Силикатные стеновые материалы

Эволюция силикатного кирпича, его технические характеристики, основные свойства и технология производства. Изготовление силикатного кирпича на основе зол и шлаков ТЭС. Подготовка силикатной массы. Прессование сырца. Процесс автоклавной обработки.

Рубрика Строительство и архитектура
Вид курсовая работа
Язык русский
Дата добавления 18.01.2011
Размер файла 241,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

по дисциплине: «Технологии предприятий стройиндустрии»

на тему: «Силикатные стеновые материалы»

Омск 2009

Содержание

1. Эволюция силикатного кирпича 3

2. Основные свойства 6

3. Технические характеристики кирпича 8

3.1 Прочность при сжатии и изгибе 8

3.2 Водопоглощение 8

3.3 Влагопроводность 9

3.4 Морозостойкость 9

3.5 Атмосферостойкость 11

3.6 Стойкость в воде и агрессивных средах 13

3.7 Жаростойкость 15

3.8 Теплопроводность 15

4. Изготовление силикатного кирпича на основе зол и шлаков ТЭС 17

5. Технология производства 21

5.1 Подготовка силикатной массы 21

5.1.1 Дозировка компонентов 21

5.1.2 Приготовление силикатной массы 24

5.2 Прессование сырца 26

5.3 Процесс автоклавной обработки 29

Список литературы 33

1. Эволюция силикатного кирпича

В настоящее время в строительстве применяется два вида кирпича - керамический и силикатный. Принципиальная разница между этими материалами заключается в сырье, используемом для их изготовления, и, соответственно, в технологии производства. Керамический кирпич состоит из глины (отсюда и его название, от греч. «keramos» - глина) и изготавливается путем прессования и последующего обжига в печах при высоких температурах. Силикатный, в свою очередь, представляет собой смесь кварцевого песка и воздушной извести (от лат. «silex» - кремень) и производится посредством формования и автоклавной обработки.

В позапрошлом году запатентованному производству силикатного кирпича исполнилось 125 лет. Доподлинно известно, что еще в 1880 г. в Германии был выдан первый патент на способ получения стеновых блоков из извести и песка. По данным российской экономической статистики, в самом начале прошлого века у нас в стране уже функционировало 9 своих заводов с общим объемом выпуска 150 млн. шт. силикатного кирпича в год. В настоящий момент на территории Санкт-Петербурга и Ленобласти расположено 6 крупных кирпичных предприятий. При этом единственным на весь регион производителем силикатного кирпича является Павловский завод строительных материалов.

Поскольку требования к качеству и эстетике строительных материалов постоянно растут, со временем были разработаны новые виды рассматриваемого материала - сначала цветной, а затем и пустотелый силикатный кирпич. Факт, что его можно окрашивать в массе, был известен давно и получил достаточно подробные обоснования как в научной литературе, так и в учебных пособиях для будущих специалистов строительной отрасли. Однако в советские времена, когда массовое домостроение опиралось главным образом на унитарно-типовые архитектурные решения в массовом домостроении, что сопровождалось огромными валовыми объемами выпуска силикатного кирпича, такое его свойство мало кого интересовало. Сегодня, когда эстетической составляющей авторы проектов и их заказчики начали уделять существенно больше внимания, выпуск цветного силикатного кирпича стал актуальным как никогда. Для придания кирпичу определенного колера в силикатную смесь добавляются атмосферо- и щелочестойкие пигменты. Колористическая гамма изделий, выпускаемых на Павловском заводе, включает 7 основных цветов: белый, розовый, терракотовый, желтый, изумрудный, голубой и габбро, а также их многочисленные оттенки. Метод введения сухого пигмента в силикатную массу, дающий возможность получать силикатный объемно окрашенный полнотелый кирпич, был выбран руководством завода совместно с технологическими службами на основании опыта российских и зарубежных партнеров. «После того, как мы выпустили цветной полнотелый силикатный кирпич, - рассказывает генеральный директор Павловского завода строительных материалов Сергей Иванович Тулько, - возник вопрос, чем еще мы можем расширить ассортимент выпускаемой продукции. Следом появилась идея придания кирпичу фактурной поверхности. На первом этапе фактурная поверхность выполнялась на отечественном оборудовании. Сейчас же мы ее делаем и на машинах немецкого производства.

На сегодняшний день мы выпускаем фактурный кирпич двух видов: с сильно выступающей фактурной поверхностью и более плоской - на выбор потребителя, кому какая нравится. Насколько такой кирпич интересен? По опыту Германии могу сказать, что рустированный кирпич используется очень широко». Кроме полнотелого цветного и фактурного силикатного кирпича Павловский завод выпускает пустотелый цветной. Этот вид продукции пока даже среди профессионалов известен немногим, поэтому стоит остановиться на нем более подробно. Предпосылкой производства этой группы изделий послужила необходимость улучшить весовые и теплотехнические свойства кирпича. Сначала, естественно, он появился в белом варианте, а затем и в цветном. По геометрическим характеристикам этот кирпич стал практически идеальным. Производить качественные материалы с максимально точной геометрией на Павловском заводе строительных материалов позволяет оборудование немецкой фирмы W&K («Вирлинг и Кларе»), которое используется для изготовления всех новых видов продукции. Пустотелый силикатный кирпич Павловского завода сохраняет все качественные характеристики полнотелого кирпича, а по некоторым параметрам превосходит и своего керамического собрата. Выпускается он с 11-ю несквозными отверстиями, составляющими 33%-ную пустотность. Несквозные (в отличие от керамики) отверстия делают кирпичную кладку на 30-50% экономичнее по расходу раствора. Пустотелый кирпич значительно легче, и за счет этого снижается нагрузка на фундамент. К тому же он обладает меньшей теплопроводностью, поэтому стены из такого кирпича можно делать тоньше без ущерба теплоизоляционным характеристикам ограждающих конструкций.

«Несомненный плюс силикатного кирпича перед керамическим состоит в его повышенных звукоизоляционных свойствах, а это немаловажный фактор при возведении межквартирных или межкомнатных стен. Поскольку силикатный кирпич используется при кладке несущих стен и различных перегородок, на Павловском заводе выпускался и продолжает выпускаться кирпич с керамзитом. Его выпуск был обусловлен борьбой именно за теплопроводность и звукоизоляцию кирпича и кирпичной кладки», - поясняет С.И. Тулько.

