Отходы производства щебня и песка из перлитов в качестве заполнителей для бетонов

Особенности применения органических и неорганических заполнителей. Основные виды заполнителей для бетона: мелкие (природный или искусственный песок) и крупные (щебень, гравий). Производство щебня и песка из перлитов и литоидной пемзы. Вспученный перлит.

Рубрика Строительство и архитектура
Вид курсовая работа
Язык русский
Дата добавления 23.03.2011
Размер файла 277,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Заполнители неорганические, или минеральные, получают путем разработки месторождений рыхлых горных пород в виде песка или гравия, природного щебня. Широко используют дробленые горные породы -- щебень, высевки, песок. Кроме природных, в качестве заполнителей применяют также искусственные, получаемые путем обжига глинистого сырья, других видов минерального сырья, дроблением металлургических щлаков.

Наибольший объем в ИСК занимает заполняющий компонент (заполнитель). В бетонах и растворах, например, его содержание может быть до 95% по объему. Поэтому выбору качества и разновидности заполнителей всегда уделяется большое внимание. Применяют заполнители неорганические и органические; преимущественное применение имеют неорганические, особенно при производстве бетона, железобетона и асфальтобетона.

1. Основные виды заполнителей для бетона

Заполнители характеризуют зерновым (гранулометрическим) составом. С целью определения зернового состава производят рассев пробы заполнителя через стандартный набор сит. Наименьшее отверстие в сите 0,14 мм, наибольшее -- 70 мм. При лабораторном рассеве пробы заполнителя на ситах между двумя соседними ситами, например 10 и 20 мм или 1,25 и 2,5 мм, задержатся зерна различной крупности в указанных пределах, что составляет соответственно фракцию 10-20 мм или фракцию 1,25 мм. Нередко зерновой состав называют фракционным.

Заполнители разделяются на мелкие и крупные. Отнесение к этим разновидностям по крупности зависит от размера наиболее крупного зерна. У мелкого заполнителя зерна не больше 5 мм, причем при просеивании остаток на сите с отверстиями 5 мм должен быть не более 5% по массе. Типичным представителем мелкого заполнителя является песок. У крупного заполнителя все зерна крупнее 5 мм. Размер наиболее крупных зерен в заполнителе также ограничивается: в зависимости от, разновидности ИСК в пределах 70-80 мм. Крупный заполнитель называют щебнем при угловатых зернах или гравием -- при округлых зернах.

Плотную смесь заполнителя получают путем смешивания различных отдельно взятых фракций заполнителя, количество которых рассчитывают по соответствующим формулам или подбирают по графикам, иногда -- опытным путем.

Фракционный состав заполнителя является непрерывным, если содержатся все фракции, на которые рассеивается заполнитель с помощью сит. Фракционный состав -- прерывистый, если в заполнителе отсутствует одна или две фракции.

Кроме фракционного состава, насыпной плотности и пустотно-сти заполнителей при оценке качества определяют показатели прочности, морозостойкости (в отношении щебня), степень загрязненности посторонними примесями, форму частиц. Учитывают также состояние поверхности зерен заполнителя, так как чем более гладкая поверхность у зерен заполнителя, тем ниже, как правило, сцепление зерен с вяжущим веществом. При необходимости оценивают химическую стойкость, водостойкость и др.

Зерновые составы плотных смесей приводятся в ГОСТе с указанием колебаний в содержании фракций, допустимых без снижения качества готовых материалов. При окончательном выборе зернового состава учитывают не только насыпную плотность смеси или ее пустотность, но и удельную поверхность. Желательно уменьшать удельную поверхность в плотной смеси, с тем чтобы сэкономить на расходе вяжущего вещества.

Поскольку, как отмечалось выше, заполнители в ИСК занимают большую часть объема и поэтому их расход очень большой, то имеет значение стоимость заполнителей. В этом смысле всегда остаются предпочтительными заполнители из местных сравнительно дешевых материалов, в том числе из побочных продуктов местной промышленности. Однако требуется повышенное внимание к оценке их качества.

Важной характеристикой заполнителя, особенно крупного, является величина насыпной плотности. Тяжелые заполнители показывают в россыпи насыпную плотность свыше 1000 кг/м Легкие заполнители облегчают конструкции и поэтому широко применяются в жилищном строительстве; их насыпная плотность составляет около 500 кг/м3.

Мелкие заполнители. К мелким заполнителям относится природный или искусственный песок. Как правило, наилучшими песками в ИСК являются кварцевые. Однако при производстве безобжиговых материалов (бетонов, асфальтобетонов и т. п.) их заменяют и другими природными песками. Во всех песках ограничивается содержание вредных примесей, к которым относятся глинистые и пылеватые фракции, сернистые и сернокислые соединения (пирит, гипс и др.), а также слюды, органические примеси (остатки неразложившихся растений, гумус, ил и пр.). Для разных конгломератных материалов устанавливают конкретные пределы допустимого содержания вредных примесей, которые учитываются в качестве обязательных условий при применении местных песков, и приводятся специальные методики определения различных вредных примесей.

В теории ИСК предусмотрен показатель качества заполнителя, определяемый непосредственно в конгломерате по интенсивности изменения его свойств, например, прочности, определяемой по формуле (3.3). В последней этот комплексный показатель выражен величиной п. Его числовое значение зависит от плотности зерновой смеси, формы и размера частиц, состояния поверхности зерен, их прочности, способности к адгезии с вяжущим веществом и других качественных характеристик заполнителя. Числовые значения комплексного структурного показателя п стремятся уменьшить путем промывки заполнителя, фракционирования, обогащения, обработкой ПАВ или другими технологическими приемами. Из формулы (3.3) очевидно, что чем меньше числовое значение и, тем выше положительная роль заполнителя в ИСК как структурного элемента.

Особое внимание уделяется зерновому составу песка. Важно, чтобы содержание фракций в пределах 0,16--5,0 мм было таким, при котором обеспечиваются минимальные значения пустотности и удельной поверхности.

