко применяется в качестве термоизоляции

(теплопроводность 0,04 Вт/(м*K)) и шумоизоляции в строительстве, приборостроении, в качестве промышленной и потребительской упаковки.Применяется в качестве термоизоляции почти во всех бытовых холодильниках, кроме холодильников с термоизоляцией из пенополиуретана.

Применение пенополистирола для теплоизоляции пола

Строительные конструкции, в которых пенополистирол применяется в качестве среднего теплоизоляционного слоя, разрешается использовать только при условии выполнения определённого ряда ограничений, из-за которых кровли из стального профилированного настила с утеплителем из пенополистирола донедавна были запрещены в строительстве. В то-же время в настоящее время ряд конструкций кровель по профилированному листу, а также по бетонному основанию с комбинированным утеплителем, успешно прошли огневые испытания в ВНИИПО и получили класс пожарной опасности К0.

Удобство монтажа

Пенополистирол -- легкий, прочный и не хрупкий материал. Резка пенополистирола возможна без использования специальных режущих инструментов и применять простые средства, такие как нож или ручная пила. Обращение с материалом не представляет опасности для здоровья во время транспортировки, монтажа, использования и демонтажа, поскольку не радиоактивен, не содержит опасных волокон или других веществ. Пенополистирол может обрабатываться и резаться не вызывая раздражения, экземы или раздражения кожи, дыхательных путей и глаз. Это означает, что дыхательные маски, защитные очки, защитная одежда и перчатки не требуются для того, чтобы работать с пенополистиролом. Цемент, известь, гипс, ангидрит и растворы, модифицированные полимерными дисперсиями, не оказывают негативного эффекта на пенополистирол. Все это делает пенополистирол полностью безопасным и практичным при использовании в гражданском, промышленном и транспортном строительстве. Монтаж пенополистирольных плит простой процесс и доступен практически каждому человеку.

Пожароопасные свойства

Пенополистирол -- легковоспламеняющийся материал, воспламенение которого может произойти от пламени спичек, паяльной лампы, от искр автогенной сварки. Пенополистирол не воспламеняется от прокаленного железного провода, горящей сигареты и от искр, возникающих при точке стали. Пенополистирол -- относится к синтетическим полимерам. Синтетические полимеры (как и органические, например, древесина) характеризуются повышенной горючестью. Учитывая это свойства, нормативные документы обязывают использовать пенополистирол только «в качестве среднего слоя строительной ограждающей конструкции». При таком подходе, возможность воспламенения материала исключается. При хранении пенополистирола с соблюдением правил пожарной безопасности со стороны самого материала опасности не ожидается.

Загорается от пламени спички (температура пламени спичек -- 650--835оС). Горит в расплавленном состоянии с выделением большого количества теплоты. Удельная теплота сгорания пенополистирола 39,4 -- 41,6 МДж/кг, что в 4,3 раза выше чем у сосновой древесины естественной влажности и примерно соответствует теплоте сгорания бензина.

Линейная скорость распространения огня по поверхности пенополистирола 1 см/сек, в 1,5 -- 2 раза превышающая скорость распространения огня по сухой древесине, объясняет чрезвычайно высокую скорость распространения огня в зданиях, утепленных пенополистиролом. Удельная массовая скорость выгорания пенополистирола марки ПСБ -- 2.19 кг/мин мІ(стр.125) что примерно соответствует показателям свободно горящей сырой нефти.

Вследствие большой скорости горения пенополистирола и высокой удельной теплоты его сгорания теплота высвобождается при пиковой температуре 1500 °С в относительно малое время. По опытным данным уже через 2 мин. горения ППС достигается температура 1200 °С.

Горение пенополистирола сопровождается обильным выделением (267 мі/мі) густого чёрного дыма. Продукты горения токсичны. Средства тушения: Распыленная вода со смачивателями. Горение пенополистирола близко к горению напалма (скорость горения около 10,5 м/мин).[

Однако исследования Европейской Ассоции производителей пенополистирола показали, что продукты горения полистирола, используемого в качестве среднего слоя строительных конструкций, менее опасны, чем продукты горения целлюлозы, дерева и шерсти, широко распространенных в быту.