За период своего использования силикатный кирпич зарекомендовал себя с лучшей стороны и доказал свои качественные характеристики. До сих пор дома, построенные в послевоенные годы, прочно стоят на улицах российских городов. Ни трещины, ни сколы им не страшны, так как силикатный кирпич обладает высокой морозостойкостью, что является одним из основных показателей долговечности кладочного материала.

2. Основные свойства

силикатный кирпич сырец производство

Силикатный кирпич относится к группе автоклавных вяжущих материалов. Силикатный кирпич применяют для кладки стен и столбов в гражданском и промышленном строительстве, но его нельзя применять для кладки фундаментов, печей, труб и других частей конструкций, подвергающихся воздействию высоких температур, сточных и грунтовых вод, содержащих активную углекислоту.

Силикатный кирпич является экологически чистым продуктом. По технико-экономическим показателям он значительно превосходит глиняный кирпич. На его производство затрачивается 15…18 часов, в то время как на производство глиняного кирпича - 5…6 дней и больше. В два раза снижаются трудоемкость и расход топлива, а стоимость - на 15…40%. Однако у силикатного кирпича меньше огнестойкость, химическая стойкость, морозостойкость, водостойкость, несколько больше плотность и теплопроводность. В условиях постоянного увлажнения прочность силикатного кирпича снижается. Силикатный кирпич производится нескольких размеров:

250*120*65мм

250*120*88мм

250*120*138мм

ГОСТ 379-95 «Кирпич и камни силикатные. Технические условия» предусматривает ограничение массы утолщенного кирпича в сухом состоянии до 4,3 кг.

Для улучшения качества и потребительских свойств рекомендуется производить, наряду со стандартным известково-песчаным кирпичом, известково-зольный кирпич, а также различные красители.

Известково-зольный кирпич содержит 20…25% извести и 75…80% золы. Технология изготовления такая же, как и известково-песчаного кирпича. Плотность - 1400…1600 кг/м3, теплопроводность - 0,6…0,7 Вт/(м С). Кирпич используют для строительства малоэтажных зданий, а также для надстройки верхних этажей.

В качестве способа производства рекомендуется силосный способ. По сравнению с барабанным, этот способ более экономичен, а технология производства более проста.

3. Технические характеристики кирпича

Требования к техническим свойствам силикатного кирпича меняются в зависимости от области его применения, обычно определяемой строительными нормами, неодинаковыми в разных странах.

3.1 Прочность при сжатии и изгибе

В зависимости от предела прочности на сжатие силикатный кирпич подразделяют на марки 75, 100, 125, 150 и 200.

Марка кирпича определяется его средним пределом прочности при сжатии, который составляет обычно 7,5 - 35 МПа. В стандартах ряда стран (Россия, Канада, США), наряду с этим, также регламентируют предел прочности кирпича при изгибе. Пустотелые камни средней плотностью 1000 и 1200 кг/м3 могут иметь марки 50 и 25. В большинстве стандартов предусмотрено определение прочности кирпича в воздушно-сухом состоянии и лишь в английском стандарте - в водонасыщенном.

В стандартах приведены средняя прочность кирпича данной марки и минимальные значения предела прочности отдельных кирпичей пробы, составляющие 75 - 80% среднего значения.

3.2 Водопоглощение

Это один из важных показателей качества силикатного кирпича и является функцией его пористости, которая зависит от зернового состава смеси, ее формовочной влажности, удельного давления при уплотнении. По ГОСТ 379 - 79 водопоглощение силикатного кирпича должно быть не менее 6%.

При насыщении водой прочность силикатного кирпича снижается по сравнению с его прочностью в воздушно-сухом состоянии так же, как и

у других строительных материалов, и это, снижение обусловлено теми же причинами. Коэффициент размягчения силикатного кирпича при этом зависит от его макроструктуры, от микроструктуры цементирующего вещества и составляет обычно не менее 0,8.

3.3 Влагопроводность

Она характеризуется коэффициентом влагопроводности , который зависит от средней плотности кирпича. При рср., примерно равной 1800 кг/м3, и различной влажности имеет следующие значения:

Таблица 1

W, %

0,9

2

5

8

11

14

16,5

18,5

*10 -5 кг\м

0

3,6

6,9

8,7

10,2

14,5

30

73

3.4 Морозостойкость

В нашей стране морозостойкость кирпича, особенно лицевого, является наряду с прочностью важнейшим показателем его долговечности. По ГОСТ' 379 - 79 установлены четыре марки кирпича по морозостойкости. Морозостойкость рядового кирпича должна составлять не менее 15 циклов замораживания при температуре - 150С и оттаивания в воде при температуре 15 - 200С, а лицевого - 25, 35, 50 циклов в зависимости от климатического пояса, частей и категорий зданий, в которых его применяют.

Снижение прочности после испытания на морозостойкость по сравнению с водонасыщенными контрольными образцами не должно превышать 20% для лицевого и 35% для рядового кирпича первой категории и соответственно 15 и 20% для кирпича высшей категории качества.

Требования по морозостойкости к кирпичу марок 150 и выше предъявляются только в том случае, если его применяют для облицовки зданий. При этом кирпич должен пройти 25 циклов испытаний без снижения прочности более чем на 20%. По польскому стандарту силикатный кирпич всех видов должен выдерживать не менее 20 циклов замораживания и оттаивания без признаков разрушения. В стандартах Англии, США и Канады для облицовки наружных частей зданий, подвергающихся увлажнению и замораживанию, предусматривается кирпич повышенной прочности (21 - 35 МПа), но его морозостойкость не нормируется.

Морозостойкость силикатного кирпича зависит в основном от морозостойкости цементирующего вещества, которая в свою очередь определяется его плотностью, микроструктурой и минеральным составом новообразований. По данным П. Г. Комохова, коэффициент морозостойкости цементного камня из прессованного известково-кремнеземистого вяжущего автоклавной обработки колеблется после 100 циклов от 0,86 до 0,94. При этом с увеличением удельной поверхности кварца с 1200 до 2500 см2/г коэффициент морозостойкости несколько возрастает, а при дальнейшем увеличении дисперсности кварца он снижается.