Среди природных песков встречаются горные (овражные), речные, морские, барханные, дюнные и другие разновидности. Каждая из них имеет положительные и отрицательные показатели, проявляющиеся при использовании их в качестве мелких заполнителей: горные пески содержат повышенное количество глинистых и органических примесей; морские кроме кварцевых зерен могут иметь обломки раковин, снижающие прочность некоторых конгломератов (цементных бетонов и др.); речные и морские имеют излишне отполированную поверхность зерен, не обеспечивающую достаточного сцепления их с вяжущим веществом; дюнные и барханные пески сложены весьма мелкими частицами, не отвечающими требованиям стандарта. При тщательной проверке качества песков выбирают наилучшую разновидность и рекомендуют к применению в данном ИСК с учетом ее стоимости и требуемого расхода вяжущего вещества.

Модуль выражает частное от деления на 100 суммы полных остатков (в %) песка на ситах, начиная с сита с размером отверстий 2,5 мм и кончая ситом с отверстиями 0,16 мм. Полным остатком песка Ai на каждом сите называют сумму частных остатков щ на данном сите (в %). Частный остаток сч песка на каждом сите -- это отношение массы т\ остатка на данном сите к массе т просеиваемой навески (в %): щ mi/т.

Дробленый, или искусственный, песок получают путем дробления свежих невыветрелых магматических, метаморфических или плотных карбонатных осадочных пород, предел прочности которых свыше 50 МПа. При дроблении стремятся получить угловатую и кубовидную форму зерен, что в большой степени зависит от выбранного механического оборудования. Кроме горных пород для получения дробленых песков могут оказаться пригодными некоторые разновидности шлаков, кирпичного боя, шамотного легковеса (боя) и других побочных продуктов производства. Однако при использовании последних важно предотвратить попадание в получаемые пески всех тех вредных примесей, которые указаны выше в отношении природных песков. Весьма ценятся облегченные искусственные пески, получаемые измельчением природных и особенно искусственных легких заполнителей/Стоимость дробленого песка выше природного, поэтому его обычно применяют для улучшения природных мелкозернистых песков при ответственных строительных работах. Облегченные пески предназначены для керамзитобетона, вакулитобетона и других легких и особо легких конгломератов.

Для повышения однородности зернового состава песок иногда Фракционируют, чаще всего на две фракции -- крупную и мелкую: крупная -- с размером зерен 1,25--5,0 мм, мелкая --.от 0,63 до ОД 6 мм. В необходимых случаях зерновой состав подбирают таким образом, чтобы он соответствовал кривым просеивания плотных песчаных смесей ( 9.5). В правильно назначенном зерновом составе пустотность песка не превышает 38%. Всегда учитывают содержание воды, так как фактическая масса фракции в сухом песке Уменьшится, а при дозировании или приемке по объему учитывают, Что самый большой объем песок занимает при 5--7% влажно-сти (по массе). Косвенной характеристикой пустотности служит его насыпная плотность, которая у сухого кварцевого песка в рыхлом состоянии колеблется в пределах 1500-- 1550 кг/м3, а в уплотненном встряхиванием состоянии -- в пределах 1600--1700 кг/м3.

Природный гравий представляет собой рыхлую смесь скатанных обломков размером от 5 до 70 мм. Горный гравий по сравнению с речным, морским и ледниковым обладает более угловатыми с шероховатой поверхностью обломками и большим количеством пылева-то-глинистых примесей. Обломки гравия, обработанные водой, имеют гладкую поверхность, что ухудшает ее сцепление с вяжущим веществом. Лучшей разновидностью гравия считается ледниковый, который менее окатан и имеет более равномерный зерновой состав. Все разновидности гравия (а также природного щебня и дресвы) характеризуются неоднородным петрографическим и минеральным составом, так как в их образовании участвуют разнообразные горные породы и минералы. Поэтому оценка их прочности производится на образцах средних проб с отбором из них зерен слабых и неморозостойких пород и определением их содержания в процентах по массе.

Крупные заполнители. В искусственных строительных конгломератах различного назначения в качестве крупного неорганического заполнителя применяют гравий и щебень. Тот и другой могут быть природными, добываемыми в соответствующих месторождениях, однако обычно под щебнем понимают не природный, а получаемый специальным дроблением материал.

Щебень -- материал, получаемый дроблением горных пород, валунов, гальки или искусственных камней. Для этого применяют различные по конструкции и мощности камнедробильные машины ( 9.6), от которых зависит качество получаемой продукции. Лучшей формой щебенок считается кубовидная или тетраэдрическая, размером 5--70 мм. Содержание щебенок лещадной и игловатой форм не должно превышать 10--15% по массе. Одновременно со Щебнем в камнедробильных машинах получают более мелкие песчанке (высевки) и пылеватые фракции, которые отделяются от него в процессе грохочения.

Прочность щебня характеризуется маркой и определяется по его дробимости при сжатии (раздавливании) в металлическом цилиндре. Значительное содержание в гравии выветрелых обломков осадочных и других пород (иногда до 40--60%) ухудшает их механические свойства; присутствие же обломков магматических пород (гранитных валунов) й песчаников повышает его качество. При разработке гравийных отложений производится разделение их по зерновому составу, поскольку другие виды обогащения затруднительны. Встречающиеся в них отдельные крупные глыбы и гальку подвергают дроблению, что хотя и увеличивает стоимость, но при этом повышает качество гравийного материала. Аналогичным путем поступают и при разработке отложений природного щебня, сложенного преимущественно остроугольными обломками размером до 100--150 мм. При содержании в гравии природного песка от 25 до 40% материал называют песчано-гравийной смесью. Применение гравия и песчано-гравийной смеси в производстве строительных материалов производится после предварительных лабораторных проверок прочности, морозостойкости и других показателей качества в зависимости от конструктивных особенностей сооружения.

