Конструювання пілона третього поверху

Розрахунок і конструювання пілона третього поверху, який розглядається як умовно центрально-стиснутий елемент при випадкових ексцентриситетах. Визначення розрахункового навантаження на пілон. Розрахунок пальових фундаментів та несучої здатності палі.

Рубрика Строительство и архитектура
Вид контрольная работа
Язык украинский
Дата добавления 02.03.2011
Размер файла 587,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Розрахунок і конструювання пілона

Вихідні дані

Пілон третього поверху розглядаємо як умовно центрально-стиснутий елемент при випадкових ексцентриситетах.

Підраховуємо розрахункове навантаження на пілон:

Власна вага колони:

Gn = bc• hс• h0• су• гf = 0,8• 1,5·3• 25• 1,1 = 198 кН;

Навантаження від покриття і перекриття:

Постійне навантаження G = 8818,49 кН;

Тривале навантаження V = 3354,12 кН;

Короткочасне навантаження Vsh = 4592,33 кН;

Довгостроково діюче розрахункове навантаження:

Nld = G + Gn + V = 8818,49 + 198 + 3354,12 = 12370,61 кН,

до нього відносяться постійна і всі тимчасові навантаження, за винятком короткочасних.

Короткочасне навантаження Nсd = Vsh = 4592,33 кН;

Повне навантаження дорівнює:

N3 = Nld + Nсd = 12370,61 + 4592,33 = 16962,94 кН.

Розрахунок пілону

Розмір поперечного перерізу пілона приймаємо рівним hc·bc = 25·150 см, бетон класу В30, Rb = 17 МПа, арматура подовжня зі сталі класу А-III, Rsc = 365 МПа, гb2 = 0,9, µ - коефіцієнт армування, прийнятий рівним µopt = 0,74%.

Спочатку обчислюємо відношення Nld / N3 = 12370,61/16962,94 = 0,73;

гнучкість пілона л = l0/hc = 600/25 = 24 > 4, л = l0/bc = 600/150 = 4,

отже, необхідно враховувати прогин пілона

При hc = 25 см > 20 см коефіцієнт з = 1; коефіцієнт ц обчислюємо по формулі:

ц1 = цb + 2·(цr - цb)·б1.

Задаємося відсотком армування µ = 0,74% (коэф. µ = 0,0074) і обчислюємо б1:

Потім знаходимо по таблиці коефіцієнт цb = 0,913 і, припускаючи, що

Ams < 1/3·(As + As') цr = 0,913,

тому що цr = цb = 0,913, ц1 = 0,913.

Необхідну площу перетину подовжньої арматури обчислюємо по формулі:

Приймаємо конструктивно 8 діаметром 28 А-III, ?As1 = 49,26 см2 та 6 діаметром 28 А-III, ?As2 = 36,95 см2, тоді

?As = ?As1 + ?As2 = 49,26 + 36,95 = = 86,21 см2.

Відсоток армування µ = (86,21/12000)·100 = 0,72 % (що близько прийнятому µ = 0,74 %).

Приймаючи ц1 = 0,913, обчислюємо фактичну несучу здатність перетину колони по формулі:

Nfc = з·ц(Rb·гb2·A + ?As·Rsc) = 1·0,913·[17·0,9·(100)·150·80 + 86,21·365·(100)] = 19635,6 кН > N3 = 16962,94 кН,

міцність перетину достатня.

Робочі стрижні подовжньої арматури розташовуємо по периметру в поверхні перетину колони з дотриманням мінімальної величини захисного шару. Відстань у світлі між стрижнями повинне бути не менш 5 см, товщина захисного шару бетону - не менше 15 мм. При стисканні робочої арматури довжина нахлесткі стрижнів по БНіП повинна бути не менш 30ds.

Підбір арматури

Поперечну арматуру (хомути) відповідно до даних табл. приймаємо діаметром 8 мм класу А-1 кроком S = 300 мм.

Схеми армування пілону показані на аркуші.

2. Розрахунок пальових фундаментів

пілон фундамент пальовий навантаження

2.1 Фізико-механічні властивості ґрунтів

Таблиця 3.1 Фізико-механічні властивості ґрунтів

Показники властивостей

Одиниці вимірювання

ІГЕ-3

ІГЕ-4

ІГЕ-5

ІГЕ-6

Природна вологість, W

долі один.