В настоящее время в связи с применением механических захватов для съема и укладки сырца в сырьевую широту стали вводить значительно большее количество дисперсных фракций для повышения его плотности и прочности. Вследствие этого в структуре вырабатываемого сейчас силикатного кирпича заметную роль играют уже микрокапилляры, в которых вода не замерзает, что значительно повышает его морозостойкость.

Морозостойкость силикатных образцов зависит от вида гидросиликатов кальция., цементирующих зёрна песка (низкоосновных, высокоосновных или их смеси). После 100 циклов испытаний коэффициент морозостойкости образцов, предварительно прошедших испытания на атмосферостойкость, равнялся для низкоосновной связки 0,81, высокоосновной - 1,26 и их смеси - 1,65.

Изучалась также морозостойкость силикатных образцов, изготовленных на основе песков различного минерального состава. Были использованы наиболее распространенные пески: мелкий кварцевый, чистый и с примесью 10% каолинитовой или монтмориллонитовой глины, полевошпатовый, смесь 50% полевошпатового и 50% мелкого кварцевого, крупный кварцевый, содержащий до 8% полевых шпатов.

Кремнеземистая часть вяжущего состояла из тех же, но размолотых пород. Соотношения между активной окисью кальция и кремнеземом в вяжущем назначали исходя из расчета получения цементирующей связки с преобладанием низко- или высокоосновных гидросиликатов кальция или их смеси. Количество вяжущего во всех случаях было постоянным. Однако, морозостойкость силикатных образцов после 100 циклов замораживания и оттаивания зависит не только от типа цементирующей связки, но и от минерального состава песка. Влияние минерального состава песка особенно сказывается при наличии связки из низкоосновных гидросиликатов кальция, когда в смесь введено 10% каолинитовой или монтмориллонитовой глины. Коэффициент морозостойкости при этом падает до 0,82. При повышении основности связки коэффициент морозостойкости составов, наоборот, повышается до 1,5, что свидетельствует о продолжающейся реакции между компонентами в процессе испытаний.

Из приведенных данных видно, что хорошо изготовленный силикатный кирпич требуемого состава является достаточно морозостойким материалом.

3.5 Атмосферостойкость

Под атмосферостойкостью обычно понимают изменение свойств материала в результате воздействия на него комплекса факторов: переменного увлажнения и высушивания, карбонизации, замораживания и оттаивания.

Н.Н. Смирнов исследовал микроструктуру свежеизготовленных и пролежавших в кладке 10 лет образцов силикатного кирпича Кореневского, Краснопресненского, Люберецкого и Мытищинского заводов. Он установил, что в общем случае чешуйки новообразований за 10 лет частично замещаются вторичным кальцитом в результате карбонизации гидросиликатов кальция.

Гаррисон и Бесси испытывали в течение многих лет силикатный кирпич разных классов прочности, зарытый в грунт полностью или наполовину, а также лежащий в лотках с водой и на бетонных плитах, уложенных на поверхность земли. Они установили, что внешний вид кирпичей, лежавших 30 лет в земле с дренирующим и не дренирующим грунтом, мало изменился, но их поверхность размягчилась, а у кирпичей, частично зарытых в землю, открытая часть осталась без повреждений, хотя в некоторых случаях поверхность покрылась мхом.

Состояние кирпичей, находившихся 30 лет на бетонных плитах, зависело от их класса, Так, оказались без повреждений или имели незначительные повреждения 95% кирпичей класса 4 - 5 (28 - 35 МПа), 65% .кирпичей класса 3 (21 МПа) и 25% кирпичей класса 2 (14 МПа). Все кирпичи класса 1 (7 МПа) имели повреждения уже через 16 лет. Все кирпичи, лежавшие 30 лет на земле в лотках с водой, получили повреждения, и чем ниже класс кирпича, тем раньше они появлялись: у кирпичей класса 1 - через 8 лет, класса 2 - через 19 лет; класса 3 - через 22 года и для классов 4 - 5 - через 30 лет.

Прочность кирпичей, пролежавших в земле 20 лет, уменьшилась примерно, вдвое. При этом наибольшее снижение прочности наблюдалось у кирпичей, находившихся в недренирующем глинистом грунте, а наименьшее - у кирпичей, наполовину зарытых в землю (стоймя). За 20 лет в зависимости от условий пребывания в грунте карбонизировалось 70 - 80% гидросиликатов кальция, причем в основном карбонизация произошла в первые 3 года. Таким образом, даже при таких исключительно жестких испытаниях силикатный кирпич классов 3 и 4 оказался достаточно стойким.

Общеизвестно, что прочность силикатного кирпича после остывания повышается. Именно поэтому по ранее действовавшему ОСТ 5419 предусматривалось определять его прочность не ранее чем через две недели после изготовления. Были проведены испытания кирпича на образцах, отобранных от большого, числа партий (в общей сложности 3 млн. шт.). По 10 кирпичей из каждой пробы раскалывали пополам, половинки разных кирпичей складывали попарно в определенной последовательности и испытывали сразу, а остальные укладывали на стеллажи и испытывали в той же последовательности через 15 сут. При этом было установлено, что прочность кирпича за это время возросла в среднем на 10,6%, влажность его уменьшилась с 9,6 до 3,5%, а содержание свободной окиси кальция снизилось на 25% первоначального. Таким образом, повышение прочности силикатного кирпича через 15 сут. после изготовления можно объяснить совместным влиянием его высыхания и частичной карбонизации свободной извести.

Термографическими и рентгеноскопическими исследованиями установлено, что после испытания образцов в климатической камере заметных изменений в цементирующей связке не отмечается, а после карбонизации гидросиликаты кальция превращаются в 'карбонаты и гель кремнекислоты, являющиеся стойкими образованиями, цементирующими зерна песка.

Таким образом, можно считать, что силикатный кирпич, изготовленный из песков различного минерального состава с использованием тонкомолотого известково-кремнеземистого вяжущего, является вполне атмосферостойким материалом.