Широкое использование имеют легкие крупные заполнители. Природные заполнители получают дроблением пористых известняков, известняков-ракушечников, вулканических и известковых туфов и некоторых других пористых пород; искусственные -- путем термической обработки в основном алюмосиликатного сырья с получением керамзитового, аглопоритового гравия или щебня, а также шунгизита, вакулита, вспученного перлита, термозита (шлаковой пемзы) и других пористых материалов с насыпной плотностью от 250 до 1100 кг/м Керамзитовый гравий и песок получают путем вспучивания в процессе ускоренного обжига (до 1^00°С) гранул из легкоплавкой глины. Вспучивание происходит вследствие выделения газообразных соединений (СОг и др.) внутри каждой гранулы. Аглопоритовый щебень и песок -- путем спекания глинистой породы и отходов от добычи, переработки и сжигания каменных углей на специальных агломерационных металлических решетках с последующим дроблением продуктов обжига. Вакулитовый полый гравий получают путем накатывания слоя малопластичных высокодисперсных пород типа суглинков, супесей, зол ГЭС, сланцевых и других на «ядро» из легкосгораемого органического материала (опилок, торфа, лигнина и др.) и последующего обжига получаемых при этом сырцевых гранул. Сильно поризованные особо легкие щебень и песок получают при нагревании (обжиге) вермикулита, вулканического стекла обсидиана, кремнеземистой горной породы перлита и др. Так, например, при температурах 950--1200°С вода выделяется из перлита и вспученный перлит увеличивается в объеме в 15--20 раз. Получил расширенное применение шунгизит, сырьем для производства которого являются вспучивающиеся шун-гитовые сланцы, содержащие до 3% шунгита -- углерода особой формы.

Заполнители сильно различаются между собой по прочности. Предел прочности при сжатии образцов, изготовленных из разных заполнителей, изменяется у тяжелых горных пород от 10 до 500 МПа, у легких -- от 0,4 до 25 МПа. Принято, чтобы прочность заполнителя превосходила прочность конгломерата на 20--50%, но целесообразнее каждый раз обосновывать минимально допустимую прочность заполнителя по характеристике вяжущего вещества оптимальной структуры.

УП\ -- проба щебня (гравия), кг; тг -- масса остатка на контрольном сите после просеивания раздробленной в цилиндре пробы щебня (гравия), кг. По дробимости различают щебень (гравий) следующих марок: 1400, 1200, 1000, 800, 600, 400, 300 и 20 В пределах этих марок по дробимости при сжатии в цилиндре установлены допустимые содержания зерен слабых пород, т. е. с прочностью при сжатии в водонасыщенном состоянии образцов менее 20 МПа.

По морозостойкости щебень делится на шесть марок: Мрз 15, 25, ЮО, 150, 200 и 30 Числа марок соответствуют количеству циклов попеременного замораживания и оттаивания образцов, при котором потеря массы крупного заполнителя не превышает 5% (для Мрз 15 и 25 допускается потеря массы до 10%). Следует отметить, что эти требования к качеству щебня относятся в основном при его применении в бетонах. Для других видов ИСК технические требования несколько отличаются.

Для всех разновидностей заполнителей имеет важное значение коэффициент размягчения -- отношение предела прочности породы в водо-насыщенном состоянии к прочности при сжатии в сухом состоянии, поскольку он косвенно характеризует морозостойкость материала. Его величина для плотных заполнителей должна быть не менее 0,85, а при заполнителях пористых -- не менее 0,8 и только в конгломератах теплотехнического назначения этот показатель должен быть не менее 0, Во всех случаях требуется учитывать требования последних стандартов на соответствующие разновидности тяжелых и легких заполнителей по показателям их качества.

По крупности плотный гравий и щебень разделяют на фракции 5--10, 10--20, 20--40 и 40--70 мм просеиванием сухой пробы в количестве 10 кг через стандартный набор сит с размерами отверстий 70, 40, 20, 10 и 5 мм. По крупности пористый гравий и щебень применяют трех фракций: от 5 до 10 мм, от 10 до 20 мм и от 20 до 40 мм. Вместо фракций 5--10 мм в легких бетонах допускается применять фракции 3--10 мм, а вместо фракций 10--20 мм использовать фракции 10--15 мм.

В составе некоторых конгломератов, особенно на основе полимерных вяжущих веществ, нередко используют заполнители с частицами пластинчатой формы с образованием своеобразных композиционных материалов. Своеобразным видом «активного заполнителя» может быть и металлическая арматура, например стальная в железобетоне, часто выполняющая функции каркаса в ИСК, если ей придана форма сетки. Направленное расположение арматуры повышает анизотропность получаемого материала (подобно анизотропии кристаллов), что может благоприятствовать механическому упрочнению конструкции. Однако наблюдаются случаи, когда в эксплуатационный период нарушается сцепление вяжущего с арматурой. Тогда такой «заполнитель» становится мало активным, что отрицательно отразится на надежности конструкции в здании или сооружении. Определение разновидности и количества арматуры в теории железобетона производится специальным расчетом.

Кроме зернистых используют заполнители иной формы. Большое распространение в технологии различных ИСК получают волокнистые заполнители, выполняющие в структуре функции армирующего компонента. Волокнистые заполнители направленного (ориентированного) или хаотического расположения увеличивают способность конгломератов к сопротивлению изгибающим и растягивающим нагрузкам. С этой целью используют короткие стальные волокна длиной до 25 мм и диаметром 0,005--0,015 мм, называемые фиброй, стекловолокно, волокна из расплава шлака, керамики, горных пород (например, асбеста, базальтов), которые имеют гораздо большие значения упругости по сравнению с ИСК, например бетоном. Внесение в состав волокнистого заполнителя несколько усложняет технологию ИСК, но приносит эффект в упрочнении конструкций, если только была обоснованно выбрана разновидность волокна. Так, например, обычное стекловолокно сравнительно быстро разрушается в щелочной среде цементного камня, поэтому у нас и за рубежом предложены составы щелочестойких стекловолокон.

Во всех случаях необходима периодическая оценка заполнителей на содержание естественных радионуклидов.

В качестве древесных и других органических заполнителей используют отходы лесозаготовок (вершины, сучья, пни, корни и др.), лесопиления и деревообработки (горбыли, рейки, щепу, стружки и опилки), Одубину (отходы заводов дубильных экстрактов), сечку камыша, сельскохозяйственные отходы (рисовую солому, льняную и конопляную костру, стебли хлопчатника, подсолнечную лузгу), побочные продукты целлюлозно-бумажной промышленности и др Основными являются древесные и сельскохозяйственные отходы.