При некорректном проведении экспериментов возможно неправильное определение группы горючести пенополистирола. Одной из ошибок является испытание материала без сочетания с негорючей основой, что является нарушением методики проведения испытания. В результате этого при воздействии пламени на образец он прогорает насквозь, оставшаяся его часть сжимается под влиянием температуры, и пламя горелки непосредственно не воздействует на вертикально расположенный образец. При таком способе проведения испытания сильно снижается вероятность распространения пламени по поверхности образца и образования горящих капель расплава. В реальных условиях применение теплоизоляционных материалов вне конструкции невозможно. Пример неправильного испытания материала можно увидеть как в рекламном ролике непосредственного производителя [, так и в видеофрагментах стороннних наблюдателей.

Полевой тест распознавания полистирола и пенополистирола основан на визуальных и органолептических характеристиках пламени, подожженного образца -- оно яркое, оранжевых оттенков, сильно коптящее с характерным цветочным запахом

Сотопласты - теплоизоляционные материалы с ячейками, напоминающими форму пчелиных сот.

Рис

Формы ячеек сотопласгов: а-шестигранная; б-шестигранная усиленная; в-нрямоугольная; г - шесттранная смещенная; д-гибкая (флексорная).

Рис

Трехслойная панель с сото-пластом: 1-обшивки; 2-клеевая пленка; 3-сотовая панель.

Стенки ячеек могут быть выполнены из различных листовых материалов (крафт - бумаги, хлопчатобумажной ткани, стекло - ткани и др.), пропитанных синтетическими полимерами. Сотопласты изготовляют в виде плит длиной 1-1,5м, шириной 550 - 650 и толщиной 300 - 350 мм. Их плотность 30-100 кг/м3, теплопроводность 0,046-0,058 Вт/(м-°С). прочность при сжатии 0,3-4 МПа. Применяют сотопласты как заполнитель трехслойных панелей. Теплоизоляционные свойства сотопастов повышаются в результата заполнения сот крошкой мипоры.

При изготовлении сотопластов применяются фенольные, карбамидные, эпоксидные и другие смолы. Наиболее прочные сотопласты получаются из фенольных и эпокоидных смол, но первые хрупки и горючи, а вторые дороги, поэтому в настоящее время наибольшее применение имеют сотопласты из карбамидных смол. По стандарту некоторых американских фирм содержание смолы в сотах из крафт-бу-маги составляет 18%.

Объемный вес сотопластов из различных материалов колеблется в пределах от 10 до 200 кг/м3 (чаще от 50 до 120 кг/м3).

Сотопласты при малом объемном весе имеют значительную прочность при сжатии и высокий модуль упругости при сдвиге. Они обладают хорошими звукопоглощающими свойствами. При повышенной влажности воздуха (порядка 90%) прочность сотопластов уменьшается. Как показали испытания ЦНИИСК, коэффициент длительного сопротивления сотопластов невелик (порядка 0,25---0,35), что ошибочно иногда не учитывается в расчетах.

В табл. 7-5 приведены характеристики сотопластов из различных материалов [Л. 3, 37]. Сотопласты находят применение в качестве основы для изготовления высокопрочных и легких трехслойных ограждающих конструкций, которые состоят из наружных листов конструкционного материала (металл, фанера, древесно-стружечная или древесно-волок-нистая плита, стеклопластик и др.) и внутреннего слоя [Л. 11]. В целях повышения теплоизоляционных качеств внутренний слой может быть заполнен крошкой из какого-либо теплоизоляционного материала (миноры и др.)

Рис

Неорганические теплоизоляционные материалы

К неорганическим теплоизоляционным материалам относят минеральную вату, стеклянное волокно, , вспученные перлит и вермикулит, асбестосодержащие теплоизоляционные изделия, ячеистые бетоны , и др.