3.6 Стойкость в воде и агрессивных средах

Стойкость силикатного кирпича определяется степенью взаимодействия цементирующего его вещества с агрессивными средами, так как кварцевый песок стоек к большинству сред. Различают газовые и жидкие среды, в которых стойкость силикатного кирпича зависит от их состава. Из этих данных следует, что силикатный кирпич нестоек против действия кислот, которые разлагают гидросиликаты и карбонаты кальция, цементирующие зерна песка, а также против содержащихся в воздухе агрессивных газов, паров и пыли при относительной влажности воздуха более 65%. Необходимо отметить, что приведенные ориентировочные данные относятся к силикатному кирпичу по ГОСТ 379 - 53, требования к качеству которого значительно ниже, чем по ГОСТ 379 - 79.

Образцы силикатного кирпича подвергали воздействию проточной и не- проточной дистиллированной и артезианской воды в течение более 2 лет. В основном коэффициент стойкости образцов падает в первые 6 мес., а затем остается без изменения. Более высокий коэффициент стойкости - у образцов, содержащих 5% молотого песка, а более низкий - у образцов, в состав которых введено 5% молотой глины. Образцы, содержащие 1,5% молотого песка, занимают промежуточное положение: их коэффициент стойкости составляет примерно 0,8, что следует признать достаточно высоким для рядового силикатного кирпича.

Аналогичные образцы подвергали воздействию сильно минерализованных грунтовых вод, содержащих комплекс солей, а также 5%-ного раствора Na2SO4 и 2,5%-ного раствора MgSO4.

Каждые 3 мес. определяли прочность и коэффициент стойкости образцов, находившихся в различных растворах. В растворе Na2SO4 прочность образцов снижается в основном в течение 9 мес., а к 12 мес. она стабилизируется и в дальнейшем не меняется. В отличие от этого прочность образцов, находившихся в растворе MgSO4, падает все время, и они начинают интенсивно разрушаться уже по истечении 15 мес.

Как правило, коэффициент стойкости образцов, содержащих 5% молотого песка, составляет в грунтовых водах и растворе Na2SO4 примерно 0,9, содержащих 1,5% молотого песка - 0,8, тогда как у образцов, в состав которых введено 5% молотой глины, в грунтовой воде и 5%-ном растворе Na2SO4 он достигает 0,7. Следовательно, образцы с молотой глиной нельзя признать достаточно стойкими к воздействию агрессивных растворов, а также мягкой и жесткой воды.

Таким образом, силикатный кирпич, в состав которого введено 5% молотого песка, обладает высокой стойкостью к минерализованным грунтовым водам, за исключением растворов MgSO4.

3.7 Жаростойкость

К.Г. Дементьев, нагревавший силикатный кирпич при различной температуре в течение 6ч, установил, что до 200'С его прочность увеличивается, затем начинает постепенно падать и при 600'С достигает первоначальной. При 800'С она резко снижается вследствие разложения цементирующих кирпич гидросиликатов кальция.

Повышение прочности кирпича при его прокаливании до 200'С сопровождается увеличением содержания растворимой SiO2, что свидетельствует о дальнейшем протекании реакции между известью и кремнеземом. Основываясь на данных исследований и опыте эксплуатации силикатного кирпича в дымоходах и дымовых трубах разрешается применять силикатный кирпич марки 150 для кладки дымовых каналов в стенах, в том числе от газовых приборов, для разделок, огнезащитной изоляции и облицовки; марки 150 с морозостойкостью Мрз35 - для кладки дымовых труб выше чердачного перекрытия.

3.8 Теплопроводность

Теплопроводность сухих силикатных кирпичей и камней колеблется от 0,35 до 0,7 Вт/(м 'С) и находится в линейной зависимости от их средней плотности, практически не завися от числа и расположения пустот.

Испытания в климатической камере фрагментов стен, выложенных из силикатных кирпичей и камней различной пустотности, показали, что теплопроводность стен зависит только от плотности последних. Теплоэффективные стены получаются лишь при использовании многопустотных силикатных кирпичей и камней плотностью не выше 1450 кг/м3 и аккуратном ведении кладки (тонкий слой нежирного раствора плотностью не более 1800 кг/м3, не заполняющего пустоты в кирпиче).

4. Изготовление силикатного кирпича на основе зол и шлаков ТЭС

На долю силикатного кирпича приходится значительная часть всего объема стеновых материалов. Приведенные затраты на возведение стен из силикатного кирпича составляют примерно 84% по сравнению с необходимыми затратами при использовании керамического кирпича. Расход условного топлива и электроэнергии на производство силикатного кирпича в 2 раза ниже, чем керамического. На получение 1 тыс. шт. силикатного кирпича расходуется в среднем 4,9 ГДж тепла, половина которого составляет тепло на обжиг извести, а другая - на автоклавную обработку и другие технологические операции.

В производстве этого материала золы и шлаки ТЭС используются как компонент вяжущего или заполнителя (рис. 3.8). В первом случае расход золы достигает 500 кг на 1 тыс. шт. кирпича, во втором - 1,5-3,5 т. Оптимальное соотношение извести и золы в составе вяжущего зависит от активности золы, содержания в извести активного оксида кальция, крупности и гранулометрического состава песка и других технологических факторов и может колебаться в широком диапазоне. При введении угольной золы расход извести снижается на 10-50%, а сланцевые золы с содержанием (СаО + Мg0) до 40-50% могут полностью заменить известь в силикатной массе. Зола в известково-зольном вяжущем является не только активной кремнеземистой добавкой, но также способствует пластификации смеси и повышению в 1,3-1,5 раза прочности сырца, что особенно важно для обеспечения нормальной работы автоматов-укладчиков. Эффективность введения золы повышается с ростом удельной поверхности известково-зольного вяжущего. При этом в зольном компоненте силикатного кирпича должно содержаться не более 3-5% несгоревшего топлива и не менее 10% плавленых частиц.

Целесообразно использовать золы и шлаки антрацитовых углей, в которых содержание несгоревшего топлива составляет 15-20%. Основная масса несгоревшего топлива содержится внутри частичек аморфизованного глинистого вещества, оплавленного снаружи. Содержание остеклованных частиц в антрацитовых золах составляет 60- 80% по массе.

Известково-кремнеземистое вяжущее в производстве силикатного кирпича получают совместным помолом комовой негашеной извести с золой и кварцевым песком. Суммарное содержание активных СаО и Мg0 в вяжущем - 30-40%, удельная поверхность- 4000- 5000 см2/г, остаток на сите № 02 - не более 2%.