0,135

0,087*

0,295

0,019

0,118

Вологість на межі текучості, WL

0,20

0,23

-

0,20

Вологість на межі розкочування, WР

0,15

0,17

-

0,14

Число пластичності, IР

0,05

0,06

-

0,06

Показник текучості, IL

<0

<0

-

<0

Гранулометричний склад: вміст фракцій, мм

2.00 - 1.00

%

-

-

0,7

-

1.00 - 0.50

-

-

3,0

-

1.00 - 0.25

-

-

31,7

-

1.00 - 0.10

-

-

51,1

-

<0.10

-

-

13,5

-

Коефіцієнт фільтрації, Кф

м/добу

-

-

2,4

-

Щільність грунту,

т/м

1,77

1,62*

1,93

1,63

1,80

Щільність сухого грунту,

1,56

1,49

1,60

1,61

Щільність часток грунту,

2,69

2,69

2,65

2,68

Коефіцієнт пористості, е

долі один.

0,724

0,805

0,656

0,665

Питоме значення,

при

при

КПа

13

13

9

12*/6

12*/6

8*/4

1

1

0

14

14

9

Кут внутрішнього тертя,

при

при

град.

24

24

24

24*

15

24*

15

21*

13

32

32

28

26

26

23

Початковий просідний тиск, P sl

МПа

-

0,16

-

-

Початкова просідна вологість, W sl

частка один.

-

0,240

-

-

Модуль деформації,

МПа

12

13*7

26

14

Розрахунковий опір,

кПа

210

330*160

350

230

Показники властивостей

Одиниці вимірювання

ІГЕ-7

ІГЕ-8

ІГЕ-9

Природна вологість, W

долі один.

0,186

0,072*

0,220

0,070*

0,215

Вологість на межі текучості, WL

0,20

-

-

Вологість на межі розкочування, WР

0,14

-

-

Число пластичності, IР

0,06

-

-

Показник текучості, IL

0,77

-

-

Гранулометричний склад: вміст фракцій, мм

2.00 - 1.00

%

-

0,1

1,0

1.00 - 0.50

-

1,0

4,5

1.00 - 0.25

-

9,0

23,0

1.00 - 0.10

-

60,4

56,2

<0.10

-

29,5

15,3

Коефіцієнт фільтрації, Кф

м/добу

-

0,8

2,5

Щільність грунту,

т/м

1,89

1,79*

2,04

1,80*

2,04

Щільність сухого грунту,

1,59

1,67

1,68

Щільність часток грунту,

2,68

2,66

2,65

Коефіцієнт пористості, е

долі один.

0,686

0,593

0,577

Питоме значення,

при

при

КПа

11

11

7

5

5

3

3

3

2

Кут внутрішнього тертя,

при

при

град.

21

21

18

32

32

29

35

35

32

Початковий просідний тиск, P sl

МПа

-

-

-

Початкова просідна вологість, W sl

частка один.

-

-

-

Модуль деформації,

МПа

10

23

35

Розрахунковий опір,

кПа

190

-

-

2.2 Вибір глибини закладання роствірка

Визначення глибини закладання роствірка залежить від декількох чинників:

- Глибини промерзання ґрунту

Нормативна глибина сезонного промерзання ґрунту визначається по формулі:

м, де

Mt - коефіцієнт, чисельно рівний сумі абсолютних значень середньомісячних негативних температур за зиму в даному районі по СНиП 2.01.01-82 "Будівельна кліматологія і геофізика".

d0 - величина в метрах, що приймається рівною:

? для суглинків і глин - 0,23 м;

? для супісків, пісків дрібних і пилуватих - 0,28 м;

? для пісків середньої крупності, великих і гравелистих - 0,30 м;

Розрахункова глибина сезонного промерзання ґрунту визначається:

 м, де

kh - коефіцієнт враховує вплив теплового режиму споруди і приймається по таблиці №1 СНиП 2.02.01-83*.

- Наявність конструктивних особливостей

У нашому випадку підвальних приміщень немає, тому

- Глибина закладання роствірка

Враховуючи всі перераховані умови, приймаємо глибину закладання роствірка dр = 1,2 м, виходячи з кратності ростверка по висоті 15 см.

2.3 Визначення несучої здатності палі

, де

гс - коефіцієнт умов роботи ( гс = 1);

А - площа перетину палі;

R - розрахунковий опір під підошвою палі, залежить від довжини палі і грунту. (R = 12600 кПа);

кН

2.4 Розрахункове навантаження на палю

Визначаємо по формулі:

кН

де гк - коефіцієнт запасу. Для розрахунку він дорівнює 1,4; для польових випробувань _ 1,25.

2.5 Розрахунок ростверка як залізобетонній конструкції

Розрахунок на продавлювання в даному випадку цей розрахунок не потрібно проводити, оскільки конструкція ростверка жорстка.