Минеральная вата и изделия из нее. Минеральная вата волокнистый теплоизоляционный материал, получаемый из силикатных расплавов. Сырьем для ее производства служат горные породы (известняки, мергели, диориты и др.), отходы металлургической промышленности (доменные и топливные шлаки) и промышленности строительных материалов (бой глиняного и силикатного кирпича).

Производство минеральной ваты состоит из двух основных технологических процессов: получение силикатного расплава и превращение этого расплава в тончайшие волокна. Силикатный расплав образуется в вагранках шахтных плавильных печах, в которые загружают минеральное сырье и топливо (кокс). Расплав с температурой 1300-1400°С непрерывно выпускают из нижней части печи.

Существует два способа превращения расплава в минеральное волокно: дутьевой и центробежный. Сущность дутьевого способа заключается в том, что на струю жидкого расплава, вытекающего из летки вагранки, воздействует струя водяного пара или сжатого газа . Центробежный способ основан на использовании центробежной силы для превращения струи расплава в тончайшие минеральные волокна толщиной 2-7 мкм и длиной 2-40 мм. Полученные волокна осаждаются в камере волокна осаждения на движущуюся ленту транспортера. Минеральная вата это рыхлый материал, состоящий из тончайших переплетенных минеральных волокон и небольшого количества стекловидных включений ( шариков, цилиндриков и др.), так называемых корольков.

Чем меньше в вате корольков, тем выше ее качество.

В зависимости от плотности минеральная вата подразделяется на марки 75, 100, 125 и 150. Она огнестойка, не гниет, малогигроскопична и имеет низкую теплопроводность 0,04 - 0,05 Вт (м.°С).

Минеральная вата хрупка, и при ее укладке образуется много пыли, поэтому вату гранулируют т.е. о превращают в рыхлые комочки - гранулы. Их используют в качестве теплоизоляционной засыпки пустотелых стен и перекрытий. Сама минеральная вата является как бы полуфабрикатом, из которого выполняют разнообразные теплоизоляционные минераловатные изделия: войлок, маты, полужесткие и жесткие плиты, скорлупы, сегменты и др.

Влияние минеральной ваты на здоровье человека

Потенциальная опасность минераловатных теплоизоляционных изделий как источника канцерогенных факторов -- пыли и фенолформальдегидных смол -- послужила основанием для многих исследований воздействия её на человека и животных[1] [2]. Так, например, в декабре 1997 года Европейским союзом было опубликована директива [3], классифицирующая различные сорта минеральной ваты по степени опасности. Согласно этой директиве, минеральная вата рассматривалась как раздражающее вещество (ирритант); ко 2 (потенциально опасно) или 3 (недостаточно данных для надёжной оценки) группе канцерогенной опасности её относили в зависимости от содержания оксидов щелочных и щелочноземельныхметаллов и размера волокон. Весьма жёсткий подход по оценке опасности искусственных минеральных волокон принят в Германии; здесь запрещены многие виды минеральных волокон, в других странах рассматривающиеся как безопасные; что вызывает серьёзное беспокойство производителей[1]. Международное агентство по изучению рака (МАИР) в 2001 году подготовило доклад о оценке канцерогенности искусственных минеральных волокон [4][5], согласно которому ряд разновидностей ИМВ отнесены к группе 3 по степени опасности (вещества, для которых не получено убедительных оценок канцерогенности для человека, а оценки для животных ограничены либо отсутствуют). Следует подчеркнуть, что, согласно описанию групп МАИР[6] тот факт, что вещество относится к 3 группе, не означает отсутствия канцерогенности или общей безопасности его -- к этой группе относят вещества, для надёжной оценки опасности которых недостаточно данных и требуются дополнительные исследования.

Применение скрепляющих смол в минеральной вате регламентируется как технологически (их там, как правило, менее 4 %, и это твёрдые смолы, устойчивые при условиях эксплуатации), так и путём нормирования эмиссии (выделения) их составляющих. При этом цель -- обеспечить содержание соответствующих веществ в воздухе ниже ПДК, даже если речь пойдёт о замкнутом объёме комнаты. Этот подход (нормирование содержания вещества в материале и выделения из него с целью обеспечения ПДК) -- общий для разных материалов и входящих в их состав веществ.