Схема производства силикатного кирпича из высококальциевых зол

1 - пневмоконвейер; 2 - силосный склад; 3 - шнек; 4 - пневмонасос; 5- циклон; 6 - рукавный фильтр; 7- расходный бункер; 8- винтовой питатель-9 - смеситель; 10- элеватор; 11- конвейер; 12 - бункер-мерник; 13 - реактор; 14- шнек; 15- бункер для золы и цемента; 16- дозатор; 17- бункер пресса; 18 - пресс; 19 - запарочная тележка; 20 - передаточная тележка; 21 - автоклав; 22 - склад готовой продукции.

Прочность сырца и готового кирпича можно повысить частичной заменой кварцевого песка золошлаковыми отходами, в результате чего улучшается гранулометрический состав смеси. При замене в силикатных смесях 20-30% кварцевого песка золой прочность сырца повышается на 30-40%, запаренных образцов - на 60-80%. Эффективна также частичная замена кварцевого песка дробленым до крупности не более 5 мм топливным шлаком.

При замене золой более 30% кварцевого песка возможно ухудшение формовочных свойств смеси в результате вовлечения воздуха в дисперсную известково-зольную массу при формовании и расслаивании сырца. Для формования известково-зольных смесей револьверные прессы, применяемые в производстве силикатного кирпича, заменяют колено - рычажными, используемыми для прессования керамического кирпича и огнеупоров из полусухой массы. Такие прессы создают двухстороннее приложение усилий, что обеспечивает удлиненное время прессования.

Оптимальное содержание золы и шлака в силикатной смеси зависит от зернового состава и способа формования, возрастая с модулем крупности и циклом прессования.

На прессах двухстороннего действия с увеличенным циклом и повышенным давлением при прессовании можно формовать силикатные массы с содержанием золы до 50%, а шлака - до 35%. Суммарное содержание активных СаО и М 0 в силикатной массе должно составлять 6-8%, влажность - 6-10%. Высококальциевые и кислые золы, содержащие значительное количество свободного оксида кальция, должны предварительно гаситься паром под давлением. Золы, не содержащие свободный оксид кальция, в гашении не нуждаются, но при смешивании с известью должны подвергаться обычному силосованию.

Силикатный кирпич с добавками зол и топливных шлаков твердеет в автоклавах при давлении насыщенного пара 0,8-1,6 МПа. Рекомендуемая выдержка - 4-8 ч. Получаемый материал по водо- и морозостойкости превосходит обычный силикатный кирпич, имеет меньшие значения водопоглощения и водопроницаемости, лучший товарный вид.

Преимуществом кирпича из золосиликатной смеси оптимального состава является более низкая, чем у обычного, средняя плотность (1700-1800 кг/м3 против 1900-2000 кг/м3).

Используя золы ТЭС, получен пористый силикатный кирпич с такими свойствами: плотностью 1250-1400 кг/м3; прочностью 10- 17,5 МПа, пористостью 27-28%, морозостойкостью 15-35 циклов. Применение его позволяет уменьшить толщину наружных стен на 20, а массу - на 40% и существенно сократить расход тепла на отопление зданий.

5. Технология производства

5.1 Подготовка силикатной массы

5.1.1 Дозировка компонентов

Для получения сырьевой смеси (силикатной массы) требуемого качества необходимо правильно дозировать их.

Дозу извести в силикатной массе определяют не по количеству извести в ней, а по содержанию той ее активной части, которая будет участвовать в реакции твердения, т. е. окиси кальция. Поэтому норму извести устанавливают в первую очередь в зависимости от ее активности.

На каждом заводе обычно ее устанавливают опытным путем. Среднее содержание активной извести в силикатной массе равно 6 - 8%. При употреблении свежеобожженной извести без посторонних примесей и недожога количество ее может быть уменьшено; если же в извести содержится большое количество недожженного камня и посторонних примесей, а также если известь долго хранилась на воздухе, норма ее в смеси должна быть увеличена. Как недостаточное, так и излишнее количество извести в силикатной массе влечет за собой нежелательные последствия: недостаточное содержание извести снижает прочность кирпича, повышенное содержание удорожает себестоимость, но в то же время не оказывает положительного влияния на качество. Активность извести, поступающей в производство часто изменяется; поэтому для получения массы с заданной активностью требуется часто изменять в ней количество извести. На БКСМ используется известь активностью 70 - 85%.

Практически на производстве пользуются заранее составленными таблицами, позволяющими определять дозировку извести в кг на единицу продукции (1 м3 силикатной массы или 1000 шт. кирпича) - таблица 2.

Таблица 2

Активность извести, %

Активность силикатной массы, %

6

6,5

7

7,5

8

8,5

60

65

70

75

80

85

378

349

324

303

283

267

409

378

351

328

306

289

440

407

378

353

330

300

472

437

405

378

353

333

504

466

432

403

378

356

535

495

459

428

400

378

Необходимое количество песка отмеривается по объему, а известь по весу при помощи бункерных весов.

Кроме извести и песка, составной частью силикатной массы является вода, необходимая для полного гашения извести. Вода также придает массе пластичность, необходимую для прессования кирпича-сырца, и создает благоприятную среду для протекания химической реакции твердения кирпича при его запаривании.

Количество воды должно точно соответствовать норме. Недостаток воды приводит к неполному гашению извести; избыток воды, хотя и обеспечивает полное гашение, но создает не всегда допустимую влажность силикатной массы. Влага частично поступает с песком, карьерная влажность которого колеблется в зависимости от климатических условий. Количество воды, необходимое для доведения влажности силикатной массы до нужной величины, практически также можно заранее рассчитать в зависимости от карьерной влажности поступающего в производство песка и составить таблицу для определения расхода воды на единицу продукции (1000 шт. кирпича или 1 м3 силикатной массы). Количество воды (в л), потребное для доувлажнения силикатной массы (на 1000 шт. кирпича), в зависимости от влажности песка, приведено в табл. 3

Таблица 3

Влажность песка, %

Потребная влажность силикатной массы, %

5

5,5

6

6,5

7

3

3,5

4

4,5

5

6

74

55

37

18

--

--

92

74

55

37

18

--

111

92

74

55

37

--

130

111

92

74

55

18

148

130

111

92

74

37

Общий расход воды для получения силикатной массы требуемого качества составляет около 13% (от веса массы) и распределяется следующим образом (в%):

на гашение извести……………………………………………..2,5

на испарение при гашении……………………………………..3,5

на увлажнение массы…………………………………………...7,0

Химическая реакция гашения извести протекает по формуле:

СаО+Н2О=Са(ОН)2

Иногда для повышения прочности кирпича в силикатную массу вводят различные добавки в виде молотого песка, глины и др.