Органические заполнители применяют для производства теплоизоляционных, а также теплоизоляционно-конструкционных и конструкционных материалов и изделий: арболита, цементного фибролита, ксилолита, камышебетона, торфоплит, теплоизоляционных плит из костры льна, древесноволокнистых и древесностружечных лит и др.

Сырьевая база для получения древесных заполнителей остается практически неограниченной, поскольку ежегодный объем древесных отходов составляет примерно 150 млн.м3, большая часть которых пока рационально не используется. У органических заполните лей имеется между собой много общего, в частности они имею близкие химические составы. За последние годы увеличилось внимание к полимерным заполнителям.

Дробленку (дробленую древесину), представляющую собой пластинчатые или игольчатые частицы длиной (вдоль волокон древесины) 2--20 мм и толщиной до 5 мм, получают из кусковых отхода (горбылей, реек, обрезков). Предварительно, до употребления дробленку длительное время (6--Л2 мес) выдерживают на складах.

Из древесных заполнителей более перспективными являются от ходы деревообработки. Их подвергают предварительной подготовке с целью освобождения от загрязняющих примесей и получении частиц нужной формы (дробленка, стружки или древесная шерсть) размеров. Кусковые отходы древесины перерабатывают в два этапа Первичную переработку производят с помощью рубильных машин в результате чего получают технологическую щепу в виде ромбовидных кусков с размерами по длине волокон древесины 10--40 мм Щепа непригодна для изготовления ИСК, так как является слишком крупной, и изделия с ней имеют большую пористость и низку прочность. При вторичной переработке на молотковых мельница (дробилках) и стружечных станках технологическую щепу превращают в дробленку и стружку. Кроме специально приготовленной стружки применяют также стружку и опилки от столярного и мебельного производства. Древесную шерсть приготовляют из чурако на древесно-шерстяных станках.

Опилки применяют для изготовления опилкобетона, гипсоопи-лочных блоков, ксилолита и др., причем используют отходы главным образом хвойных пород и значительно меньше -- лиственных.

Важным свойством древесного заполнителя является его пористость, от которой зависит пористость ИСК. В заполнителе имеются поры внутри частиц и поры (пустоты) между ними. Пористость зависит от различных факторов -- от крупности частиц, степени уплотнения и др. При средней плотности древесины 300, 500 и 700 кг/м3 (в абсолютно сухом состоянии) ее пористость равна соответственно 81, 68 и 55%. Для получения наиболее плотного ИСК необходимо подбирать смесь частиц древесного заполнителя с минимальной пористостью.

Большое значение имеют средняя плотность древесины и насыпная плотность древесного заполнителя, которые зависят от многих факторов. Средняя плотность древесины колеблется в широких пределах -- от 380 до 1100 кг/м3 (в абсолютно сухом состоянии), а насыпная, например осиновой дробленки, -- 555 кг/м3, березовой -- 247,2 кг/м3 (в абсолютно сухом состоянии).

Древесные заполнители обладают значительным водопоглощением. Вода поглощается оболочками клеток древесины (связанная, Или гигроскопическая влага) и капиллярами (свободная, или капиллярная влага), т. е. полостями клеток, межклеточными пустотами, а также сосудами (у лиственных пород). Количество капиллярной влаги в заполнителе зависит от общего объема капилляров в древесине, а водопоглощение -- от крупности его частиц: чем они мельче, тем больше водопоглощение, так как увеличивается удельная поверхность. Наибольшее количество воды заполнитель поглощает в первые полтора часа, например древесная дробленка до 160--190% от абсолютно сухой массы.

Большое влияние на качество древесных ИСК оказывает и влажность древесных отходов. Влажность древесины у разных пород дерева различна, а для одной и той же породы она зависит от местоположения в стволе, от времени года, суток, от температуры и др. Значительно увлажненные отходы плохо поддаются переработке их в заполнители, например при переработке в стружку сильно увлажненной щепы частицы стружки становятся значительно разволокненными и получается стружка низкого качества. Различия во влажности дерева, его отходов и, следовательно, в древесных заполнителях оказывают отрицательное влияние на однородность ИСК.

При высыхании древесного заполнителя происходит уменьшение его объема (усушка). Усушка древесины связана с испарением влаги из клеточных оболочек; при удалении ее из капилляров усушки не происходит. Наибольшая усушка происходит поперек волокон (до 12%), а вдоль волокон она незначительна (0,1%). В целом усушка древесного заполнителя в ИСК вызывает дополнительные напряжения и влияет на деформативные свойства. Вследствие волокнистого строения древесный заполнитель вызывает некоторую анизотропию прочности ИСК.

Древесный заполнитель обладает также гигроскопичностью, причем при поглощении влаги древесина набухает, что сопровождается давлением разбухания. Набухание происходит при поглощении влаги оболочками клеток, которые при этом увеличиваются в объеме, тогда как поглощение влаги капиллярами древесины набухания не вызывает. При расчете составов ИСК (например, арболита) учитывают набухание древесного заполнителя.

2. Вспучивание обсидиана -- отхода производства щебня и песка из перлитов и литоидной массы -- для использования в качестве заполнителя легких бетонов

Увеличение количества обсидиана в бетонах снижает их прочность, поэтому при производстве щебня и песка из перлитов и литоидной пемзы целесообразно сепарировать обсидиан. Образующийся отход производства можно утилизировать в строительной индустрии. Явление вспучивания кислых вулканических пород известно давно. Новизна работы заключается в том, что за счет регулирования температуры и времени вспучивания получают продукт с заранее заданной объемной массой от 200 до 500 кг/м3 -- заполнитель, который можно использовать для различных типов легких бетонов: теплоизоляционных, конструкционных, конструкционно-теплоизоляционных.

К обсидианам относят вулканическое стекло, количество воды в котором не превышает 1 %. Окраска серая, дымчатая, черная, коричневая, пятнистая многих оттенков. Обсидианы различных месторождений имеют достаточно близкий химический состав. Содержание окислов колеблется в следующих пределах, мас. %: SiO2 -- 70,01-81,42; Al2O3 -- 6,60-16,32; Fe2O3 -- 0,09-1,90; CaO -- следы-2,63; MgO -- 0,01-1,30; SO3 -- 0-0,41; Na2O + K2O -- 2,02-9,81; ППП -- 0,14-0,40.