Стеклянная вата и изделия из нее. Стеклянная вата материал, состоящий из беспорядочно расположенных стеклянных волокон, полученных из расплавленного сырья. Сырьем для производства стекловаты служит сырьевая шахта для варки стекла (кварцевый песок, кальцинированная сода и сульфат натрия) или стекольный бой. Производство стеклянной ваты и изделий из нее состоит из следующих технологических процессов: варка стекломассы в ванных печах при 1300-1400 °С, изготовление стекловолокна и формование изделий.

Стекловолокно из расплавленной массы получают способами вытягивания или дутьевым. Стекловолокно вытягивают штабиковым (подогревом стеклянных палочек до расплавления с последующим их вытягиванием в стекловолокно, наматываемое на вращающиеся барабаны) и фильерным (вытягиванием волокон из расплавленной стекломассы через небольшие отверстия-фильтры с последующей намоткой волокон на вращающиеся барабаны) способами. При дутьевом способе расплавленная стекломасса распыляется под действием струи сжатого воздуха или пара.

В зависимости от назначения вырабатывают текстильное и теплоизоляционное (штапельное) стекловолокно. Средний диаметр текстильного волокна 3-7 мкм, а теплоизоляционного 10-30 мкм.

Стеклянное волокно значительно большей длины, чем волокна минеральной ваты и отличается большими химической стойкостью и прочностью. Плотность стеклянной ваты 75-125 кг/м3, теплопроводность 0,04-0,052 Вт/(м/°С), предельная температура применения стеклянной ваты 450 °С. Из стекловолокна выполняют маты, плиты, полосы и другие изделия, в том числе тканые.

Стекловатные изделия

Из стеклянной ваты изготавливают следующие теплоизоляционные изделия:

? маты (мягкие плиты),

? прошивные маты,

? полужесткие плиты на синтетической связке,

? жгуты (шнуры) -- гибкие теплоизоляционные материалы, состоящие из стекловатного сердечника, оплетенного шпательным стекловолокном.

Технология получения мягких и полужестких стекловатных изделий практически ничем не отличается от таковой при производстве аналогичных изделий из минеральной ваты.

По технологическим свойствам стекловатные изделия несколько отличаются от мине-раловатных. Они имеют меньшую среднюю плотность, большие прочность и вибростойкость, но обладают меньшей температуростойкостью.

Стекловатные изделия ПРИМЕНЯЮТСЯ, наряду с минераловатными, для тепловой изоляции строительных конструкций, но основной областью применения является изоляция холодильников, трубопроводов, промышленного оборудования, работающего в условиях вибрации, а также транспортных средств.

Области применения некоторых видов импортных стекловатных изделий:

Эластичными стекломатами КТ и KL утепляют стены, потолки и полки во всех типах зданий.

RKL -- жесткая плита из стекловаты, облицованная стекловойлоком с обеих сторон. Этот материал находит применение в конструкциях, где необходима не только теплоизоляция, но и защита от ветра. Такими объектами являются чердаки и перекрытия с пространством для вентиляции.

RKL-A -- жесткая плита из стекловаты (основная стекловатная плита та же, что и в RKL), имеющая специальную ветрозащитную облицовку, с помощью специальной уплотнительной ленты обеспечивает плотную ветрозащиту.

Благодаря наличию ветрозащиты плиты RKL-A теплопроводность изоляции конструкции повышается на 10%.

RKL-EJ -- плита из стекловаты повышенной жесткости со специальной ветрозащитной облицовкой. Обычно применяется как теплоизоляция и ветрозащита стен.

Жесткие обшивочные плиты (листы) VKL толщиной 13 мм применяют как ветрозащиту и для предотвращения образования точек холодного контакта в стене (мостиков холода).