Чтобы достигнуть правильного соотношения всех составляющих компонентов, применяют специальные дозировочные приспособления. Ввиду того что приготовление силикатной массы требуемого качества является одной из наиболее важных операций в технологическом процессе производства силикатного кирпича, обязательно регулярно проверять в лабораториями ее свойства.

Определение скорости гашения извести следует производить не менее двух раз в смену; в случае удлинения времени гашения извести необходимо немедленно изменить режим гашения путем удлинения цикла приготовления силикатной массы.

Определение активности извести (содержание СаО+МgО) необходимо проводить также два раза в смену и соответственно с активностью извести изменять дозировку ее для получения нормальной силикатной массы.

Активность и влажность силикатной массы следует проверять через каждые 1 - 1,5 часа и в случае отклонения получаемых показателей от заданных немедленно изменять дозировку извести и воды.

5.1.2 Приготовление силикатной массы

Известково-песчаную смесь готовят двумя способами: барабанным и силосным. На Белгородском комбинате применяется силосный способ, и это вполне обосновано.

Силосный способ приготовления массы имеет значительные экономические преимущества перед барабанным, так как при силосовании массы на гашение извести не расходуется пар. Кроме того, технология силосного способа производства значительно проще технологии барабанного способа. Подготовленные известь и песок непрерывно подаются питателями в заданном соотношении в одновальную мешалку непрерывного действия и увлажняются. Перемешанная и увлажненная масса поступает в силосы, где выдерживается от 4 до 10 час., в течение которых известь гасится.

Силос представляет собой цилиндрический сосуд из листовой стали или железобетона; высота силоса 8 - 10 м, диаметр 3,5 - 4 м. В нижней части силос имеет конусообразную форму. Силос разгружается при помощи тарельчатого питателя на ленточный транспортер, при этом происходит большоё выделение пыли. При вылеживании в силосах масса часто образует своды; причина этого - относительно высокая степень влажности массы, а также уплотнение и частичное твердение ее при вылеживании. Наиболее часто своды образуются в нижних слоях массы, у основания силоса. Для лучшей разгрузки силоса необходимо сохранять возможно меньшую влажность массы. Из опыта работы рассматриваемого завода установлено, что силосы разгружаются удовлетворительно лишь при влажности массы в 2 - 3%. Силосная масса при выгрузке более пылит, чем масса, полученная по барабанному способу; отсюда более тяжелые условия для работы обслуживающего персонала.

Перечисленные выше отрицательные моменты не полностью, но в какой-то мере устраняются механизацией разгрузки.

Работа силоса протекает следующим образом. Внутри силос разделен перегородками на три секции. Масса засыпается в одну из секций в течение 2,5 час., столько же требуется и для разгрузки секции. К моменту заполнения силоса нижний слой успевает вылежаться в течение того же времени, т.е. около 2,5 час. Затем секция выстаивается 2,5 часа, и после этого ее разгружают. Таким образом, нижний слой гасится около 5 час. Так как разгрузка силосов происходит только снизу, а промежуток между разгрузками составляет 2,5 часа, то и все последующие слои также выдерживаются в течение 5 час. в непрерывно действующих силосах. В случае образования свода при разгрузке силоса и прекращении поступления массы на ленточный транспортер категорически запрещается рабочим находиться в силосе Для облегчения разгрузки периодически включают вибратор, укрепленный на стенке силоса; и этим уменьшают прилипание массы к стенкам. При более серьезных зависаниях массы в силосах ее шуруют ломами через разгрузочные окна.

На БКСМ разгрузка массы из бункеров механизирована. Распределительные щетки на транспортерной ленте поднимают механическим пневмоподъемником. Над транспортерной лентой, подающей силикатную массу, установлены распределительные щетки, перемещающиеся вертикально по раме. Опускание и подъем щеток над лентой осуществляется с пульта управления, который оснащен световой сигнализацией и устройством, регулирующим подачу воздуха в пневмоцилиндры.

5.2 Прессование сырца

На качество кирпича и в основном на его прочность наиболее существенно влияет давление, которому подвергается силикатная масса во время прессования. В результате прессования происходит уплотнение силикатной массы. Тщательно уплотнить сырец - значит довести до минимума свободное пространство между частицами песка, сблизив их настолько, чтобы они разделялись друг от друга только тончайшим слоем вяжущего вещества. Такое сближение зерен песка при дальнейшей водо-тепловой обработке кирпича-сырца в автоклаве обеспечивает получение плотного и прочного конгломерата.

На Белгородском комбинате строительных материалов 9 прессов СМ - 816 и два пресса СМС - 152, которые работают под давлением 20 Мпа. Производительность пресса - 2680 штук условного кирпича за 1 час.

В момент прессования силикатной массы возникают силы сопротивления сжатию со стороны зерен песка, препятствующие максимальному сближению зерен. Сила трения массы о стенки формы и зерен друг о друга преодолевается путем применения давления. Поэтому давление должно распределяться равномерно по всей площади прессуемого изделия. Прессование необходимо вести только до известного предела, так как при увеличении давления выше предельного в массе появляются упругие деформации, которые исчезают после снятия давления и ведут к разрушению сырца. Поэтому нельзя повышать давление до появления деформаций.

Существенное значение имеет скорость, с которой производится давление. Так, например, ударное быстрое приложение усилия вызывает не уплотнение, а разрушение структуры изделия. Поэтому для преодоления внутренних сил трения давление должно прикладываться плавно с постепенным увеличением. Рабочее давление в прессах применяется равным 150 - 200 кг/см2.