Підбір арматури

У нашому ж випадку, коли ростверк жорсткий, ми приймаємо конструктивно сітку з арматури А-III діаметром 12 мм.

3. Розрахунок оболонки

3.1 Просторові конструкції

З коротких металевих стрижнів можна утворювати різні просторові ґратчасті конструкції, придатні для перекриття великих просторів. Такі конструктивні системи останнім часом одержали широке поширення і їх ефективно використовують у плоских і криволінійних покриттях суспільних і виробничих будинків.

Застосування просторових ґратчастих конструкцій у сучасному будівництві дозволяє:

- домагатися органічної єдності конструкції й архітектурної форми;

- створювати виразні архітектурні рішення внутрішнього простору і спорудження в цілому;

- перекривати приміщення з будь-якою конфігурацією плану;

- істотно полегшувати масу покриття, підвищуючи за рахунок цього ефективність роботи конструкції на корисні навантаження;

- за рахунок багаторазової повторюваності уніфікувати елементи та вузлові деталі, забезпечувати можливість потокового виготовлення їх на високомеханізованих заводах;

- зручно і легко транспортувати збірні елементи з заводу-виготовлювача до місця будівництва;

- звести роботу на будівельному майданчику до простої та швидкої зборки елементів.

Недоліками просторових ґратчастих систем покрить вважають підвищену трудомісткість виготовлення елементів і труднощі виконання вузлів у порівнянні з традиційними рішеннями металевих конструкцій. При серійному виготовленні стандартних елементів на заводах ці недоліки варто розглядати як особливості ґратчастих конструкцій з коротких стрижнів.

Коли були знайдені раціональні рішення схем, вузлів і з'явилися методи розрахунку на ЕОМ складних багаторазово статично невизначених конструкцій, ґратчасті просторові покриття одержали бурхливий розвиток у світовій будівельній практиці і серед прогресивних конструкцій сприяли появі різних просторових систем, що характеризуються багатим різноманіттям форм. У цілому всі ґратчасті просторові конструкції можна розділити на дві основні групи: перехресно-стрижневі конструкції і сітчасті оболонки.

Перехресно-стрижневими називаються просторові конструкції, що складаються зі зв'язаних між собою у вузлах перетинання балок або ферм, що працюють на вигин у двох або більш напрямках. Різні типи перехресно-стрижневих конструкцій утворяться перетинанням плоских ферм у двох, трьох або навіть чотирьох напрямках. Оскільки в цілому конструкції покриття виявляються плоскими у виді просторових стрижневих плит, то надалі скорочено будемо називати їх плитами. Похилі ферми при взаємному перетинанні утворять на площинах верхніх і нижніх поясів плит сітки з квадратним осередком. У плані осередку поясів виявляються зміщеними одна щодо іншої. Такі плити являють собою конструкції, утворені як би з багаторазово повторюваних стрижневих пірамід із квадратною основою.

3.2 Конструкційна характеристика плит

Типи стрижневих плит дозволяють компонувати покриття будь-якої форми в плані, у даному випадку вибираємо квадратний обрис. Основною умовою при призначенні форми плити є забезпечення просторової роботи конструкції покриття, тобто сприйняття нею розрахункових зусиль у двох або трьох напрямках. Тільки при такому підході до застосування стрижневих плит покриття буде легким і економічним.

Найбільш раціональним профілем для стрижнів плит є труба круглого перетину. За умови однакової гнучкості стиснутого перетину застосування круглої труби дозволяє заощаджувати метал до 15% у порівнянні з парою рівнобоких куточків, з'єднаних між собою прокладками за аналогією з конструкцією стрижнів легких кроквяних ферм.

3.3 Розрахунок структури оболонки

1) Приймаємо переріз для елементів структури: труба діаметром 114 на 5 мм, розмір чарунки - 2м.

2) Розрахунок проводиться тільки на снігове навантаження оскільки вітрове за абсолютним значенням менше снігового (СНіП 2.01.07-85 “Нагрузки и воздействия”) і направлене в протилежний бік.

3) Снігове навантаження: S = S0·м?гf ,

де S0 = 70 кгс/м2 (для м. Києва); м = 1 (СНіП 2.01.07-85); гf = 1,6 (зважаючи на незначну вагу конструкцій).

S = 70 кгс/м2?1?1,6 = 112 кгс/м2.