Уплотняющие мягкие ленты КН, SK, ТК применяются в качестве уплотнителя для бревенчатых стен, соединений конструкций, в швах между деревянными балками, в зазорах дверных и оконных рам.

На объектах, где, кроме высокой степени теплоизоляции, требуется дополнительное сопротивление нагрузке (бетонные «сэндвичи», верхний слой теплоизоляции плоских крыш, теплоизоляция под штукатурку) рекомендуется применять плиты OL-E, OL-A, OL-K.

Среди известных зарубежных производителей стекловатных изделий хорошо зарекомендовала себя финская фирма ИЗОВЕР (ISOVER).

Здесь же можно отметить продукцию совместного предприятия ФЛАЙДЕРЕР-ЧУДОВ'О, находящегося на территории России и специализирующегося на производстве теплоизоляционных материалов марки URSA на основе стеклянного штапельного волокна.

Укладка матов и плит из стекловолокна

При применении-изоляционных матов необходимо следовать следующим указаниям.

При проведении теплоизоляции полов и крыш маты можно укладывать путем раскатывания их между деревянными балками пола. При этом нужно следить за плотностью укладки. Неизбежно возникающие пустоты заполняются волокном или остатками материала.

Максимальная толщина изоляционного слоя определяется высотой деревянных балок. Затем на них укладываются детали пола -- например, ДСП или шпунт с пазами и шпонками. При большой влажности предварительно должна быть уложена паровлагозащитная пленка. После снятия упаковки и раскатывания изоляционные маты ложатся жестко, как плита, и готовы к разрезанию по заданным размерам. Куски с запасом 1-2 см отрезают поперек рулона с помощью острого ножа. Размеры полотна определяются интервалом между стропилами или стойками и их контурами. Запас в 1--2 см гарантирует, что отрезки плотно лягут между стропилами. Разрезание рекомендуется производить на твердой поверхости -- доске, например, или на плите из клееной фанеры. Сверху, для облегчения нарезки, следует приложить доску или планку.

Высокая упругость стекловолокна облегчает не только ее точную пригонку, но и плотность стыковки отдельных кусков. При этом остатки тоже идут в дело, поэтому отходов практически не остается. Полости, образования которых не удастся избежать в разрывах, вблизи труб, можно заизолировать с помощью обрезков.

Изоляционные плиты идеально совпадают с верхней поверхностью несущей конструкции, При толщине изоляции около 80 мм рекомендуется ее двухслойная укладка в перевязку со смещением. При обработке необходимо обращать особое внимание на тщательность стыковки плит: при соблюдении этого требования можно избежать утечек тепла.

Изоляционные плиты должны быть без повреждений продавлены через проволочные анкеры, выступающие горизонтально из несущей конструкции. При крепеже лучше всего использовать дюбели, у которых после наложения изоляционных плит проволочные анкеры проходят сквозь изоляцию. Благодаря этому уменьшается риск повреждения. Затем, для фиксации плит, проволочные анкеры закрывают специальными пластмассовыми дисками, имеющими диаметр не менее 5 см. . ТИМ марки URSA обладают высокими водоотталкивающими свойствами. Тем не менее, на время длительных перерывов в работе рекомендуется закрывать незаконченную кирпичную кладку от дождя, поскольку влага, попадающая между передней и задней оболочками кладки, высыхает очень медленно и требует дополнительных затрат энергии.

Пеностекло - теплоизоляционный материал ячеистой структуры. Сырьем для производства изделий из пеностекла (плит, блоков) служит смесь тонкоизмельченного стеклянного боя с газообразоватслем (молотым известняком). Сырьевую смесь засыпают в формы и нагревают в печах до 900 "С, при этом происходит плавление частиц и разложение газообразователя. Выделяющиеся газы вспучивают стекломассу, которая при охлаждении превращается в прочный материал ячеистой структуры

Пеностекл обладает рядом ценных свойств, выгодно отличающих его от многих других теплоизоляционных материалов: пористость пеностекла 80-95 %, размер пор 0,1-3 мм, плотность 200-600 кг/м3, теплопроводность 0,09-0,14 Вт/(м, /(м* °С), предел прочности при сжатии пеностекла 2-6 МПа. Кроме того, пеностекло характеризуется водостойкостью, морозостойкостью, несгораемостью, хорошим звукопоглощением, его легко обрабатывать режущим инструментом.