На нормальную работу пресса, а следовательно, на получение кирпича хорошего качества большое влияние оказывает содержание влаги в силикатной массе. В оптимальных условиях прессования кирпича влажность массы должна составлять б - 7% от веса сухого вещества и постоянно контролироваться. Увеличение влажности выше оптимальной не дает возможности спрессовать сырец, снять его со стола пресса и уложить на вагонетку; уменьшение влажности приводит к тому, что спрессованный сырец трудно снять со стола пресса: он разламывается под действием собственного веса. Кроме того, недостаточное содержание влаги в сырце лишает известь необходимой пластичности, обеспечивающей связь между отдельными зернами песка.

Процесс прессования кирпича складывается из следующих основных операций: наполнения прессовых коробок массой, прессования сырца, выталкивания сырца на поверхность стола, снятия сырца со стола, укладки сырца на запарочные вагонетки.

Силикатная масса, приготовленная в силосах, передается при помощи транспортерной ленты в бункер над пресс-мешалкой пресса. Подача массы в пресс-мешалку должна так регулироваться, чтобы она занимала примерно 3/4 объема пресс-мешалки. Если поступающая масса имеет более низкую влажность, чем требуется, доувлажнение ее производится в пресс-мешалке, вокруг стенок которой укладывается водопроводная труба с мелкими отверстиями по ее длине, направленными вниз.

Сила струи поступающей по трубке воды регулируется прессовщиком при помощи вентиля. Увлажненная масса ножами пресс-мешалки при вращении их подается в прессовые коробки через отверстия в дне пресс-мешалки. При повороте стола пресса коробки, наполненные массой, перемещаются на определенный угол и занимают положение между прессующим поршнем и верхней стороной плитки контрштампа. Под давлением поршень постепенно поднимается и производится прессование сырца.

В момент прессования стол пресса останавливается, а ножи пресс-мешалки вращаются и заполняют массой следующую пару прессовых коробок. После прессования стол пресса поворачивается так, чтобы штампы пресса вместе с сырцом подошли к выталкивающему поршню. Сырец выталкивается поршнем в вертикальном направлении; верхняя пластина штампа при выталкивании выходит из прессовых коробок на 3 - 5 мм выше уровня стола. Затем выталкивающий поршень опускается вниз в первоначальное положение. После снятия пары кирпичей двумя съемщиками-прессовщиками стол поворачивается и штампы подводятся под механическую щетку для очистки.

Верхние пластины очищаются от налипшей массы, штампы опускаются на величину наполнения прессовых коробок и цикл начинается снова.

Силикатный кирпич по размерам должен отвечать требованиям ГОСТ 379 - 53; в случае отклонения от установленных размеров сырец считается браком.

Плотность прессования сырца достигается исключительно изменением величины наполнения прессовых коробок: чем больше высота наполнения, тем выше плотность сырца и, наоборот, чем меньше высота наполнения коробок, тем ниже плотность сырца. Во время прессования необходимо следить за тем, чтобы сырец получался одинаковой плотности; для этого нужно поддерживать высоту наполнения прессовых коробок одинаковой. Ножи пресс-мешалки должны быть закреплены от дна и стенок на одинаковом расстоянии.

После прессования полученные кирпичи автоматом-укладчиком укладываются на вагонетки, которые транспортируются в автоклавы, где производится тепло-влажная обработка кирпича.

5.3 Процесс автоклавной обработки

Для придания необходимой прочности силикатному кирпичу его обрабатывают насыщенным паром; при этом температурное воздействие сочетается с обязательным наличием в кирпиче-сырце водной среды, которая благоприятствует протеканию реакции образования цементирующих веществ с максимальной интенсивностью. Насыщенный пар используется с температурой 1750 при соответствующем такой температуре давлении в 8 атм.

Автоклав представляет собой трубу длиной 19м и диаметром 2м, вместимостью 12 вагонеток (V=5965 м3). Режим работы автоклава:

1,5 час. - подъём пара,

5-6 час. - выдержка,

1-1,5 час. - спуск пара.

В процессе автоклавной обработки, т. е. запаривания кирпича-сырца, различают три стадии.

Первая стадия начинается с момента впуска пара в автоклав и заканчивается при наступлении равенства температур теплоносителя (пара) и обрабатываемых изделий.

Вторая стадия характеризуется постоянством температуры и давления в автоклаве. В это время получают максимальное развитие все те физико-химические процессы, которые способствуют образованию гидросиликата кальция, а следовательно, и твердению обрабатываемых изделий.

Третья стадия начинается с момента прекращения доступа пара в автоклав и включает время остывания изделий в автоклаве до момента выгрузки из него готового кирпича.

В первой стадии запаривания насыщенный пар с температурой 1750 под давлением 8 атм. впускают в автоклав с сырцом. При этом пар начинает охлаждаться и конденсироваться на кирпиче-сырце и стенках автоклава. После подъема давления пар начинает проникать в мельчайшие поры кирпича и превращается в воду. Следовательно, к воде, введенной при изготовлении силикатной массы, присоединяется вода от конденсации пара. Образовавшийся в порах конденсат растворяет присутствующий в сырце гидрат окиси кальция и другие растворимые вещества, входящие в сырец. Известно, что упругость пара растворов ниже упругости пара чистых растворителей. Поэтому притекающий в автоклав водяной пар будет конденсироваться над растворами извести, стремясь понизить их концентрацию; это дополнительно увлажняет сырец в процессе запаривания. И третьей причиной конденсации пара в порах сырца являются капиллярные свойства материала.

Роль пара при запаривании сводится только к сохранению воды в сырце в условиях высоких температур. При отсутствии пара происходило бы немедленное испарение воды, а следовательно, высыхание материала и полное прекращение реакции образования цементирующего вещества - гидросиликата.

С того момента, как в автоклаве будет достигнута наивысшая температура, т. е. 170 - 2000, наступает вторая стадия запаривания. В это время максимальное развитие получают химические и физические реакции, которые ведут к образованию монолита. К этому моменту поры сырца заполнены водным раствором гидрата окиси кальция Са(ОН)2, непосредственно сопри- касающимся с кремнеземом SiO2 песка.