На квадраті зі стороною 2 м знаходяться чотири стержні (довжиною 1м) верхнього шару структури, на які передається снігове навантаження. Тобто погонне навантаження на стержень верхнього шару структури:

4) З огляду на симетрію розраховується частина конструкції (половина);

5) Розрахункова схема приведена на рис. 3.1, рис.3.2;

6) Фрагмент з характеристикам перерізу стержня та з навантаженнями на рис.3.3;

7) Вертикальні переміщення вузлів скінченно-елементної схеми;

найбільший прогин Z =102 м;

відносний прогин:

8) Епюра поздовжніх зусиль верхнього шару структури - на рис.3.4;

найбільше зусилля N = - 28,8 тс;

найбільше напруження

9) Епюра поздовжніх зусиль у розкосах структури - на рис.3.5;

найбільше зусилля N = 27,9 тс;

найбільше напруження

10) Епюри поздовжніх зусиль в стержнях нижнього шару структури - на рис.3.6;

найбільше зусилля N = 24,5 тс;

найбільше напруження

Рис. 1.1. Розрахункова схема оболонки

Рис. 1.2. Розрахункова схема

Рис. 1.3. Фрагмент з характеристикам перерізу стержня та з навантаженнями

Рис. 1.4. Епюра поздовжніх зусиль верхнього шару структури

Рис.1.5. Епюра поздовжніх зусиль у розкосах структури

Размещено на Allbest.ru


Подобные документы

  • Вибір геометричної схеми ферми. Вибір розрахункової схеми і збір навантажень. Визначення поздовжніх сил (статичний розрахунок). Підбір поперечних перерізів стиснутих і розтягнутих стержнів. Конструювання вузлів ферми з парних кутиків і замкнутих профілів.

    методичка [2,6 M], добавлен 20.01.2011

  • Проектування балкової клітки; визначення товщини настилу. Конструювання головної балки: визначення навантажень зусиль отриманої сталі і підбір перерізу. Розрахунок і конструювання оголовка і бази колони: підбір перерізу елементів за граничною гнучкістю.

    курсовая работа [1,1 M], добавлен 14.02.2013

  • Розрахунок, конструювання плити, визначення навантажень, розрахункова схема. Уточнення конструктивних параметрів поперечного перерізу, визначення площ робочої арматури. Побудова епюри матеріалів, розрахункові перерізи, згинальні моменти другорядної балки.

    курсовая работа [532,8 K], добавлен 19.09.2012

  • Об’ємно-планувальне та конструктивне рішення будівлі. Розрахунок рами: визначення навантажень, результати статичного рами на ЕОМ. Вибір комбінацій зусиль для лівої колони рами. Розрахунок та конструювання колони. Розрахунок та конструювання ферми.

    курсовая работа [193,2 K], добавлен 21.11.2008

  • Вибір схеми розміщення балок перекриття. Визначення міцності за нормальними перерізами. Розрахунок і конструювання плити перекриття з ребрами вгору. Проектування ригеля таврового поперечного перерізу з полицею внизу. Конструювання фундаменту під колону.

    курсовая работа [517,5 K], добавлен 29.11.2012

  • Збір навантажень на покриття і перекриття. Навантаження на колону з вантажної площі. Визначення повного та тривало діючого навантаження. Розрахунок колони на міцність. Визначення діаметру монтажної петлі. Розрахунок монолітного фундаменту старанного типу.

    курсовая работа [328,7 K], добавлен 01.12.2014

  • Проектування металевої балки настилу перекриття багатоповерхового цивільного будинку з неповним каркасом. Розрахунок і конструювання головної балки марки ГБ – 2, металевої колони першого поверху з прокатних профілів, монолітного ребристого перекриття.

    курсовая работа [2,6 M], добавлен 08.01.2013

  • Розрахунок та конструювання залізобетонних елементів збірного балочного перекриття цивільної будівлі з неповним каркасом. Збір навантаження на будівельні елементи та стрічковий фундамент, а також розрахунок плити перекриття за нормальним перерізом.

    контрольная работа [689,2 K], добавлен 27.06.2013

  • Інженерно-геологічне дослідження ґрунтових умов будівельного майданчика. Розробка проекту фундаментів неглибокого закладення: збір навантажень, розрахунок глибини закладення, визначення ширини підошви, деформацій і проектування пальових фундаментів.

    курсовая работа [102,0 K], добавлен 24.12.2012

  • Аналіз інженерно-геологічних умов. Визначення глибини промерзання ґрунту та закладення фундаментів. Визначення розмірів підошви фундаментів. Ущільнення основи важкими трамбівками. Визначення осідань фундаменту, несучої здатності висячих забивних паль.

    курсовая работа [557,6 K], добавлен 17.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.