Пеностекло выпускаю в форме блоков и гранул. Плотность пеностекла - 120-200 кг/м. куб. Сорбционная влажность пеностекла - 0,2-0,5%, при ф=97% Теплопроводность пеностекла - 0,04-0,08 Вт/(м·К)(при +10°С) Паропроницаемость пеностекла - 0-0,005 мг/(м.ч.Па) Предел прочности на сжатие - 0,7-4 МПа Предел прочности на изгиб - 0,4-0,6 МПа Температура начала деформации пеностекла - 450°С Водопоглощение пеностекла 0-5 % от объёма. Шумопоглощение: до 56 Дб Эффективный диапазон температур: от ?200°С до +500°С.

Пеностекло в виде плит длиной 500, шириной 400 и толщиной 70-140 мм используют в строительстве для утепления стен, перекрытий, кровель и других частей зданий, а в виде полуцилиндров, скорлуп и сегментов - для изоляции тепловых агрегатов и теплосетей, где температура не превышает 300 °С. Кроме того, пеностекло служит звукопоглощающим и одновременно отделочным ма-териалом для аудиторий, кинотеатров и концертных залов.

Асбестосодержащие материалы и изделия. К материалам и изделиям из асбестового волокна без добавок или с добавкой связующих веществ относят асбестовые бумагу, шнур, ткань, плиты и др. Асбест может быть также частью композиций, из которых изготовляют разнообразные теплоизоляционные материалы ( совелит и др). В рассматриваемых материалах и изделиях использованы ценные свойства асбеста: температуростойкость, высокая прочность, волокнистость и др.

Примеры применения гранулированного пеностекла:

Рис

Рис. 1. Изоляция из пеностекла при устройстве бетонных полов, в случае применения гранулированного пеностекла.а) 1 - бетонное основание; 2 - битумный грунт; 3 - гранулированное пеностекло; 4 - пергамин или рубероид; 5 - слой легкого бетона; 6 - керамическая плитка.б) 1 - слой гравия или шлака; 2 - гранулированное пеностекло; 3 - пергамин или рубероид; 4 - слой легкого бетона; 5 - керамическая плитка

2. Изоляция при устройстве междуэтажных перекрытий:

Рис. 2. Изоляция из пеностекла при устройстве междуэтажных перекрытий:а) 1 - железобетонная плита; 2 -пароизоляционный слой; 3 - лага; 4 -гранулированное пеностекло; 5 - дощатый настил; 6 - звукопоглощающая прокладкаб) 1 - железобетонная плитка; 2 -пароизоляционный слой; 3 -лага; 4 -войлок минеральный; 5 -гранулированное пеностекло; 6 - дощатый настил; 7 - звукопоглощающая прокладка

Устройство крыш:

Рис. 3. Изоляция пеностекла при устройстве крыш:1 - сборные железобетонные плиты; 2 - промазка швов бетонном; 3 - гранулированное пеностекло; 4 - стяжки; 5 -кровельный ковер

Теплоизоляция стен зданий

Рис. 4. Изоляция кирпичной стены гранулированным пеностеклом:1 - кирпичная кладка стены; 2 - гранулированное пеностекло; 3 -скобы для скрепления кирпичной кладки

В качестве заполнителей легких бетонов

Рис

Алюминиевая фольга (альфоль)-новый теплоизоляционный материал, представляющий собой ленту гофрированной бумаги с наклеенной на гребне гофров алюминиевой фольгой. Данный вид теплоизоляционного материала в отличие от любого пористого материала сочетает низкую теплопроводность воздуха, заключенного между листами алюминиевой фольги, с высокой отража-тельной способностью самой поверхности алюминиевой фольги. Алюминиевую фольгу для целей теплоизоляции выпускают в рулонах шириной до 100, толщиной 0,005- 0,03 мм.