Наличие водной среды и высокой температуры вызывает на поверхности песчинок некоторое растворение кремнезема, образовавшийся раствор вступает в химическую реакцию с образовавшимся в течение первой стадии запаривания водным раствором гидрата окиси кальция и в результате получаются новые вещества - гидросиликаты кальция:

Сначала гидросиликаты находятся в коллоидальном (желеобразном) состоянии, но постепенно выкристаллизовываются и, превращаясь в твердые кристаллы, сращивают песчинки между собой. Кроме того, из насыщенного водного раствора гидрат окиси кальция также выпадает в виде кристаллов и своим процессом кристаллизации участвует в сращивании песчинок.

Таким образом, во второй стадии запаривания образование гидросиликатов кальция и перекристаллизация их и гидрата окиси кальция вызывают постепенное твердение кирпича-сырца.

Третья стадия запаривания протекает с момента прекращения доступа пара в автоклав, т. е. начинается падение температуры в автоклаве, быстрое или медленное в зависимости от изоляции стенок автоклава и наличия перепуска пара. Происходит снижение температуры изделия и обеднение его водой, т. е. вода испаряется и повышается концентрация раствора, находящегося в порах. С повышением концентрации гидрата окиси кальция и снижением температуры цементирующего вещества силикаты кальция становятся более основными, и это продолжается до тех пор, пока кирпич не будет выгружен из автоклава. В результате усиливается твердение гидросиликатов кальция и, следовательно, повышается прочность силикатного кирпича. Одновременно пленки цементирующего вещества сильней обогащаются выпадающим из раствора гидратом окиси кальция.

Механическая прочность силикатного кирпича, выгруженного из автоклава, ниже той, которую он приобретает при последующем выдерживании его на воздухе. Это объясняется происходящей карбонизацией гидрата окиси кальция за счет углекислоты воздуха по формуле

Са(ОН)2+СаСО2=СаСО32О

Таким образом, полный технологический цикл запаривания кирпича в автоклаве состоит из операций очистки и загрузки автоклава, закрывания и закрепления крышек, перепуска пара; впуска острого пара, выдержки под давлением, второго перепуска, выпуска пара в атмосферу, открывания крышек и выгрузки автоклава. Совокупность всех перечисленных операций составляет цикл работы автоклава, который равен 10 - 13 час.

Запаривание кирпича в автоклавах требует строгого соблюдения температурного режима: равномерного нагревания, выдержки под давлением и такого же равномерного охлаждения. Нарушение температурного режима приводит к браку.

Для контроля за режимом запаривания на автоклавах установлены манометры и самопишущие дифманометры, снабженные часовым механизмом, записывающим на барограмме полный цикл запаривания кирпича.

Из автоклава силикатный кирпич поступает на склад.

Список литературы

ГОСТ 379 - 95 «Кирпич и камни силикатные. ТУ»

Строева Е. Эволюция силикатного кирпича/журнал «Ардис» №2(34) Санкт - Петербург 2007

Павленко В.И., Тушева И.С. Радиационный мониторинг производства извести и силикатного кирпича/ Строительные материалы, №4 - М., 2001.

Воронин В.П., Заровнятных В.А. Эффективный силикатный кирпич на основе золы ТЭС и порошкообразной извести/ Строительные материалы, №8 - М., 2000.

Вахнин М.П., А.А. Анищенко Производство силикатного кирпича. - М.,1989

http://www.vserinki.ru

http://www.silikat.nnov.ru

http://www.veskirpich.ru

Размещено на Allbest.ru


Подобные документы

  • Технологическая схема производства силикатного кирпича. Расчет удельного расхода сырьевых материалов. Процентное содержание пустот в кирпиче. Расчет потребности воды на изготовление силикатной смеси. Формование и автоклавирование силикатного камня.

    курсовая работа [619,6 K], добавлен 09.01.2013

  • Состав силикатного кирпича, способы его производства. Классификация силикатного кирпича, его основные технические характеристики, особенности применения, транспортировка и хранение. Гипсовые и гипсобетонные изделия. Древесно-цементные материалы.

    презентация [2,5 M], добавлен 23.01.2017

  • Технологическая линия производства силикатного кирпича методом полусухого прессования. Назначение и сущность процесса сортировки материалов. Принцип работы грохота. Расчет параметров колебаний короба грохота. Эксплуатация и ремонт оборудования.

    курсовая работа [902,5 K], добавлен 08.06.2015

  • Номенклатура и технологическая схема изготовления силикатного кирпича. Требования к оборудованию. Характеристика сырья, полуфабрикатов, вспомогательных материалов. Типовая карта контроля техпроцесса. Влияние отходов производства на окружающую среду.

    курсовая работа [51,9 K], добавлен 22.02.2015

  • Подготовка к строительству завода силикатного кирпича в Иваново-Вознесенске. Определение стоимости строительства завода. Исследование качественных характеристик песка. Преимущество силикатного кирпича перед красным. Техническое оснащение предприятия.

    реферат [8,9 M], добавлен 02.11.2010

  • Характеристика района строительства. Объемно-планировочное и конструктивное решение проекта двухэтажного жилого дома. Применение силикатного кирпича при возведении наружных стен и перегородок. Наружная и внутренняя отделка, инженерное оборудование дома.

    курсовая работа [165,7 K], добавлен 24.11.2014

  • Технологический процесс производства керамического кирпича. Механизация процессов вскрыши карьера и добычи глины. Формовка сырца, процесс сушки, обжиг кирпича. Применение туннельной печи для обжига кирпича. Внедрение автоматизированной системы управления.

    презентация [5,5 M], добавлен 29.03.2016

  • Вяжущие на основе высококальциевой золы для силикатного кирпича. Химический, гранулометрический состав шлаков от сжигания каменных углей и антрацитов. Классификация зол как сырья для изготовления строительных материалов. Гашение пережога и карбонизация.

    реферат [538,3 K], добавлен 28.08.2013

  • Классификация и основные свойства керамических материалов. Требования к керамическим стеновым матералам и их характеристика. Технические требования к глиняному обыкновенному и пустотелому кирпичу. Кладка наружных и внутренних стен, водопоглощение кирпича.

    реферат [1003,6 K], добавлен 26.07.2010

  • Описание свойств керамического кирпича. Характеристика сырья для производства керамического кирпича на базе месторождений пластичной глины с нанесением ангоба. Материальный баланс технологического комплекса по производству керамического кирпича.

    курсовая работа [803,9 K], добавлен 12.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.