Измельченный обсидиан черного цвета был разделен на фракции 10-20, 5-10, 2,5-5 мм и подвергнут вспучиванию при температурах 1 050, 1 100, 1 150 и 1 200 °C. Время выдержки составляло 3, 5, 10 и 20 мин.

Наиболее низкую объемную массу 200-350 кг/м3 имеет фракция 5-20 мм, вспученная при температурах 1 050-1 150 °C в течение 3-10 мин.

На рис. 1 представлена зависимость коэффициента вспучивания от времени выдержки при различных температурах.

Рис. 1. Зависимость коэффициента вспучивания от времени при температурах 1 050 °С (а), 1 100 °С (б), 1 150 °С (в) для фракций:

1 -- 10-20 мм; 2 -- 5-10 мм; 3 -- 2,5-5 мм

На величину коэффициента вспучивания, а значит, и объемной массы наряду с температурой существенное влияние оказывает продолжительность тепловой обработки. При недостаточной выдержке процесс не завершается, в результате чего наблюдается увеличение объемной массы (снижение коэффициента вспучивания). При чрезмерно длительном вспучивании происходит сплавление частиц, что также сопровождается ростом объемной массы.

На рис. 2 представлена зависимость водопоглощения в течение 2 ч от общей пористости вспученного обсидиана.

Рис. 2. Зависимость водопоглощения в течение 2 ч от общей пористости для фракций:

а -- 10-20 мм; б -- 5-10 мм; в -- 2,5-5 мм

С увеличением общей пористости водопоглощение возрастает. Уменьшение водопоглощения на некоторых участках связано с оплавлением внешней поверхности частиц и образованием закрытой пористости.

На рис. 3 приведена зависимость прочности вспученного обсидиана от общей пористости.

Рис. 3. Зависимость прочности от пористости

С ростом общей пористости прочность вспученного обсидиана уменьшается, однако она достаточна для использования этого материала в качестве легкого заполнителя бетонов.

Таким образом, вспучивание обсидиана, являющегося побочным продуктом производства щебня и песка из перлитов и литоидной пемзы, позволяет утилизировать отходы и получать легкий тепло- и звукоизоляционный материал для строительной индустрии.

3. Применение перлита в качестве наполнителя бетона

Перлит - это горная порода вулканического происхождения

На кромке потока лавы, в местах первичного соприкосновения магматических расплавов и земной поверхности, в результате быстрого охлаждении (закалки) лавы формируется вулканическое стекло -- обсидиан. В дальнейшем подземные воды проникают сквозь обсидиан, происходит его гидратация и образование гидроксида обсидиана -- перлита.Для перлита характерна мелкая концентрически-скорлуповатая отдельность (перлитовая структура), по которой он распадается на округлые ядра (перлы), напоминающие жемчужины с характерным блеском. Среди других вулканических пород перлит отличается наличием конституционной воды (более 1%). Пористость может составлять 8-40%.

Перлит может иметь черную, зеленую, красно-бурую, коричневую, белую окраску различных тонов.

Разновидности перлита: обсидиановый (с примесями обсидиана), сферолитовый (с примесями полевого шпата), смолянокаменный (однородный по составу), стекловатый и другие.

По текстурным признакам выделяют массивный, полосчатый, брекчиевидный и пемзовидный перлиты.

Вспученный перлит получают путем измельчения и термической обработки кислого вулканического стекла перлита.

Вода в исходном перлите находится в двух основных формах: свободной (на поверхности породы) и связанной. Наличие конституционной воды и придает перлиту способность вспучиваться при нагревании. Вода снижает точку размягчения породы и действует, как средство ее расширения в расплавленном состоянии.

Вспучивание перлита осуществляется в печах методом термического удара при 900-1100° С. При этом перлит переходит в пиропластическое состояние. Выделение газов, главным образом Н2О, носит характер взрыва, и стекло вспенивается, образуя вспученный перлит с высокой вязкостью. Вместе с водой во вспучивании участвуют и другие газы: Н2, N2, СО2, СО, однако роль их второстепенна. Связанная вода испаряясь создает бесчисленные мельчайшие пузырьки в размягченной массе. Порода распадается на шарообразные зерна с увеличением в объеме в 4-20 раз и пористостью до 70-90%.

Вспучивание перлита может производиться в одну или две стадии термообработки, что определяется процентом содержания воды в исходном сырье. Если количество воды не превышает 3,5%, то вспучивание перлита производится при однократном обжиге при температуре 900-1100° С. Если содержание воды большее, избыточное ее количество предварительно удаляют при 300-450° С.

Внешне вспученный перлит -- это мелкие шершавые камушки окраски от снежно-белой до серо-белой, твердые, но крошащиеся в песок, без запаха.Вспученный перлит производится различного фракционного состава: от перлитовой пудры (менее 0,14 мм) до перлитового щебня (10-20 мм).В зависимости от размера зерен и области применения выделяют строительный перлит (фракция 0,16-2,50 мм), агроперлит (1-5 мм) и фильтроперлит (0,10-0,20 мм).

Состав Основные компоненты перлита: двуокись кремния SiO2 (65-75%), окись алюминия AI2O3 (10-16%), окись калия К2О (до 5%), окись натрия Na2O (до 4%), окись железа Fe2O3 (от долей до 3%), окись магния MgO (от долей до 1%), окись кальция CaO (до 2%), вода H2O (2-6%). Также могут присутствовать другие примеси.

Свойства Вспученный перлит -- сыпучий, пористый, рыхлый, легкий, долговечный материал. Огнестоек: температура применения -- от минус 200 до 900° С. Обладает тепло- и звукоизолирующими свойствами, высокой впитывающей способностью: способен впитать жидкости до 400% собственного веса. Биологически стоек: не подвержен разложению и гниению под действием микроорганизмов, не является благоприятной средой для насекомых и грызунов. Химически инертен: нейтрален к действию щелочей и слабых кислот. Перлит является экологически чистым и стерильным материалом, не токсичен, не содержит тяжелых металлов.

Применение перлита

Перлит может применяться в естественном виде (в строительстве), но чаще используется вспученный перлит.