Практика использования алюминиевой фольги в теплоизоляции показала, что оптимальная толщина воздушной прослойки между слоями фольги должна быть 8- 10 мм, а количество слоев должно быть не менее трех. Плотность такой слоевой конструкции из алюминиевой (фольги 6-9 кг/м3, теплопроводность - 0,03 - 0,08 Вт/(м* С ).

Алюминиевую фольгу употребляют в качестве отражательной изоляции в теплоизоляционных слоистых конструкциях зданий и сооружений, а также для теплоизоляции поверхностей промышленного оборудования и трубопроводов при температуре 300 °С.

монархия правление абсолю теплоизоляционный стекловолокно фольга пеностеклотный феодальный

Размещено на Allbest.ru


Подобные документы

  • Неорганические теплоизоляционные материалы и изделия. Минеральная и стеклянная вата и изделия из них. Пеностекло. Теплоизоляционные материалы из вспученных горных пород и изделия на их основе. Асбестосодержащие теплоизоляционные материалы и изделия.

    реферат [19,7 K], добавлен 31.03.2008

  • Сущность и назначение теплоизоляционных материалов, их виды и история развития производства. Сырье для изготовления пеностекла, основные технологические процессы и оборудование. Свойства и характеристики теплоизоляционно-конструкционного пеностекла.

    реферат [569,3 K], добавлен 21.12.2013

  • Сравнительные характеристики древесных плит. Неорганические, органические и фибролитовые теплоизоляционные материалы. Сравнение монтажного крана по экономическим параметрам. Составление калькуляции трудовых затрат, календарного плана производства.

    дипломная работа [605,9 K], добавлен 31.12.2015

  • Классификация искусственных строительных материалов. Основные технологические операции при производстве керамических материалов. Теплоизоляционные материалы и изделия, применение. Искусственные плавленые материалы на основе минеральных вяжущих бетонных.

    презентация [2,4 M], добавлен 14.01.2016

  • Строение, теплофизические свойства, плотность, газопроводность материала. Способ пенообразования, высокого водозатворения. Создание волокнистого каркаса. Зависимость теплопроводности теплоизоляционных неорганических и органических материалов от плотности.

    презентация [233,2 K], добавлен 17.02.2011

  • Характеристика теплоизоляционных материалов. Технико-экономическая оценка применения жидкой тепловой изоляции для наружного утепления стен здания. Расчёт коэффициента теплопроводности. Безопасность жизнедеятельности при нанесении лакокрасочных покрытий.

    диссертация [716,0 K], добавлен 10.07.2017

  • Тенденции использования топливных шлаков и зол в отечественном строительном производстве. Состав и технология получения ячеистых бетонов. Разновидности теплоизоляционных материалов, сырье, применяемое для их изготовления. Свойства и область применения.

    реферат [1,4 M], добавлен 30.03.2010

  • Общая характеристика и классификация звукоизоляционных и звукопоглощающих материалов. Акустический комфорт в помещении. Выбор звукопоглощающего материала. Отличительные свойства каменной ваты ROCKWOOL. Звукопоглощающие плиты ROCKWOOL АКУСТИК БАТТС.

    реферат [379,9 K], добавлен 02.05.2011

  • Строительные материалы по назначению. Методы оценки состава стройматериалов. Свойства и применение гипсовяжущих материалов. Цементы: виды, применение. Коррозия цементного камня. Состав керамических материалов. Теплоизоляционные материалы, их виды.

    шпаргалка [304,0 K], добавлен 04.12.2007

  • Стекло, его свойства и создаваемые на его основе материалы: листовое светопрозрачное и светорассеивающее стекло, светопрозрачные изделия и конструкции, облицовочные изделия, изделия из пеностекла, материалы на основе стекловолокна, ситаллы, шлакоситаллы.

    реферат [38,4 K], добавлен 12.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.