Строительство. Использование перлита в строительстве позволяет повысить характеристики тепло-, звукоизоляции и пожаробезопасности возводимых сооружений, при этом значительно сократив массу и объемы конструкций. Перлит применяется самостоятельно (в качестве замены песка и щебня, теплозвукоизоляционной засыпки для полов, стен, кровли) или в смесях с другими строительными материалами (как компонент при изготовлении теплоизоляционных изделий, теплых штукатурок, легких строительных растворов, наполнителей для линолеума, красок, сухих строительных смесей). Также перлит -- это абразивный материал. Спортивное строительство. При устройстве спортивных площадок и гольф-полей перлит добавляется в почву перед посевом травы. Благодаря этому поле не затопляется и не размывается в дождливые периоды, не пересыхает и сохраняет травяной покров в периоды засухи.

Нефтеперерабатывающая и газовая промышленность

Перлит эффективно используется в качестве адсорбента при разливе нефти или мазута. При этом нефтепродукты легко выгорают из впитавшего их перлита. Перлит добавляется в тампонажные цементы, предназначенные для крепления нефтяных и газовых скважин.

В жилищно-коммунальном хозяйстве перлит применяется для очистки водопроводной воды после ее химического обеззараживания и перед доведением ее до потребителя, для очистки сточных вод.Пищевая промышленность. Среда для хранения продуктов. Фильтр для очистки вин, сахарных сиропов, пива, фруктовых соков, растительных масел.Экология. Очистка поверхностей водоемов и земель от химических и промышленных загрязнений, радионуклидов.

В медицинской промышленности перлит используется для фильтрации фармацевтических препаратов.

Также перлит применяется в стекольной, металлургической, химической отраслях промышленности, сельском хозяйстве (агроперлит).

Агроперлит -- это вспученный перлит фракций 1-5 мм, наиболее подходящих для применения в сельском хозяйстве.

Применение агроперлита

Комнатные растения

1. Перлит мелких фракций используют в чистом виде или в составе легких смесей (например, с торфом, мхом-сфагнумом или песком в соотношении 1:1) для проращивания семян и укоренения черенков.Замена воды на перлит при водном укоренении черенков позволяет избежать их загнивание.

При выращивании рассады овощных и цветочных культур в перлите, реже наблюдаются грибковые заболевания (черная ножка и другие). Однако необходимо помнить, что перлит не содержит питательных веществ и для того, чтобы получить здоровую рассаду, необходимо поливать ростки водным раствором удобрений и применять бактериальные препараты для создания особой микрофлоры. При этом следует использовать комплексные удобрения, а не кальциевые препараты, так как последние приведут к смещению нейтральной pH реакции перлита в щелочную сторону.2. Для того, чтобы семена равномерно распределились по поверхности почвы, их смешивают с мелким перлитом. Им же можно присыпать семена после посева для защиты от плесени и пересыхания. Так как перлит пропускает некоторое количество солнечных лучей, им можно присыпать даже светочувствительные семена.

3. Использование перлита в качестве компонента субстрата (до 40%) позволяет значительно улучшить характеристики посадочной смеси.Повышается пористость и рыхлость, а значит, воздухопроницаемость, предотвращается слеживание, комкование, уплотнение, затвердение почвы, образование поверхностной корки. Корни равномерно развиваются по всему земляному кому.

Кроме кондиционирования почвы перлит защищает корневую систему от внешних перепадов температуры. Субстрат с перлитом меньше охлаждается в холодное время и не перегревается в жаркие периоды, сглаживаются суточные колебания температуры.

Вода и растворы питательных веществ впитываются перлитом (100 грамм перлита могут вобрать до 400 мл воды) и постепенно отдаются растению. Достигается сокращение количества поливов, экономия воды (уменьшаются потери воды от испарения и дренажа) и удобрений (не вымываются). Предотвращается загнивание корней из-за избыточного полива и застоя воды. Благодаря капиллярному распространению влаги почва увлажняется равномерно.

Применение перлита снижает общий вес земельной смеси, что наиболее актуально для крупномеров.

4. Перлит используют в чистом виде или в качестве компонента субстрата при гидропонном выращивании растений на питательных растворах.5. Перлит крупных фракций используют самостоятельно или в смеси с керамзитом в качестве дренажного слоя на дне посадочной емкости.6. Хорошо смоченный перлит крупных фракций, разложенный на поддоны возле растений, повысит влажность воздуха в помещениях в засушливые периоды и отопительный сезон. При этом вода с поверхности перлита будет испаряться постепенно, и эффект будет не так мимолетен, как после опрыскиваний.7. Перлит -- благоприятная среда для хранения луковиц, клубней, клубнелуковиц, корневищ. Посадочный материал укладывают послойно, без взаимного соприкосновения, пересыпая слоями перлита 2-7 см. Таким образом обеспечивается защита от гниения, неблагоприятных внешних температурных и водных воздействий, преждевременного роста.8. Мульчирование перлитом верхнего слоя земли предотвратит образование твердой сухой почвенной корки. Белый цвет материала отразит солнечный свет на нижнюю сторону листьев.

9. Крупным агроперлитом можно заполнять пространства между контейнерами при составлении групповых цветочных композиций.Использованный для укоренения черенков, выращивания рассады и хранения посадочного материала перлит может быть применен повторно: для комнатного цветоводства -- после прокаливания, для внесения в открытый грунт -- без предварительной обработки.

В агропромышленном комплексе перлит, кроме мелиоранта, сорбента, мульчи, служит носителем химикатов длительного действия, добавкой к удобрениям для предотвращения слеживания и обеспечения их равномерного распределения при внесении в грунт; применяется в качестве стерильного и биостойкого упаковочного материала для хранения и транспортировки черенков, «покоящихся» луковиц и клубней.

Недостатки1. Мелкий перлитовый песок сильно пылит, что неблагоприятно сказывается на легких и глазах. Поэтому перед использованием перлит следует смочить из распылителя, а работать в респираторе или маске. При попадании пыли в глаза их обильно промывают водой.

Кроме того, увлажненный перлит не будет подниматься на воде при поливах и оттягивать всю влагу на себя.

2. Перлит не везде можно приобрести. Возможна продажа под видом перлита искусственных материалов, не обладающих его свойствами.3. Может быть дорогим при больших потребностях (в садоводстве). Имеются более дешевые и бесплатные заменители.

4. Белый цвет перлита затрудняет диагностику почвенных вредителей (корневого червеца, мучнистого червеца, личинок грибного комарика).5. Перлит имеет нейтральный показатель pH. При выращивании растений в чистом перлите и поливе жесткой водой может произойти сдвиг pH субстрата в щелочную сторону, что угнетающе подействует на рост растений и заблокирует доступность для них питательных веществ.6. Имеет положительный электрический заряд, в связи с чем не может удерживать положительные ионы удобрений, не участвует в процессе ионного обмена.

Возможные аналоги и заменители: вермикулит, кирпичная крошка, мелкий керамзит, пенопластовая крошка, песок (последние два компонента придают субстрату пористость и рыхлость, но не удерживают воду).Часто перлит используют совместно с вермикулитом. Преимущества перлита перед вермикулитом: капиллярное распространение влаги, легче отдает воду растению, быстрее просыхает между поливами. Преимущества вермикулита перед перлитом: меньшая усадка при измельчении (меньше слеживается), не образует пустот при засыпке, малые абразивные свойства (не причиняет механических повреждений корням), меньшая гигроскопичность, ионообменная способность.

Срок годности и действия перлита не ограничен и обусловлен сохранностью его структуры.

В качестве заполнителей для легких бетонов используют природные и искусственные сыпучие пористые материалы с насыпной плотностью не более 1200 кг/м3 при крупности зерен до 5 мм (песок) и не более 1000 кг/м3 при крупности зерен 5...40 мм (щебень, гравий).

По происхождению пористые неорганические заполйители делят на три группы: природные, искусственные (специально изготовляемые) и заполнители из отходов промышленности. Природные пористые заполнители изготовляют дроблением и рассевом легких горных пород (пемзы, вулканических шлаков и туфов, пористых известняков, известняков-ракушечников, известняковых туфов и др).

Искусственные пористые заполнители получают из отходов промышленности или путем термической обработки силикатного сырья, подвергнутых рассеву или дроблению и рассеву. К ним относятся: а) керамзит и его разновидности, шунгизит, зольный гравий, глинозольный керамзит, вспученные азерит, получаемые обжигом со вспучиванием подготовленных гранул (зерен) из глинистых и песчано-глинистых пород (глин, суглинков, глинистых сланцев, аргиллита, алевролита), шунгитосодержащих сланцев, трепелов, золошлаковой смеси или золы-уноса ТЭЦ; б) термолит, получаемый при обжиге без вспучивания щебня или подготовленных гранул кремнистых опаловых пород (диатомита, трепела, опоки и др.); в) перлит вспученный, получаемый при обжиге гранул из вулканических водосодержащих пород (перлита, обсидиана и других водосодержащих вулканических стекол); г) вермикулит вспученный, получаемый при обжиге подготовленных зерен из природных гидратированных слюд. Из отходов промышленности применяют песок и щебень преимущественно из гранулированного или вспученного металлургического шлака, а также грубодисперсные золы-уносы и золошлаковые смеси ТЭЦ.

Гранулированный шлак -- мелкозернистый пористый материал, получаемый при быстром охлаждении расплавов металлургических шлаков. Шлаковую пемзу (термозит) получают в виде глыб ячеистой структуры путем вспучивания шлакового расплава с помощью воды, воздуха или их смеси. Существующие способы поризации делят на две основные группы. К первой относятся методы поризации расплава, осуществляющиеся в периодически действующих агрегатах, например в бассейнах; ко второй -- методы поризации расплава в непрерывно действующих агрегатах (например, гидроэкранная установка). Фиксацию пористой структуры осуществляют быстрым охлаждением расплава. Куски шлаковой пемзы дробят и рассеивают на щебень и песок. В зависимости от насыпной плотности щебня (400...800 кг/м3) прочность заполнителя составляет 0,4...2,0 МПа.Аглопорит представляет собой искусственный пористый заполнитель с размером гранул 5...20 мм, насыпной плотностью 400...700 кг/м3 и пределом прочности 0,4...1,5 МПа. Сырьем для производства аглопорита служат глинистые породы (суглинок, супесь, аргиллит, глинистый сланец), а также отходы промышленности -- глинистые отходы от добычи и обогащения углей, горелая порода, топливные шлаки, зола ТЭЦ и другие камневидные силикатные породы. Технология производства аглопоритового гравия из зол ТЭЦ методом спекания сырцовых гранул на решетках алгомерационных машин позволяет получать искусственный пористый заполнитель в виде гранул округлой формы определенного зернового состава со спекшейся поверхностной оболочкой повышенной прочности.

Гравий и песок керамзитовый относятся к специально изготовленным заполнителям -- это материал округлой формы, который получают при обжиге глин. Создание пористой структуры достигается вспучиванием глинистого вещества, нагретого до пиропластического состояния газами, выделяющимися из него в процессе нагревания. Керамзитовый гравий выпускают прочностью 0,6...6 МПа, насыпной плотностью 150...800 кг/м3, средней прочностью 2,6 МПа. Керамзитовый песок получают дроблением и рассевом керамзитового гравия или щебня или как самостоятельную фракцию при обжиге. Гравий керамический полый -- материал округлой формы -- получают обжигом специально изготовленных пустотелых глиняных гранул.

Вспученный перлит изготовляют в виде щебня и песка путем кратковременного обжига вулканических водосодержащих стекловидных пород. Процесс теплообработки перлитов в зависимости от свойств сырья и вида готового продукта (щебня и песка) осуществляют путем одно- и двух стадийного обжига в коротких вращающихся печах и во взвешенном состоянии в вертикальных печах.

По форме и характеру поверхности пористые заполнители могут иметь округлую, относительно гладкую или угловатую и шероховатую (ноздреватую) поверхность. По крупности зерен их делят на следующие фракции: песок -- до 1,2 и 1,2...5,0 мм, щебень или гравий -- 5... 10, 10...20 и 20...40 мм. По показателям насыпной плотности в сухом состоянии (кг/м3) пористые заполнители делят на марки Ml00... 1200 для щебня (гравия) и до Ml200 для песка. Пористые заполнители в зависимости от прочности, определяемой сдавливанием в цилиндре, подразделяют на марки.

Выбор крупного заполнителя производят на основе подбора состава бетона с учетом формы зерен (гравий, щебень), вида и свойств мелкого заполнителя и структуры и вида бетона (теплоизоляционного, конструкционно-теплоизоляционного, конструкционного).

Содержание водорастворимых сернистых соединений в пересчете на SO3 в заполнителях, предназначенных для армированных легких бетонов, не должно превышать 1 % по массе. В качестве добавок для легких бетонов применяют тонкомотые доменные гранулированные шлаки, диатомит, трепел, 0поки, туф, пемзу, трасс. Кроме указанных в легкие бетоны вводят добавки, являющиеся замедлителями или ускорителями твердения. В качестве порообразователей для снижения плотности состав легких бетонов вводят алюминиевый порошок, пергидроль, смолосапониновый порообразователь и другие добавки. Для приготовления и увлажнения легкого бетона используют питьевую воду, отвечающую тем же требованиям, что и для тяжелых бетонов.

Литература

заполнитель бетон песок пемза перлит

1. Карпачева, А.А. Керамический кирпич из отходов углеобогащения / А.А. Карпачева // «Развитие дорожно-транспортного комплекса и строительной инфраструктуры на основе рационального природопользования». - Омск: СиБАДИ, 2007. - С. 118-121.

2. Карпачева, А.А. Разработка рекомендаций по улучшению качества кирпича на кирпичном заводе «Абашевский» / А.А.Карпачева, // Сб. Исследовательская и инновационная деятельности учащейся молодежи: поиски, решения: сборник трудов областной научно-практической конференции. - Кемерово, 2006. - С.66-69.

3. Панова, В.Ф. Применение отходов углеобогащения для производства строительных материалов / В.Ф. Панова, А.А. Карпачева // Сб. Проблемы и пути создания композиционных материалов и технологии комплексного извлечения металлов из вторичных минеральных ресурсов. - Новокузнецк: CибГИУ, 2005. - С.166-172.

4. Карпачева, А.А. Рекомендации по корректировке качества кирпича из отходов углеобогащения. / А.А. Карпачева // Сб. докладов 64-й научно-технической конференции НГАСУ (Сибстрин). - Новосибирск: НГАСУ, 2007. - С. 12.

5. Карпачева, А.А. Промышленные отходы Кузбасса, их положение к квалификационной системе как сырья для получения обжиговых и безобжиговых строительных материалов / А.А. Карпачева, В.Ф. Панова // Сб. докладов 61-й научно-технической конференции НГАСУ (Сибстрин). - Новосибирск: НГАСУ, 2004. - С. 24-25.

6. Карпачева, А.А. Активизация отходов углеобогащения / А.А. Карпачева // Экология и ресурсосберегающие технологии в строительном материаловедении. Международный сборник научных трудов. Новосибирск: НГАУ, 2006. - С.91-93.

Размещено на Allbest.ru


Подобные документы

  • Изучение происхождения и добычи горных пород, служащих сырьем для получения природных каменных материалов. Особенности полуфабрикатов и требований к ним: обогащение, фракционирование песка и гравия. Контроль технологических процессов и качества продукции.

    курсовая работа [63,8 K], добавлен 05.06.2010

  • Номенклатура искусственных пористых неорганических заполнителей. Выбор способа производства вспученного перлита. Расчет и выбор технологического оборудования. Режим работы цеха. Характеристика сырьевых материалов. Технологическая схема производства.

    курсовая работа [399,0 K], добавлен 01.05.2016

  • Технические характеристики, виды и особенности применения щебня, песка, гравия. Аналитический обзор цен на исследуемые строительные материалы. Последовательность и технология производства отделочных работ в квартире, калькулирование их стоимости.

    курсовая работа [72,4 K], добавлен 06.08.2013

  • Технологии, используемые на бетонных заводах. Основные параметры и размеры песка, щебня и гравия из горных пород, применяемых для строительных работ. Классификация цемента, требования к нему. Контроль качества бетона, его условные обозначения и свойства.

    отчет по практике [339,9 K], добавлен 10.11.2014

  • Общие сведения о тяжелом, легком и ячеистом бетоне. Характеристика бетонных смесей по удобоукладываемости: марки по жесткости П-1 и П-3. Расчет состава легкого и тяжелого бетона. Определение расходов воды, цемента, щебня и песка на 1 метр кубичный.

    курсовая работа [160,2 K], добавлен 08.02.2012

  • Характеристика свойств песка, щебня и цемента - составляющих материалов бетона. Описание технологического процесса изготовления железобетонных конструкций конвейерным способом. Испытание прочности плит методами упругого отскока и пластических деформаций.

    контрольная работа [135,1 K], добавлен 18.11.2011

  • Определение и краткая история высокопрочного бетона. Общие положения технологии производства бетонов: значение качества цемента, заполнителей, наполнителей и воды. Основные характеристики структурных элементов бетона. Способы повышения его прочности.

    реферат [25,9 K], добавлен 07.12.2013

  • Оценка агрессивности водной среды по отношению к бетону. Определение параметров состава бетона I, II и III зон, оптимальной доли песка в смеси заполнителей, водопотребности, расхода цемента. Расчет состава бетонной смеси методом абсолютных объемов.

    курсовая работа [1,2 M], добавлен 12.05.2012

  • Классификация бетона по маркам и прочности. Сырьевые материалы для приготовления бетонов. Суперпластификаторы на основе поликарбоксилатов. Проектирование, подбор и расчет состава бетона с химической добавкой. Значения характеристик заполнителей бетона.

    курсовая работа [52,7 K], добавлен 13.03.2013

  • Применение заполнителей при производстве бетона; подбор оборудования для изготовления керамзитового гравия. Расчет производительности цеха, сырьевых материалов, электроэнергии. Экономические показатели; контроль качества продукции; техника безопасности.

    курсовая работа [59,9 K], добавлен 25.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.